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Abstract 

We considered a mixed corrective maintenance policy for machines in a two-machine one-

buffer flow line. The machines had stochastic processing times and suffered from unexpected 

failures. In the case of a failure, the machines were either minimally repaired or their failing 

components were replaced by spare parts. While the replacement strategy is rapid and the 

system can be considered new thereafter, spare parts provisioning and storage costs are very 

high. Thus, we additionally considered minimal repairs, which are less expensive and restore 

the system to a working condition at a minimum. We modeled the system as a continuous-

time Markov chain. This approach was used to measure the performance of the flow line and 

the mixed corrective maintenance policy employed. To facilitate design decisions for the flow 

line, we considered both the cost of an interstage buffer and the maintenance costs for 

machines in line. We formulated an optimization problem based on a profit function that 

enables the simultaneous optimization of the buffer size and maintenance strategy. Our 

numerical analyses reveal useful insights into the performance and optimal design of the flow 

line depending on the utilized maintenance strategy. 
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1. Introduction 
 

In the present study, we considered a flow line with intermediate buffers and machines that 

have stochastic processing times and suffer from failures. The machines and production 

process were assumed to have already been chosen. Thus, we sought to determine the 

optimal size of the buffer and the best maintenance strategy. 

The rapid repair of machines in flow lines is highly important because a failure of one machine 

affects the entire line and thus reduces the throughput. Furthermore, the dependencies of 

buffer size, maintenance actions, and machine parameters (e.g., production rates and failure 

rates) are very complex. As such, the isolated optimization of maintenance for single machines 

is not useful in this case. Notably, the number of studies that have integrated flow lines with 

intermediate buffers and machine maintenance is growing. However, while research largely 

remains focused on preventive and condition-based maintenance strategies, existing 

maintenance strategies that are applied in the case of unexpected failures are not considered. 

We considered a mixed corrective maintenance policy (MCMP) for machines in a flow line with 

an intermediate buffer. Essentially, in the case of a failure, a machine or critical component 

that induces a machine failure can be kept and repaired or replaced. The first case, which is 

known as a minimal repair in the literature, means that the failing part is repaired. This 

restores the intended function such that the machine can continue producing. However, the 

repaired machine is not as perfect as it was when new. In the second case, a spare part 

replaces the failed part. Thereafter, the machine is as good as new. The minimal repair is 

associated with low costs in terms of the equipment required but requires a long period. 

Moreover, the exact repair duration is not usually known in advance. Notably, replacement 

with a spare part ensures a rapid repair. However, spare parts provisioning is very expensive 

and parts must be kept in stock to avoid machine downtime. An MCMP makes use of both 

alternatives. In this paper, we considered Policy IV of the standard replacement policies with 

minimal repair discussed in Mamabolo & Beichelt (2004). This MCMP works as follows: At the 

first 𝑛 − 1 failure, minimal repairs are performed and the system is replaced at the 𝑛𝑡ℎ failure. 
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The contribution of this paper is the development of a model for the evaluation and 

optimization of the MCMP for a flow line with an intermediate buffer. Furthermore, we 

studied the behavior of such a system and demonstrate how to design the MCMP and the 

buffer. 

The remainder of this paper is organized as follows. In Section 2, we present the existing 

literature regarding the maintenance of flow lines. A detailed description of the problem 

considered in this paper, with all assumptions, can be found in Section 3. Section 4 presents 

the respective Markov chain. In Section 5, the numerical results are presented for different 

parameter settings of the flow line to analyze the system behavior as well as optimal system 

designs. Finally, Section 6 concludes the paper. 

 

2. Literature review 
 

The analysis and optimization of unreliable production lines with intermediate buffers is an 

extensively studied field of research (see reviews by Dallery & Gershwin, 1992 and Weiß et al., 

2018). After a brief introduction to maintenance optimization, we focus on the literature 

related to models with maintenance decisions for flow lines with intermediate buffers. 

Maintenance strategies depend on the nature of machine failures and can be divided into 

preventive, condition-based, and corrective. While the first two strategies attempt to avoid 

unexpected failures by interrupting the production for short maintenance activities, the latter 

applies in the case of an unexpected failure. The aim is to rapidly restore the machine to the 

point that production can be continued. Reviews of existing literature regarding maintenance 

optimization can be found in Wang (2002) and De Jonge & Scarf (2020). 

Considering maintenance for machines in production systems is challenging due to the 

interdependences of the machines and the interstage buffers commonly used to improve 

production system performance. To analyze these dependencies, two-machine one-buffer 

systems are often studied as a base case. These systems represent the studied problem with 

its trade off and the modeling effort is adequate. Furthermore, the two-machine one-buffer 

system can serve as a basis for decomposition and aggregation approaches to study longer 

flow lines. 
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Meller & Kim (1996) considered the two-machine one-buffer system and presented a model 

in which preventive maintenance on the first machine is triggered by a certain buffer inventory 

level. A few articles have dealt with the optimal condition-based preventive maintenance 

strategy, whereas the maintenance decision depends on the state of the deteriorating 

machine. For example, Karamatsoukis & Kyriakidis (2010) assumed that a preventive 

maintenance action repairs a machine such that it is as new. Fithouhi et al. (2017) additionally 

optimized the threshold state to which a machine is restored. Furthermore, Kang & Ju (2019) 

generated preventive maintenance strategies in which the policies are flexible so that 

machines can be restored to a better state depending on the inventory level of the buffer. 

Moreover, Bouslah et al. (2018) modeled preventive maintenance for both operation- and 

quality-dependent failures. Additionally, longer production lines that considered preventive 

maintenance were studied in Savsar (2008), Fithouhi et al. (2017), Nahas (2017), Nahas & 

Nourelfath (2018), Kang & Ju (2019), Gu et al. (2020), and Zhou et al. (2021). Although the 

considered models assumed that a machine is repaired in the case of a failure, they did not 

consider corrective maintenance actions as part of the optimization problem. 

Some articles considered spare parts provisioning for preventive maintenance in production 

lines with intermediate buffers (Gan et al., 2013; Gan & Shi, 2014; Gan et al., 2015; Cheng et 

al., 2017; Gan et al., 2021). Only two papers considered spare part decisions related to 

corrective maintenance for a two-machine one-buffer system (Kiesmüller & Zimmmermann, 

2018; Kiesmüller & Sachs, 2020). For machines with both stochastic and fixed processing 

times, they showed that spare parts inventory and buffer size decisions interact and that 

simultaneous optimization leads to large cost savings. 

However, many concepts for maintenance policies that can ensure rapid repairs at low cost 

have not yet been considered for machines in flow lines with a buffer. Notably, a failing system 

can be kept and repaired or replaced. The optimal choice involving the minimal repair or 

replacement of a system is one central subject of research. Makabe & Morimura (1963) 

introduced a policy for determining the optimal number of minimal repairs before 

replacement. For an overview of maintenance strategies, including replacements and minimal 

repair, see Mamabolo & Reichelt (2004) or Larbi Rebaiaia & Ait Kadi (2020). In the present 

paper, we adopt the basic concept of Makabe & Morimura (1963) and investigate the effect 

of an MCMP on a flow line design with intermediate buffers and spare parts planning. 
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3. Problem description 
In this work, we considered a flow line with two machines, denoted by 𝑀𝑖 , 𝑖 = 1,2, with 

random processing times and one intermediate buffer of size 𝑁. During production, a 

workpiece must be processed at each machine. Notably, the machines suffer from occasional 

downtimes caused by the failure of critical components. In each machine, we assumed that 

one unit of the same component is installed—a reasonable assumption if the machines are 

constructed on a modular basis. Although the benefits of modules in products such as personal 

computers and automobiles have been recognized for many years (Baldwin & Clark, 2000) or 

(Chatras & Giard, 2016), their use in manufacturing systems is a later development (Gwiazda 

et al., 2015) or (Becker et al., 2019). Thus, the same component is installed in different 

modules and can be found in different machines. This production system is depicted in Figure 

1. 

 

Figure 1 Two-machine one-buffer flow line with mixed corrective maintenance at failure 

When a component fails, the machine in which it is installed stops working and production 

halts until the faulty component is repaired or replaced. A repair-by-replacement strategy is 

often used in practice since it promotes rapid repairs and thus reduces downtime costs. To 

successfully apply this strategy, stocks of replacement parts are stored close to the 

manufacturing system. Since there is one spare part type for the installed base, a single stock 

point serves all machines in the system. 

Only applying the repair-by-replacement policy as a corrective maintenance (CM) strategy can 

be expensive due to the high cost of spare parts. Due to the uncertainty of failures and long 

lead times, the storage of spare parts is necessary, which results in high inventory costs being 

incurred. Therefore, we considered minimal repairs at failure as a second CM action. A 

minimal repair is more sustainable and reduces waste when compared to the repair-by-

replacement strategy (Ait Kadi & Cléroux, 1991). However, a component cannot be frequently 

repaired because the condition of the component becomes worse with each minimal repair. 

This can result in a lower production rate of the corresponding machine or a higher failure 

rate of the component (Fithouhi et al., 2017). We assumed that a minimal repair influences 
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the failure rate of the component while the production rate of the machine remains constant. 

This is reasonable because we did not consider components with wear-out effects. 

Consequently, a reduction in the production rate induced by degradation is not reasonable in 

our case. Furthermore, we assumed that the component is recovered once by a minimal repair 

and that it must be replaced with the next failure (𝑅 = 1). This procedure is equivalent to 

Policy IV of the standard replacement policies with minimal repair discussed in Mamabolo & 

Beichelt (2004), where the first 𝑛 − 1 failures are removed by minimal repair and the 𝑛𝑡ℎ 

failure is restored by replacement. Hereafter, we will refer to this policy as the MCMP. 

More specifically, we assume that the lifetime of each component is exponentially distributed 

with a mean lifetime 1/𝑝 and failure rate 𝑝. The failure rate of the component after minimal 

repair is 𝑝′, whereas we assume that the failure rate after minimal repair increases (𝑝 < 𝑝′). 

After replacement, the component is considered “as good as new.” 

The minimal repair is performed by a repair crew. The repair rate of the component in 𝑀𝑖  is 

given by 𝑟𝑖, 𝑖 = 1,2 and assumed to be exponentially distributed. If a component fails, a 

minimal repair has already been performed, and a spare part is available (in stock), then the 

resulting downtime is very short and may be considered negligible (Ait Kadi & Cléroux, 1991). 

A significant machine downtime only occurs when there is no spare in stock for the failed 

component. In this case, the machine remains out of service until the next spare parts delivery. 

In the rare case where more than one machine is down and awaiting a spare part, one must 

prioritize the replacement part service. In this study, we gave priority to the replacement of 

the component in the second machine. Naturally, this rule can easily be changed. However, 

the simultaneous failure of two machines is unlikely in systems that are designed for high 

throughput. Hence, prioritization has a small effect on performance. 

The spare parts inventory is controlled by a one-for-one replenishment policy with a base 

stock level 𝑆. That means that a spare part is ordered as soon as a spare part is taken from the 

stock. This base stock policy is optimal for expensive spare parts with long lead times and low 

demand (Feeney & Sherbrooke, 1966). The lead time for one spare part is exponentially 

distributed with a mean lead time of 1/𝛾 and delivery rate 𝛾. 
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The production process heavily depends on the CM strategy for the machines, while machine 

failures depend on the production process (i.e., buffer size) since component failures are 

operation dependent. This implies that a component can only fail during production. This 

mutual interaction between the CM strategy and intermediate buffer can be expanded upon 

as follows: In the case of one machine experiencing downtime, the other machines in line are 

not forced to stop and can continue producing if material and workpieces from the buffer are 

available. In the other case, the flow of material is interrupted and machines will be starved 

or blocked. Due to the random processing times of the machines, starving and blocking can 

also appear if an upstream machine is producing and no workpiece is available for production 

(starving), or if a downstream machine is producing and a workpiece cannot be passed by after 

production (blocking). The buffer storage decouples the machines such that the effects of 

random processing times and failures can be mitigated or at least reduced. This yields higher 

throughput at the cost of higher work in the process. However, the CM strategy must be 

designed to ensure the high availability of machines at low costs because the intermediate 

buffer can only decouple the machines and reduce the impact of downtime on other 

machines. The amount of time that a machine is out of service due to failures, which 

consequently leads to less throughput, must be reduced by a CM strategy. 

Our assumptions regarding the production process are in line with existing literature. We 

assume that all workpiece transportation times between machines and through the buffer can 

be neglected or are included in the processing time. The processing times of the machines are 

exponentially distributed with production rate 𝜇𝑖, (𝑖 = 1,2). The production line is assumed 

to be saturated, meaning that workpieces are always available for production at the first 

machine. Furthermore, finished workpieces can always leave the system after production at 

the final machine in the line. 

The production system can be optimized by defining the optimal buffer size 𝑁 and the optimal 

MCMP. For the MCMP, the number of minimal repairs 𝑅 before replacement and the spare 

parts base stock level 𝑆 can be determined. Since the decision variables are related to different 

categories and should be optimized simultaneously, we use the overall aim of production 

system profit maximization, which is commonly used in this case (Weiss et al., 2019). The profit 

can be formulated as 
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Z(𝑁, 𝑆, 𝑅) = Π(N,S,R) ⋅ 𝑝Π − 𝑁 ⋅ 𝑐𝑁 − 𝑆 ⋅ 𝑐𝑆 − 𝑇𝑀𝐶𝑅 (1) 

 

with   

𝑇𝑀𝐶𝑅 =  𝑁𝐶𝑚𝑅 ⋅ 𝑐𝑚𝑅 + 𝑁𝐶𝑆𝑃 ⋅ 𝑐𝑆𝑃 (2) 

Equation (1) is composed of the revenue generated by the throughput Π(N,S,R) with the profit 

coefficient 𝑝Π, the costs for spare parts and the buffer, and the costs for the MCMP (𝑇𝑀𝐶𝑅). 

Thereby, 𝑝Π represents the revenue coefficient while 𝑐𝑁 and 𝑐𝑆 are the cost coefficients 

associated with the buffer and spare parts, respectively. The costs of the MCMP (presented in 

Equation (2)) comprise the cost suffered for each minimal repair 𝑁𝐶𝑚𝑅 with the cost 

coefficient 𝑐𝑚𝑅 and the cost suffered from the number of failure replacements 𝑁𝐶𝑆𝑃 with the 

cost coefficient 𝑐𝑆𝑃. 

Notably, we will also refer to the MCMP for the case where 𝑅 = 0 and no minimal repair is 

performed before replacement. We considered this a special case of the MCMP. In 

summary, the decision variables that define the design of the production system and its 

repair strategy are given by (𝑁, 𝑆, 𝑅). 

 

4. Evaluation of a two-machine flow line with mixed corrective 

maintenance strategies 

 

We modeled the flow line with two machines, one intermediate buffer, and MCMP as a 

continuous-time Markov chain with discrete state space. The state of the system was denoted 

by 𝑧 = (𝛼1, 𝑛, 𝛼2, 𝑠, 𝑚1, 𝑚2), where 𝛼𝑖 is related to the condition of 𝑀𝑖, 𝑛 is related to the 

workpieces in the buffer, 𝑠 is related to the spare parts inventory, and 𝑚𝑖 is related to the 

repair status of the component in 𝑀𝑖. More specifically, 𝛼𝑖 = 0 implies that 𝑀𝑖  is down 

because a component inside has failed and no spare part is available, or a minimal repair is 

performed. For 𝛼𝑖 = 1, 𝑀𝑖  is defined as operational. Thus, it either produces or is starving, 

depending on whether a workpiece is available for production or not (remember that 𝑀1 

cannot be starving because we assume a saturated flow line). According to the blocking policy 

described in Section 2, 𝑀1 can be blocked, which is represented by 𝛼1 = 2. 
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Parameter 𝑛 serves as the number of workpieces that are released from production at 𝑀1 but 

did not exit 𝑀2. Dimension 𝑠 represents the number of spare parts in stock (𝑠 = 0,1, . . , 𝑆). If 

𝑠 equals 0, no spare part is in stock. The maximum number of spare parts in resupply is 𝑆 + 2. 

For the MCMP, we introduced 𝑚𝑖 ∈ {0,1} ∀𝑖 = 1,2 which represents the state of the 

component in 𝑀𝑖. Thus, 𝑚𝑖 = 0 if the component in 𝑀𝑖  is new (i.e., the last CM action was a 

replacement). The case where a minimal repair has been performed is represented by 𝑚𝑖 =

1. Consequently, based on the variable 𝑚𝑖, we know which CM action must be performed at 

the next failure. The balance equations in this section were derived for one minimal repair 

before replacement (𝑅 = 1). However, with the definition of the states, it is easy to extend 

the number of minimal repairs before a replacement must recover the machine, or to adapt 

the maintenance policy for further studies. The flow line without a minimal repair is 

represented by 𝑅 = 0 (i.e., variable 𝑚𝑖 = 0 can be neglected in this case). The Markov chain 

for 𝑅 = 0 can be found in Kiesmüller & Zimmermann (2018). 

In what follows, we provide expressions for the balance equations that were derived to 

determine the steady-state probabilities denoted by 𝑃(𝛼1, 𝑛, 𝛼2, 𝑠, 𝑚1, 𝑚2) together with the 

normalization equation. With the steady-state probabilities, we could evaluate the 

performance of the flow line. The total number of states depends on the buffer size 𝑁 and the 

base stock level 𝑆 and is equal to 16𝑁 + 21𝑆 + 9𝑁𝑆 + 32. Thus, the numerical determination 

of the steady-state probability is possible by solving the corresponding equation system. 

Since the state space and transitions are rather complex, we structured the balance equations 

based on the up and down states of the machines. We started with a case in which all 

machines are down, followed by a case in which one out of two machines is down. Last, we 

discuss all states in which the machines are up. By applying this pattern, we obtained four 

types of equations. Within these groups, we considered the internal and boundary states 

regarding the buffer. For the sake of clarity, we distinguished the states where machines are 

down whether or not a spare part is in stock. Thus, we obtained a total of 13 types of balance 

equations. In accordance with the balance equations, we divided the complete state space 𝑆𝑆 

of our system into 13 subsets 𝑆𝑆𝑗
̅̅ ̅̅ , ∀ 𝑗 = 1,2, … ,13: 
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𝑆𝑆 = ⋃ 𝑆𝑆𝑗
̅̅ ̅̅

13

𝑗=1

 (3) 

 

To include certain peculiarities of the boundary states and MCMP into the balance equations, 

we used an indicator function 𝜒𝑇 for a logical proposition 𝑇, which is defined as 

𝜒𝑇 = {
1, 𝑖𝑓 𝑇 𝑖𝑠 𝑡𝑟𝑢𝑒
0, 𝑖𝑓 𝑇 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒.

 (4) 

 

For the balance equations, had to distinguish whether the components in the machines have 

been repaired with a minimal repair (𝑚𝑖 = 1) or not (𝑚𝑖 = 0). On the one hand, this 

determines the delivery rate of the spare part and, on the other hand, whether the component 

is fixed by a minimal repair or by replacement. Therefore, we developed Equation (5) to 

calculate the number of spare parts in resupply. The maximum number of spare parts in 

resupply was restricted to the base stock level 𝑆 and the components in the machines. If a 

component fails and a minimal repair has already been performed (𝑚𝑖 = 1), then a spare part 

is ordered, which increases the number of spare parts in resupply: 

𝑅(𝛼1,𝛼2,𝑚1,𝑚2)
𝑆 = 𝑆 + (1 − 𝛼1) ⋅ 𝑚1 + (1 − 𝛼2) ⋅ 𝑚2. (5) 

Here, we present the 13 subsets of the state space with their corresponding balance 

equations. We start with the subsets 𝑆𝑆1
̅̅ ̅̅̅, 𝑆𝑆2

̅̅ ̅̅̅, and 𝑆𝑆3
̅̅ ̅̅̅, where at least one machine is down 

and no spare parts are in stock: 

𝑆𝑆1
̅̅ ̅̅̅ = {(0, 𝑛, 0,0, 𝑚1, 𝑚2)|𝑛 ∈ {1,2, … , 𝑁 + 1},  𝑚1, 𝑚2 ∈ {0,1}}   (6) 

 (𝑅(0,0,𝑚1,𝑚2)
𝑆 𝛾 + 𝜒{𝑚1=0}𝑟1 + 𝜒{𝑚2=0}𝑟2)𝑃(0, 𝑛, 0,0, 𝑚1, 𝑚2)

= 𝜒{𝑚1=0}𝑝𝑃(1, 𝑛, 0,0,0, 𝑚2) + 𝜒{𝑚1=1}𝑝′𝑃(1, 𝑛, 0,0,1, 𝑚2)

+ 𝜒{𝑚2=0}𝑝𝑃(0, 𝑛, 1,0, 𝑚1, 0) + 𝜒{𝑚2=1}𝑝′𝑃(0, 𝑛, 1,0, 𝑚1, 1) 

(7) 

𝑆𝑆2
̅̅ ̅̅ ̅ = {(0, 𝑛, 1,0, 𝑚1, 𝑚2)|𝑛 ∈ {1,2, … , 𝑁 + 1},  𝑚1, 𝑚2 ∈ {0,1}}  (8) 

 (𝜇2 + 𝑅(0,1,𝑚1,𝑚2)
𝑆 𝛾 + 𝜒{𝑚2=0}𝑝 + 𝜒{𝑚2=1}𝑝′ + 𝜒{𝑚1=0}𝑟1)𝑃(0, 𝑛, 1,0, 𝑚1, 𝑚2)

= 𝜒{𝑛<𝑁+1}𝜇2𝑃(0, 𝑛 + 1,1,0, 𝑚1, 𝑚2)

+ (𝑅(0,1,𝑚1,𝑚2)
𝑆 + 1)𝜒{𝑚2=0}𝛾𝑃(0, 𝑛, 0,0, 𝑚1, 1)

+ 𝜒{𝑚2=1}𝑟2𝑃(0, 𝑛, 0,0, 𝑚1, 0) + 𝜒{𝑚1=0}𝑝𝑃(1, 𝑛, 1,0,0, 𝑚2)

+ 𝜒{𝑚1=1}𝑝′𝑃(1, 𝑛, 1,0,1, 𝑚2) 

(9) 

𝑆𝑆3
̅̅ ̅̅ ̅ = {(1, 𝑛, 0,0, 𝑚1, 𝑚2)|𝑛 ∈ {1,2, … , 𝑁 + 1},  𝑚1, 𝑚2 ∈ {0,1}}  (10) 
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 (𝜇1 + 𝑅(1,0,𝑚1,𝑚2)
𝑆 𝛾 + 𝜒{𝑚1=0}𝑝 + 𝜒{𝑚1=1}𝑝′ + 𝜒{𝑚2=0}𝑟1)𝑃(1, 𝑛, 0,0, 𝑚1, 𝑚2)

= 𝜒{𝑛>1}𝜇1𝑃(1, 𝑛 − 1,0,0, 𝑚1, 𝑚2)

+ (𝑅(1,0,𝑚1,𝑚2)
𝑆 + 1)𝜒{𝑚1=0}𝛾𝑃(0, 𝑛, 0,0,1, 𝑚2)  

+ 𝜒{𝑚1=1}𝑟1𝑃(0, 𝑛, 0,0,0, 𝑚2) + 𝜒{𝑚2=0}𝑝𝑃(1, 𝑛, 1,0, 𝑚1, 0)

+ 𝜒{𝑚2=1}𝑝′𝑃(1, 𝑛, 1,0, 𝑚1, 1) 

(11) 

 

For the considered MCMP, the machines may be forced down; however, a spare part is 

available. This is represented by 𝑆𝑆4
̅̅ ̅̅̅, 𝑆𝑆5

̅̅ ̅̅̅, and 𝑆𝑆6
̅̅ ̅̅̅ : 

𝑆𝑆4
̅̅ ̅̅ ̅ = {(0, 𝑛, 0, 𝑠, 0,0)|𝑛 ∈ {1,2, … , 𝑁 + 1}, 𝑠 ∈ {1,2, … , 𝑆}}  (12) 

 
((𝑆 − 𝑠)𝛾 + 𝑟1 + 𝑟2)𝑃(0, 𝑛, 0, 𝑠, 0,0)

= (𝑆 − 𝑠 + 1)𝛾𝑃(0, 𝑛, 0, 𝑠 − 1,0,0) + 𝑝𝑃(1, 𝑛, 0, 𝑠, 0,0)
+ 𝑝𝑃(0, 𝑛, 1, 𝑠, 0,0) 

(13) 

𝑆𝑆5
̅̅ ̅̅ ̅ = {0, 𝑛, 1, 𝑠, 0, 𝑚2|𝑛 ∈ {1,2, … , 𝑁 + 1}, 𝑠 ∈ {1,2, … , 𝑆}, 𝑚2 ∈ {0,1}}  (14) 

 (𝜇2 + (𝑆 − 𝑠)𝛾 + 𝜒{𝑚2=0}𝑝 + 𝜒{𝑚2=1}𝑝′+𝑟1)𝑃(0, 𝑛, 1, 𝑠, 0, 𝑚2)

= 𝜒{𝑛<𝑁+1}𝜇2𝑃(0, 𝑛 + 1,1, 𝑠, 0, 𝑚2)

+ (𝑆 − 𝑠 + 1)𝛾𝑃(0, 𝑛, 1, 𝑠 − 1,0, 𝑚2) + 𝜒{𝑚2=1}𝑟2𝑃(0, 𝑛, 0, 𝑠, 0,0)

+ 𝑝𝑃(1, 𝑛, 1, 𝑠, 0, 𝑚2) + 𝜒{𝑠<𝑆}𝜒{𝑚2=0}𝑝′𝑃(0, 𝑛, 1, 𝑠 + 1,0,1) 

(15) 

𝑆𝑆6
̅̅ ̅̅ ̅ = {1, 𝑛, 0, 𝑠, 𝑚1, 0|𝑛 ∈ {1,2, … , 𝑁 + 1}, 𝑠 ∈ {1,2, … , 𝑆}, 𝑚1 ∈ {0,1}}  (16) 

 (𝜇1 + (𝑆 − 𝑠)𝛾 + 𝜒{𝑚1=0}𝑝 + 𝜒{𝑚1=1}𝑝′+𝑟2)𝑃(1, 𝑛, 0, 𝑠, 𝑚1, 0)

= 𝜒{𝑛>1}𝜇1𝑃(1, 𝑛 − 1,0, 𝑠, 𝑚1, 0)

+ (𝑆 − 𝑠 + 1)𝛾𝑃(1, 𝑛, 0, 𝑠 − 1, 𝑚1, 0) + 𝜒{𝑚1=1}𝑟1𝑃(0, 𝑛, 0, 𝑠, 0,0)

+ 𝑝𝑃(1, 𝑛, 1, 𝑠, 𝑚1, 0) + 𝜒{𝑠<𝑆}𝜒{𝑚1=0}𝑝′𝑃(1, 𝑛, 0, 𝑠 + 1,1,0) 

(17) 

 

The lower and upper boundary states of the buffer are divided into the case with no spare 

parts in stock (represented by 𝑆𝑆7
̅̅ ̅̅̅ and 𝑆𝑆8

̅̅ ̅̅̅) and the case with spare parts in stock (𝑆𝑆9
̅̅ ̅̅̅ and 

𝑆𝑆10
̅̅ ̅̅ ̅̅ ): 

𝑆𝑆7
̅̅ ̅̅ ̅ = {0,0,1,0, 𝑚1, 𝑚2| 𝑚1, 𝑚2 ∈ {0,1}}  (18) 

 (𝑅(0,1,𝑚1,𝑚2)
𝑆 𝛾 + 𝜒{𝑚1=0}𝑟1)𝑃(0,0,1,0, 𝑚1, 𝑚2)

= 𝜇2𝑃(0,1,1,0, 𝑚1, 𝑚2) + 𝜒{𝑚1=0}𝑝𝑃(1,0,1,0,0, 𝑚2)

+ 𝜒{𝑚1=1}𝑝′𝑃(1,0,1,0,1, 𝑚2) 

(19) 

𝑆𝑆8
̅̅ ̅̅ ̅ = {2, 𝑁 + 1,0,0, 𝑚1, 𝑚2| 𝑚1, 𝑚2 ∈ {0,1}}  (20) 

 (𝑅(1,0,𝑚1,𝑚2)
𝑆 𝛾 + 𝜒{𝑚2=0}𝑟2)𝑃(2, 𝑁 + 1,0,0, 𝑚1, 𝑚2)

= 𝜇1𝑃(1, 𝑁 + 1,0,0, 𝑚1, 𝑚2) + 𝜒{𝑚2=0}𝑝𝑃(2, 𝑁 + 1,1,0, 𝑚1, 0)

+ 𝜒{𝑚2=1}𝑝′𝑃(2, 𝑁 + 1,1,0, 𝑚1, 1). 

(21) 

𝑆𝑆9
̅̅ ̅̅̅ = {0,0,1, 𝑠, 0, 𝑚2|𝑠 ∈ {1,2, … 𝑆}, 𝑚2 ∈ {0,1}}  (22) 
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((𝑆 − 𝑠)𝛾 + 𝑟1)𝑃(0,0,1, 𝑠, 0, 𝑚2)

= 𝜇2𝑃(0,1,1,0, 𝑚1, 𝑚2) + (𝑆 − 𝑠 + 1)𝛾𝑃(0,0,1, 𝑠 − 1,0, 𝑚2)
+ 𝑝𝑃(1,0,1,0,0, 𝑚2) 

(23) 

𝑆𝑆10
̅̅ ̅̅ ̅̅ = {2, 𝑁 + 1,0, 𝑠, 𝑚1, 0|𝑠 ∈ {1,2, … 𝑆}, 𝑚1 ∈ {0,1}}  (24) 

 
((𝑆 − 𝑠)𝛾 + 𝑟2)𝑃(2, 𝑁 + 1,0, 𝑠, 𝑚1, 0)

= 𝜇1𝑃(1, 𝑁 + 1,0, 𝑠, 𝑚1, 0) + (𝑆 − 𝑠 + 1)𝛾𝑃(2, 𝑁 + 1,0, 𝑠 − 1, 𝑚1, 0)
+ 𝑝𝑃(2, 𝑁 + 1,1, 𝑠, 𝑚1, 0). 

(25) 

 

Now, we consider all states where both machines are up. The internal states related to the 

buffer are represented by 𝑆𝑆11
̅̅ ̅̅ ̅̅ , while the case in which 𝑀2 is starving is represented by 𝑆𝑆12

̅̅ ̅̅ ̅̅ , 

and the case in which 𝑀1 is blocked is expressed by 𝑆𝑆13
̅̅ ̅̅ ̅̅ : 

𝑆𝑆11
̅̅ ̅̅ ̅̅ = {(1, 𝑛, 1, 𝑠, 𝑚1, 𝑚2)|𝑛 ∈ {1,2, … , 𝑁 + 1}, 𝑠 ∈ {0,1, … , 𝑆}, 𝑚1,, 𝑚2 ∈ {0,1}}  (26) 

 (𝜇1 +  𝜇2 + (𝑆 − 𝑠)𝛾 + 𝜒{𝑚1=0}𝑝 + 𝜒{𝑚1=1}𝑝′ + 𝜒{𝑚2=0}𝑝

+ 𝜒{𝑚2=1}𝑝′)𝑃(1, 𝑛, 1, 𝑠, 𝑚1, 𝑚2)

= 𝜇1𝑃(1, 𝑛 − 1,1, 𝑠, 𝑚1, 𝑚2) + 𝜒{𝑛<𝑁+1}𝜇2𝑃(1, 𝑛 + 1,1, 𝑠, 𝑚1, 𝑚2)

+ 𝜒{𝑠>0}(𝑆 − 𝑠 + 1)𝛾𝑃(1, 𝑛, 1, 𝑠 − 1, 𝑚1, 𝑚2)

+ 𝜒{𝑠=0} (𝜒{𝑚1=0}(𝑆 + 1)𝛾𝑃(0, 𝑛, 1,0,1, 𝑚2)

+ 𝜒{𝑚2=0}(𝑆 + 1)𝛾𝑃(1, 𝑛, 0,0, 𝑚1, 1)) + 𝜒{𝑚1=1}𝑟1𝑃(0, 𝑛, 1, 𝑠, 0, 𝑚2)

+ 𝜒{𝑚2=1}𝑟2𝑃(1, 𝑛, 0, 𝑠, 𝑚1, 0)

+ 𝜒{𝑠<𝑆}𝑝′ (𝜒{𝑚1=0}𝑃(1, 𝑛, 1, 𝑠 + 1,1, 𝑚2)

+ 𝜒{𝑚2=0}𝑃(1, 𝑛, 1, 𝑠 + 1, 𝑚1, 1)) 

(27) 

𝑆𝑆12
̅̅ ̅̅ ̅̅ = {(1,0,1, 𝑠, 𝑚1, 𝑚2)| 𝑠 ∈ {0,1, … , 𝑆}, 𝑚1,, 𝑚2 ∈ {0,1}}  (28) 

 (𝜇1 + (𝑆 − 𝑠)𝛾 + 𝜒{𝑚1=0}𝑝 + 𝜒{𝑚1=1}𝑝′)𝑃(1,0,1, 𝑠, 𝑚1, 𝑚2)

= 𝜇2𝑃(1,1,1, 𝑠, 𝑚1, 𝑚2) + 𝜒{𝑠>0}(𝑆 − 𝑠 + 1)𝛾𝑃(1,0,1, 𝑠 − 1, 𝑚1, 𝑚2)

+ 𝜒{𝑠=0}𝜒{𝑚1=0}(𝑆 + 1)𝛾𝑃(0,0,1,0,1, 𝑚2) + 𝜒{𝑚1=1}𝑟1𝑃(0,0,1, 𝑠, 0, 𝑚2)

+ 𝜒{𝑠<𝑆}𝜒{𝑚1=0}𝑝′𝑃(1, 𝑛, 1, 𝑠 + 1,1, 𝑚2) 

(29) 

𝑆𝑆13
̅̅ ̅̅ ̅̅ = {(2, 𝑁 + 1,1, 𝑠, 𝑚1, 𝑚2)| 𝑠 ∈ {0,1, … , 𝑆}, 𝑚1,, 𝑚2 ∈ {0,1}}  (30) 

 (𝜇2 + (𝑆 − 𝑠)𝛾 + 𝜒{𝑚2=0}𝑝 + 𝜒{𝑚2=1}𝑝′)𝑃(2, 𝑁 + 1,1, 𝑠, 𝑚1, 𝑚2)

= 𝜇1𝑃(1, 𝑁 + 1,1, 𝑠, 𝑚1, 𝑚2)
+ 𝜒{𝑠>0}(𝑆 − 𝑠 + 1)𝛾𝑃(2, 𝑁 + 1,1, 𝑠 − 1, 𝑚1, 𝑚2)

+ 𝜒{𝑠=0}𝜒{𝑚2=0}(𝑆 + 1)𝛾𝑃(2, 𝑁 + 1,0,0, 𝑚1, 1)

+ 𝜒{𝑚2=1}𝑟2𝑃(2, 𝑁 + 1,0, 𝑠, 𝑚1, 0)

+ 𝜒{𝑠<𝑆}𝜒{𝑚2=0}𝑝′𝑃(2, 𝑁 + 1,1, 𝑠 + 1, 𝑚1, 1) 

(31) 

 

Together with the normalization equation (32), the equation system (3) and (6)–(31) can be 

solved. 

∑ 𝑃(𝑧) = 1

𝑧∈𝑆𝑆

 (32) 
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Once the steady-state probability distribution of 𝑧 = (𝛼1, 𝑛, 𝛼2, 𝑠, 𝑚1, 𝑚2) is determined, we 

can compute all performance measures of the system. For our numerical investigations, we 

were interested in the throughput of the flow line Π, the number of minimal repairs 𝑁𝑅𝑚𝑅, 

and the number of replacements 𝑁𝑅𝑆𝑃. The throughput of the system (see Equation (34)) is 

the number of produced workpieces per unit of time. For the computation of the throughput, 

all states are considered where 𝑀2 is processing (33). 

𝑆𝑆Π = 𝑆𝑆2
̅̅ ̅̅ ̅ ∪ 𝑆𝑆5

̅̅ ̅̅ ̅ ∪ 𝑆𝑆11
̅̅ ̅̅ ̅̅ ∪ 𝑆𝑆13

̅̅ ̅̅ ̅̅  (33) 

The sum of the probabilities of these states 𝑆𝑆Π yields the fraction of time 𝑀2 is producing. 

Within this effective production time of 𝑀2, workpieces finish production at the rate 𝜇2, such 

that the expected throughput is given by: 

Π(N,S,1) = ∑ 𝑃(𝑧)

𝑧∈𝑆𝑆Π

⋅ 𝜇2 (34) 

To provide an expression for the expected number of minimal repairs 𝑁𝑅𝑚𝑅  and the expected 

number of replacements with spare parts 𝑁𝑅𝑆𝑃, we required the effective processing time of 

both machines in the states where the components fail with rate 𝑝 or 𝑝′. Since we assumed 

operation-dependent failures, the effective processing time depends on the blocking, 

starving, and downtimes of the machines. 

The specific effective processing times of both machines are multiplied by the failure rates 𝑝 

or 𝑝′: 

𝑁𝑅𝑚𝑅 = [∑ (((∑ 2 ⋅ 𝑃(1, 𝑛, 1, 𝑠, 0,0) + 𝑃(1, 𝑛, 1, 𝑠, 1,0)𝑆
𝑠=0 + 𝑃(1, 𝑛, 1, 𝑠, 0,1))) +𝑁+1

𝑛=1

∑ 𝑃(0, 𝑛, 1,0, 𝑚1, 0)1
𝑚1=0 + ∑ 𝑃(1, 𝑛, 0,0,0, 𝑚2)1

𝑚2=0 + ∑ (𝑃(0, 𝑛, 1, 𝑠, 0,0) +𝑆
𝑠=1

𝑃(1, 𝑛, 0, 𝑠, 0,0))) + ∑ (∑ 𝑃(1,0,1, 𝑠, 0, 𝑚2)1
𝑚2=0 + ∑ 𝑃(2, 𝑁 + 1,1, 𝑠, 𝑚1, 0)1

𝑚1=0 )𝑆
𝑠=0 ] ⋅ 𝑝  (35) 

𝑁𝑅𝑆𝑃 = [∑ (((∑ 2 ⋅ 𝑃(1, 𝑛, 1, 𝑠, 1,1) + 𝑃(1, 𝑛, 1, 𝑠, 1,0)𝑆
𝑠=0 + 𝑃(1, 𝑛, 1, 𝑠, 0,1))) +𝑁+1

𝑛=1

∑ 𝑃(0, 𝑛, 1,0, 𝑚1, 1)1
𝑚1=0 + ∑ 𝑃(1, 𝑛, 0,0,1, 𝑚2)1

𝑚2=0 + ∑ (𝑃(0, 𝑛, 1, 𝑠, 0,1) +𝑆
𝑠=1

𝑃(1, 𝑛, 0, 𝑠, 1,0))) + ∑ (∑ 𝑃(1,0,1, 𝑠, 1, 𝑚2)1
𝑚2=0 + ∑ 𝑃(2, 𝑁 + 1,1, 𝑠, 𝑚1, 1)1

𝑚1=0 )𝑆
𝑠=0 ] ⋅ 𝑝′  

(36) 
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Other performance measures (e.g., expected spares parts availability, expected spare parts 

inventory, or work in process) can be computed similarly to the above formulas. However, 

these are not required for our numerical analysis. 

 

5. Numerical results 

 

In this section, we analyze numerical examples to explain how a production system with 

MCMP behaves and how it influences the optimal system design of a flow line when applied. 

Thus, the analyses are divided into two parts. The first part is devoted to the analysis of the 

influence of MCMP and certain maintenance parameters on the performance of the flow 

line. Also, the interdependencies between MCMP and buffer size are discussed. Then, the 

economic perspective is considered in the second part, in which the influence of cost 

parameters and optimization results are presented. 

For the analyses, we chose parameter set 1 as a starting point (see Table 1). Parameter set 1 

represents high failure rates, a fast lead time, and a fast repair rate. Parameter set 2 has lower 

failure rates, a long lead time, and a longer repair time compared to parameter set 1 and was 

used for the analysis of optimization results. The rates were chosen to be per day (i.e., a repair 

rate 𝑟𝑖 = 0.5 equates to an expected repair time of 2 days). We started with parameter set 1 

and varied the respective parameters for each investigation. Within our numerical analysis, 

we also compared the MCMP with minimal repair (𝑅 = 1) to the special case of the MCMP 

where the components are directly replaced and no minimal repairs are performed (𝑅 = 0). 

For simplicity, we will refer to the case where only replacements are used to recover the 

machine (R=0) as the replacement strategy (RS) in the discussion. 

 

Parameter set # 𝜇1 𝜇2 𝑝 𝑝′ 𝛾 𝑟1 𝑟2 

1 100 100 0.03 0.06 0.1 2 2 

2 100 100 0.003 0.006 0.03 0.5 0.5 

Table 1 Parameter setting transition rates 

First, we analyzed the performance of the flow line depending on the repair parameters and 

the chosen maintenance strategy. Therefore, we could show the influence of the repair rate 

on the throughput for different spare parts base stock levels. Furthermore, we compared the 
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throughput for the MCMP with the RS where no minimal repairs are performed. The buffer 

size 𝑁 equals 10 for all examples and the repair rates were chosen as 𝑟𝑖 = {0.5,1,4}. The 

results are depicted in Figure 2. 

 

Figure 2 Impact of repair rate on throughput 

Depending on the spare parts level S, the behavior of the MCMP and the RS with the respective 

throughput is different. If no spare parts are kept in stock, the MCMP outperforms the RS 

because the minimal repair restores the machine once. This reduces the influence of 

downtime due to spare part shortage in the case of failure. Within the MCMP, the function 

with the highest repair rate yields the highest throughput. All functions were increasing in S, 

which had already been shown for the RS in Kiesmüller & Zimmermann (2018). The higher the 

spare parts base stock level 𝑆, the better the RS performs. The gain in throughput for 

additional spare parts was higher when compared to the MCMP, whereas the level of the 

spare parts at which the RS outperformed the MCMP depended on the repair rate. For a 

sufficiently large S, the RS can entirely prevent machine downtime. However, the costs 

incurred by purchasing spare parts might be so immense that the range with a few spare parts 

in stock is far more important for practical considerations. 
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The throughput increases similarly for the MCMP with an increasing S since the out-of-stock 

probability becomes smaller, thereby reducing the probability of machine downtime. The 

different repair rates of the MCMP influence the throughput via the idle time of the repaired 

machine. Adding spare parts to the MCMP does not greatly increase the throughput because 

spare parts cannot influence downtime during repair. Thus, the curves converge faster than 

the RS and can yield higher throughput with few spare parts in stock. 

 

 

Figure 3 Influence of buffer size on throughput for different MCMP parameters 

Figure 3 compares the influence of buffer size on throughput for different spare parts levels 

for both the MCMP and the RS. Therefore, we present the performance of both maintenance 

strategies for four different spare parts levels depending on buffer size. To define a certain 

system design, we introduced the following notation: (N,S,R). Since RS is a special case of 

MCMP, it can be represented by 𝑅 = 0, meaning that no minimal repairs are performed 

before replacement. The parameter chosen for Figure 3 is parameter set 1. 

For all scenarios, the throughput increased as a function of buffer size N, which is well known 

from the literature (Gershwin, 1993). However, depending on the spare parts base stock level 

and whether the MCMP was applied or not, the influence of the buffer was different. For no 
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spare parts and one spare part in stock, the difference between the repair strategies was the 

largest. The effective production times were higher with the MCMP such that the buffer was 

more effective in this case. As a result, the relative throughput improvement became larger 

with more buffer space when compared to the RS. For a spare parts base stock level of 2, the 

performance of both maintenance strategies was equal in terms of throughput. According to 

the findings in Figure 2, the RS outperformed the MCMP for the high spare parts level. 

However, large differences in throughput and the high impact of the buffer—which intensifies 

the throughput improvement of the MCMP—were only observed for the small spare parts 

base stock level. 

After discussing the general behavior of the flow line with MCMP, we will now consider 

economic aspects. 

 

Figure 4 Total costs for best maintenance strategy with a fixed buffer size 

Figure 4 presents the total costs associated with the best maintenance strategy for a given 

buffer size (𝑁 = 10). The combination of S and R defines the best maintenance strategy that 

ensures a certain throughput at the lowest cost. The total costs (TC) can be computed by 

summing up all costs from the profit function (1): 
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TC(𝑁, 𝑆, 𝑅) = 𝑁 ⋅ 𝑐𝑁 + 𝑆 ⋅ 𝑐𝑆 + 𝑇𝑀𝐶𝑅 . 

The production system parameter set 1 was chosen and the cost coefficients were 𝑐𝑁 =

10, 𝑐𝑆 = 30, 𝑐𝑚𝑅 = 10, 𝑎𝑛𝑑 𝑐𝑆𝑃 = 700. This example represents the case in which the costs 

for one spare part in stock are higher compared to having one installed buffer space. The costs 

for replacing a spare part are much higher when compared to performing one minimal repair. 

Notably, performing minimal repairs incurs throughput losses due to the repair time, which is 

also indirectly considered by the throughput. 

From Figure 4, we gain further insights into the structure of the best maintenance strategy 

and the corresponding spare parts base stock level depending on different throughput levels. 

For a small throughput, the best decision is to have no spare parts and apply the MCMP. In 

this case, the mixed strategy with minimal repairs enables the dispensing of spare parts and 

reaching the throughput by the combination of buffer space and minimal repairs. For larger 

throughput levels, the MCMP always yields a lower throughput at a lower cost. The reduction 

of replacements causes this at the expense of repair time, which reduces the throughput. 

While MCMP reduces costs, it also restricts the reachable throughput such that a throughput 

above 90% can only be achieved by the RS (see Figure 4). 

To find the optimal solution (𝑁∗, 𝑆∗, 𝑅∗) that yields maximal profit 𝑍∗ (1), we introduced the 

optimization problem (P). Notably, the objective function (37) was represented by the profit 

function (1). We formulated two constraints that reduced the solution space and thus enabled 

us to solve (P) via complete enumeration. The constraints were the limitation of the maximal 

buffer size 𝑁̅ and the maximal spare parts base stock level 𝑆̅. (P) can be formulated as: 

max          Z(𝑁, 𝑆, 𝑅) = Π(N,S,R) ⋅ 𝑝Π − 𝑁 ⋅ 𝑐𝑁 − 𝑆 ⋅ 𝑐𝑆 − 𝑇𝑀𝐶𝑅 (37) 

𝑠. 𝑡.      𝑁 ≤ 𝑁̅ (38) 

             𝑆 ≤ 𝑆̅ (39) 

             𝑅 ∈ {0,1} (40) 

         𝑁, 𝑆 ∈ ℕ0  (41) 

The improvement of the throughput via spare parts is naturally limited because spare parts 

influence machine availability. Thus, a reasonable upper bound for the spare parts level 𝑆̅ can 

be determined by calculating a non-stock out probability of 99.99%: 
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𝑃(𝐷(𝐿) ≤ 𝑆̅) ≥ 0.9999 (42) 

To calculate the demand during the lead time (D(L)), we used an approximation in which we 

overestimated the real demand for spare parts. Consequently, the upper bound 𝑆 ̅was even 

more likely to not restrict the optimal solution of the unconstrained problem. The 

approximation was based on two simplifications. First, we considered an infinite size of the 

buffer and neglected the passivation effect, such that we assumed that both machines are 

always producing. Second, we neglected the minimal repairs. Thus, the demand during the 

lead time was approximated by a Poisson process with parameter 2𝑝. Space limitations usually 

restrict the buffer space in a production facility. For the numerical study, the maximal buffer 

size was 40. The number of minimal repairs before replacements 𝑅 was restricted to one 

according to our problem description. 

Table 2 presents the optimal system designs, including an optimal MCMP that comprises the 

optimal buffer size 𝑁∗, optimal spare parts base stock level 𝑆∗, and the optimal number of 

minimal repairs before replacement 𝑅∗. For each optimal solution (𝑁∗, 𝑆∗, 𝑅∗), the 

corresponding profit 𝑍(⋅) and throughput Π(⋅) was given. We varied all parameters related to 

the profit function for two different parameter sets of the transition rates. In addition to 

parameter set 1 (chosen for the previous analysis), we chose a scenario in which the machines 

have longer lifetimes, the spare parts have longer lead times, and the mean minimal repair 

time is longer (i.e., parameter set 2). 
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     Parameter set 1: 
𝜇1, 𝜇2 = 100, 𝑝 = 0.03, 𝑝´ = 0.06,
𝜆 = 0.1, 𝑟1, 𝑟2 = 2  

Parameter set 2: 
𝜇1, 𝜇2 = 100, 𝑝 = 0.003, 𝑝´ = 0.006,
𝜆 = 0.03, 𝑟1, 𝑟2 = 0.5  

𝑝Π 𝑐𝑁 𝑐𝑆 𝑐𝑚𝑅 𝑐𝑆𝑃 (𝑁∗, 𝑆∗, 𝑅∗) 𝑍(⋅) Π(⋅) (𝑁∗, 𝑆∗, 𝑅∗) 𝑍(⋅) Π(⋅) 

10 10 10 100 1000 (7,2,1) 753,80 88,26 (7,1,1) 806,07 89,00 
 10 50   (6,1,1) 696,53 84,36 (7,1,1) 766,07 89,00 
 50 10   (1,2,1) 635,68 73,82 (1,1,1) 680,18 74,35 

 50 50   (1,1,1) 588,73 72,04 (1,1,1) 640,18 74,35 
30 10 10   (14,3,0) 2590,45 93,89 (14,2,0) 2655,29 94,03 
 10 50   (14,2,1) 2486,45 92,23 (14,1,1) 2596,16 93,01 
 50 10   (5,3,0) 2287,70 87,34 (5,2,0) 2347,79 87,43 
 50 50   (5,2,1) 2188,03 85,86 (5,1,1) 2293,06 86,56 
50 10 10   (19,4,0) 4484,11 95,43 (19,2,0) 4552,45 95,36 
 10 50   (19,3,0) 4363,67 95,22 (19,2,0) 4472,45 95,36 
 50 10   (7,3,0) 4056,86 89,82 (7,2,0) 4120,96 89,93 
 50 50   (7,3,0) 3936,86 89,82 (7,1,1) 4046,02 89,00 
10 10 10 10  (7,2,1) 756,98 88,26 (7,1,1) 806,39 89,00 
   100  (7,2,1) 753,80 88,26 (7,1,1) 806,07 89,00 
   500  (7,3,0) 744,26 89,82 (7,1,1) 804,65 89,00 
   1000  (7,3,0) 744,26 89,82 (7,2,0) 803,87 89,93 
   100 1000 (7,2,1) 753,80 88,26 (7,1,1) 806,07 89,00 
    10000 (5,2,1) 441,73 85,86 (7,1,1) 774,03 89,00 
    15000 (3,1,1) 274,74 79,48 (7,1,1) 756,23 89,00 

Table 2 The optimal (𝑁∗, 𝑆∗, 𝑅∗) for different cost parameters 

The optimization results reveal some important insights into the design of the flow line and 

the choice of maintenance actions. In the case of a small profit coefficient (𝑝Π = 10) and for 

low costs for minimal repairs (𝑐𝑚𝑅 < 500 for parameter set 1 and 𝑐𝑚𝑅 < 1000 for set 2), the 

MCMP should be applied. For higher profit coefficients, the choice of maintenance strategy 

mainly depends on the cost parameter for spare parts 𝑐𝑆. Usually, the number of spare parts 

kept in stock is reduced by one if the MCMP is applied. The optimal buffer size depends on 

the costs for the buffer 𝑐𝑁. In two cases involving parameter set 1, the buffer size was also 

reduced as a result of an increase in spare parts costs. In both instances, the MCMP was 

optimal, and higher costs for spare parts 𝑐𝑆 and spare parts replacements 𝑐𝑆𝑃 led to a 

reduction in spare parts and buffer size. This effect, which also applies to the simple RS 

(Kiesmüller & Zimmermann, 2018), aims to reduce the operational time and avoid failures. On 

the contrary, in all instances in which the repair strategy changed due to different costs for 

spare parts 𝑐𝑆, the buffer size was not affected. However, there is no identifiable causality 

when the buffer and maintenance decision can be optimized in a sequential manner. 
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6. Conclusion 
 

During the design phase of flow lines, CM optimization has widely been neglected. 

Alternatively, maintenance strategies have been developed without considering the complex 

interactions of machines with intermediate buffers in production lines. In this context, we 

propose an MCMP for a flow line consisting of two machines and one buffer. The machines 

are either minimally repaired, or the failing components of the machines are replaced by spare 

parts. Moreover, the performance of a system can be computed using a continuous-time 

Markov chain. This model enables the simultaneous optimization of the buffer size and 

maintenance strategy to maximize the expected profit of the production system. Therefore, 

the revenue generated by throughput, the costs for buffer size, spare parts provisioning, and 

the costs for conducting minimal repairs and component replacements are included in the 

profit function. Moreover, optimal solutions are derived via complete enumeration. The 

numerical analyses revealed that for different throughput levels, the decision of whether 

MCMP is beneficial or not changes. Due to the complex dependencies of the buffer size, repair 

strategy, and spare parts level, as well as their influence on throughput, simultaneous 

optimization is highly recommended. 

Further research can extend our work by considering longer flow lines and generalizing the 

transition rates. Additionally, the MCMP could be adopted in a manner that facilitates flexible 

decisions being made for each machine based on whether a component is repaired or 

replaced, which depends on the state of the machine, the buffer level, or spare parts 

inventory. 
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