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Abstract
The Sharpe ratio has been criticized with regard to the assumptions of mean-volatility portfo-

lio selection. Downside performance measures were developed to resolve this critique; they 

are consistent with expected utility under less restrictive assumptions. The most prominent 

family of downside performance measures is known as Kappa ratios and puts above target 

returns into relation to lower partial moments. While the Sharpe ratio of a mutual fund exam-

ines whether portfolios of mutual fund and risk-free asset dominate risk-adjusted passive port-

folios of benchmark and risk-free asset, this characteristic cannot be transferred to downside 

performance measures with arbitrary targets. We show that Kappa ratios assign different val-

ues to passive strategies with varying fractions of benchmark and risk-free asset if the target 

differs from the risk-free rate. This effect can lead to reverse rankings of inferior and superior 

performing mutual funds. In addition, even the ratio of excess return and excess downside risk 

of passive portfolios is not constant in general. Therefore, downside performance measures 

turn out to be only applicable in asset management if the target is set equal to the risk-free 

rate. 
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1. Introduction

The classical Sharpe (1966) ratio, i.e. expected rate of return of a financial asset above the 

risk-free rate divided by its volatility, has been criticized with regard to the assumptions of 

mean-volatility based investment decisions. Some authors link the Sharpe ratio with quadratic 

utility, that exhibits increasing risk aversion. Actually, quadratic utility is only required for 

consistency of mean-variance decisions with expected utility theory if arbitrary distribution 

functions are allowed, especially if continuously as well as discretely distributed returns are 

evaluated by the investor (Johnstone and Lindley, 2011). However, in many cases of perfor-

mance measurement and other applications of the mean-variance criterion on the capital mar-

ket, we can assume that assets’ returns belong to the same class of distribution functions. No 

assumption about the properties of the utility function is needed if a normal distribution can 

be assumed because a normal distribution is completely characterized by mean and variance. 

Of course, the class of distribution functions that can be described by mean and variance is 

not limited to the normal distribution. 

Other authors criticize the Sharpe ratio because it measures risk in a symmetric way. They 

argue that a symmetric risk measure does not properly reflect the risk attitude of investors. 

This ignores that symmetric measurement of risk does not imply symmetric evaluation of 

profits and losses. Expected utility combines “beliefs” about the distribution of the return on 

financial assets and “tastes” in terms of risk preferences. Therefore, a symmetric risk measure 

can be combined with a utility function with decreasing marginal utility. There are multiple 

applications of expected utility in finance where, for example, the assumptions of normally 

distributed rates of return and exponential utility of the investor are combined. Other applica-

tions link log-normally distributed returns with a power utility function. A mean-variance 

criterion results in both cases and, of course, exponential and power utility functions exhibit 

positive, decreasing marginal utility. 

Based on this criticism but also – and more important – based on weaker assumptions on 

“tastes” and “beliefs”, downside-oriented performance measures were developed (Sortino and 

Price, 1994; Sortino et al., 1999; Dowd, 2000; Shadwick and Keating, 2002; Argawal and 

Naik, 2004; Darsino and Satchell, 2004; Kaplan and Knowles, 2004; Kazemi et al., 2004; 

Farinelli and Tibiletti, 2008). These ratios evaluate the return-risk trade-off of a financial as-
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set, for example a mutual fund, in a downside-oriented framework. Here, return corresponds 

to expected rate of return above a predetermined target, also referred to as threshold rate of 

return, and risk is measured based on lower partial moments. Lower partial moments (LPM) 

measure the risk of realizing a rate of return R below target � and are defined for continuously 

distributed returns as follows: 

(1) � � � � � � � �� �,LPM  E max ;0
nn

n R R dF R R�
�	

�


 � � � � ��

where E(.): expected value 

F(R): cumulative distribution function 

n: order of lower partial moment 

Although not necessary from a theoretical perspective, n frequently is a natural number in 

applications. The focus on natural numbers allows a close relationship between lower partial 

moments and stochastic dominance criteria. For example, an investment decision based on 

lower partial moment of order one corresponds to second order stochastic dominance. A deci-

sion based on second order stochastic dominance is, in turn, consistent with expected utility 

maximization if the investor is risk averse in terms of positive and decreasing marginal utility. 

Moreover, a decision based on lower partial moment of order two, analogously, corresponds 

to third order stochastic dominance and is consistent with expected utility maximization if the 

investor exhibits decreasing risk aversion (Bawa, 1978). 

Recent research proves that downside performance measures and the Sharpe ratio can be 

monotonically transformed into each other if portfolio rates of return belong to the same loca-

tion-scale family of distributions (Chen et al., 2011; Schuhmacher and Eling, 2012; 

Schuhmacher and Breuer, 2014). This result is based on the work of Chamberlain (1983), 

Owan and Rabinovitch (1983), and Meyer (1987), who show that so-called multivariate q-

radial (elliptical) distributions of the return of single assets correspond to location-scale distri-

butions of the return of portfolios and location and scale parameters can be expressed, if exist-

ing, by mean and variance of the underlying distribution function. Empirical studies support 

this finding by observing similar rankings of investment funds (Eling and Schuhmacher, 

2007; Eling, 2008) when different performance measures are used. Both theoretical and em-

pirical papers in this field employ a target at the level of the risk-free rate. Ornelas et al. 

(2012) observe a decreasing rank correlation of performance measures when a different target 

is used. 
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However, an identical meaning of different performance measures does not imply that a mu-

tual fund with higher downside performance ratio and Sharpe ratio, respectively, provides a 

higher level of expected utility. Instead, “the best portfolio will be the one giving the best 

boundary; clearly this is the one for which [the Sharpe ratio] is the greatest” (Sharpe, 1966, p. 

122). This means that not in any case the mutual fund itself provides a higher expected utility, 

but an expected utility maximizing combination of the particular mutual fund and the risk-free 

asset exists. With downside performance measures with arbitrary target, portfolios of mutual 

fund and target do not exist if the target differs from the risk-free rate because the target rep-

resents a required minimum return and not a tradable security. This causes distortions in 

downside-oriented performance measurement. 

The remainder of this paper is organized as follows. Section 2 illustrates the functioning of 

the Sharpe ratio and describes well-known downside performance measures. In Section 3, we 

discuss possible wrong investment decisions if downside risk is measured by lower partial 

moment of order one with arbitrary target. Section 4 analyzes the general case of downside 

performance measurement based on lower partial moments of higher order. Section 5 briefly 

concludes.

2. Sharpe ratio and downside performance measures 

The Sharpe ratio measures the return-risk trade-off of a financial investment in mean-

volatility space and compares its ratio of expected excess return (above the risk-free rate rf)

and volatility 
 to the corresponding ratio of the benchmark. Benchmark strategies are repre-

sented by a passive buy-and-hold portfolio of (preferably efficient) market index M and risk-

free asset. Clearly, if the Sharpe ratio of a mutual fund F is higher than the Sharpe ratio of the 

benchmark, mutual fund F shows superior performance. 

As indicated above, this does not imply that an investment solely in mutual fund F generates a 

higher expected utility than investing in benchmark M in any case. But with the help of mutu-

al fund F the investor can reach a higher expected utility by combining F with the risk-free 

asset. In other words, if a mutual fund exhibits a higher Sharpe ratio than the benchmark, 

portfolios of mutual fund and risk-free asset dominate the corresponding risk-adjusted portfo-

lios of benchmark and risk-free asset. Of course, this property can be transferred to perfor-
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mance rankings of mutual funds. Figure 1 illustrates this characteristic, where the mutual 

fund’s Sharpe ratio is represented by the slope of the line through rf and F. Sharpe (1966) ap-

plies volatility – instead of variance – as risk measure to obtain this identity of performance 

ratio and slope of the corresponding portfolio line. 

Figure 1: Functioning of the Sharpe ratio

Downside performance measures also compute the ratio of expected excess return (here, 

above target �) and downside risk where downside risk is determined on the basis of lower 

partial moments. Kaplan and Knowles (2004) introduce a general class of downside perfor-

mance measures named Kappa ratios �, also referred to as Sortino and Satchell (2001) ratios: 

(2) � � � �
,

,

E

LPM ( )
n

n
n R

R
R

�
�

� �

�

For n = 1, the Omega ratio of Shadwick and Keating (2002) can be transformed as follows 

(Kaplan and Knowles, 2004): 

(3) � �
� �

� �
� �1,

1

1

F R dR
R

F R dR
R

	

�
� ��
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For n = 2, �2,�(R) equals the Sortino ratio of Sortino and Price (1994). Besides, the upside-

potential ratio (U-P) of Sortino et al. (1999) can also be expressed in terms of Kappa ratios: 

(4)
� �

� �
� � � �

� �

� � � �
� �

� � � �

1,

2, 2,

1,

2, 2,

1,2,

E LPM
U-P

LPM LPM

LPM 1
1

LPM

R dR
R R

R
R R

R
R R

RR
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�

� �

�
� �

��

� �
� � �


 �

� �
� � � � � � �� �� ��� �
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Hence, Omega ratio, Sortino ratio, and upside-potential ratio inherit the informative properties 

of Kappa ratios. For this reason, we concentrate on Kappa ratios in the following. Analogous-

ly to the Sharpe ratio, Kappa ratios can be geometrically illustrated by slopes of straight lines 

in (E(R), ,LPM ( )n
n R� )-space with intercept �. But portfolio lines of risk-free asset and 

benchmark (or any other risky asset) appear in different shapes if lower partial moments of 

order one (Section 3) or higher order (Section 4) are used. 

3. Kappa ratios of order one 

Before we analyze the case of arbitrary targets, we refer to Bawa and Lindenberg (1977) who 

show that portfolios consisting of risk-free asset and benchmark can be positioned on a 

straight line in (E(R),
,LPM ( )

f
n n r R )-space if the target equals the risk-free rate (see also our 

appendix on the shape of portfolio lines in mean-lower partial moment space that covers this 

result as a special case). The intercept of this line corresponds to both target and risk-free rate. 

Therefore, the characteristics of the Sharpe ratio can be transferred to Kappa ratios , ( )
fn r R� .

In addition to the Bawa and Lindenberg (1977) situation, we have to distinguish two more 

cases if the target differs from the risk-free rate. If the target exceeds the risk-free rate, the 

latter shows a positive lower partial moment; it amounts to 
1,LPM ( )f fr r� �� �  according to 

formula (1). Therefore, the intercept of the particular portfolio line is neither the risk-free rate 

nor the target in this case. If the target is set below the risk-free rate, the intercept of the port-

folio line remains the risk-free rate but does not equal the target. Both cases lead to distortions 

in downside performance measurement and corresponding ranking of investment alternatives. 
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Figure 2 illustrates ranking reversals in (E(R),
1,LPM ( )R� )-space if the target exceeds the risk-

free rate. In this figure, mutual fund F shows superior performance compared to the passive 

strategy because it is positioned above the line connecting benchmark M and risk-free asset. 

In contrast, mutual fund G exhibits inferior performance. At the same time, the Kappa ratio of 

order one, i.e. slope of the dashed lines in Figure 2, wrongly ranks mutual fund G superior to 

benchmark M, �1,�(RG) > �1,�(RM), and F inferior to M, �1,�(RM) > �1,�(RF). The case � > rf can 

be of practical relevance, e.g., for pension funds and life insurance companies in periods of 

low interest rates. The seemingly beneficial strategy of selecting investments according to the 

Kappa ratio of order one obviously leads to wrong decisions in this situation because invest-

ments would be selected that are dominated by the passive strategy (fund G in Figure 2). 

Figure 2: Ranking reversal by Kappa ratio of order one (� > rf)

Moreover, the Kappa ratio of order one does not allow a ranking of mutual funds because it 

can be increased simply via levering. In Figure 3, portfolio Fl is realized by borrowing at the 

risk-free rate and investing in mutual fund F. In contrast, the Kappa ratio undesirably ranks Fl

superior to F, 1, 1,( ) ( )
lF FR R� �� � � . Therefore, Kappa ratios with arbitrary targets in general 

fail to meet the requirement of being invariant to a change in portfolio leverage. 

E(R)

LPM1,�(R)

rf

M

Passive 

strategy

F

G

�

� � rf



8

�

Figure 3: Ranking reversal of Kappa ratio of order one by levering

A similar picture occurs if the target is set below the risk-free rate. Figure 4 visualizes that the 

target is not a traded asset. Instead, the risk-free rate represents the intercept of the portfolio 

line in this situation. Compared to the previous figures, we changed the positions of invest-

ments F and G. Still, G exhibits inferior performance and F shows superior performance. The 

Kappa ratio of order one misleadingly attributes a reverse ranking to these funds. 

Figure 4: Ranking reversal by Kappa ratio of order one (� < rf)
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As Figures 2 to 4 illustrate, Kappa ratios of order one only comply with the rationale of the 

Sharpe ratio if the target is set equal to the risk free rate. If the investor wishes to base her 

decision on the (E(R),
1,LPM ( )R� )-criterion for a different target, she should still select supe-

rior performing investments – dominating the passive strategy – and, subsequently, maximize 

expected utility by choosing her optimal mix with the risk-free asset. But maximization of a 

Kappa ratio with arbitrary target does not represent a suitable tool for asset management. 

4. Kappa ratios of higher order 

In (E(R), ,LPM ( )n
n R� )-space with n > 1, portfolio lines combining risk-free asset and 

benchmark (or any other risky asset) show a nonlinear shape (for a mathematical proof see the 

appendix). For � > rf, once more, the lower partial moment of the risk-free asset is positive, 

,LPM ( )n
n f fr r� � � �  (see, again, formula (1)). Therefore, curved lines similar to portfolios of 

imperfectly correlated risky assets in standard mean-volatility portfolio selection appear. The 

property of the Sharpe ratio, i.e. being invariant to portfolio leverage, cannot be transferred to 

downside performance measures in this situation. Kappa ratios again assign different values 

to passive strategies with different fractions of benchmark and risk-free asset. 

Figure 5 illustrates the case � > rf. As above, F dominates the passive strategy while G is dom-

inated by the passive strategy. Again, Kappa ratios wrongly assign a reverse ranking, 

, , ,( ) ( ) ( )n G n M n FR R R� � �� � � � � . In contrast to Section 3, the risk-free asset does not represent 

the minimum lower partial moment portfolio here. Starting with the risk-free asset, downside 

risk can be initially reduced by including the benchmark into the passive portfolio. Thus, 

Kappa ratios vary with different weights of benchmark and risk-free asset in the passive port-

folio. Transferred to evaluation of mutual funds, reverse rankings of superior and inferior per-

forming funds may occur. 
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Figure 5: Ranking reversal by Kappa ratios of higher order (� > rf)

Figure 6 completes our visualizations and illustrates the situation when the target falls below 

the risk-free rate. The risk-free asset represents the minimum lower partial moment portfolio 

in this case. Nevertheless, passive portfolios are still positioned on a curved line. Therefore, 

the effects described above also emerge here. 

Figure 6: Ranking reversal by Kappa ratios of higher order (� < rf)
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Kappa ratios of higher order behave similar to Kappa ratios of order one regarding ranking 

reversals. Therefore, maximizing Kappa ratios of higher order may not lead to an improved 

portfolio position compared to the passive strategy. As the portfolio line of passive strategies 

is a curved line, the same holds for portfolios of mutual fund F and risk-free asset. In contrast 

to the LPM1,�-framework, even the ratio of expected excess return, E(R) � rf, and excess 

downside risk of higher order, 
,LPM ( )n

n fR r� � � � , depends on portfolio composition. 

Expected excess return over excess downside risk can be graphically illustrated by the slope 

of a line connecting mutual fund F and the risk-free asset. This ratio is not suitable as a per-

formance measure in (E(R),
,LPM ( )n

n R� )-space for arbitrary targets because portfolios of F

and the risk-free asset dominate positions on that line. Also this pitfall can be avoided by fix-

ing the target at the level of the risk-free rate. 

5. Conclusion

Reward-to-risk downside performance measures relate expected above target returns to below 

target risk measured by lower partial moments. Downside performance measures possess a 

broader decision-theoretic foundation, i.e. less restrictive assumptions, than the classical 

Sharpe ratio. On the other hand, a higher Sharpe ratio of, for example, a mutual fund com-

pared to the benchmark implies that portfolios of mutual fund and risk-free asset dominate 

corresponding risk-adjusted portfolios of benchmark and risk-free asset in mean-volatility

space. A main finding of our paper is that this characteristic of the Sharpe ratio can only be 

transferred to downside performance measurement if the target equals the risk-free rate. 

Kappa ratios represent a well-known family of reward-to-risk downside performance 

measures where the order of Kappa ratios is determined by the order of the applied lower par-

tial moment. Graphically illustrated, the Kappa ratio of a mutual fund corresponds to the slope 

of a straight line that connects the positions of mutual fund and target in mean-downside risk 

space. Our results show that this line does not depict a portfolio line for arbitrary targets as the 

target represents a required minimum return and not a tradable asset. This property in general 

leads to different Kappa ratios of passive strategies with varying portfolio fractions of bench-

mark and risk-free asset. In addition, the Kappa ratio of portfolios of mutual fund and risk-

free asset depends on portfolio leverage. This effect hampers rankings of mutual funds. 
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Furthermore, ranking reversals of superior and inferior performing mutual funds may occur if 

performance is measured by Kappa ratios with arbitrary target. Finally, the shape of portfolio 

lines of a risky and the risk-free asset in mean-lower partial moment space is distinct from the 

familiar linear shape of this portfolio line in mean-volatility space. For downside risk 

measures of higher order curved portfolio lines result if the target differs from the risk-free 

rate. We conclude as a result of these effects that downside performance measures should 

only be applied in asset management if the target is set equal to the risk-free rate. 

Appendix

Portfolios P consisting of benchmark M (or any other risky asset) and risk-free asset show the 

following rate of return: 

(A.1) (1 )P M fR x R x r� � � � �

where x: portfolio fraction of M

We show the following properties for such portfolios in (E(R),
,LPM ( )n

n R� )-space within 

one proof: 

(1) If the target equals the risk-free rate, portfolios of M and rf can be positioned on a 

straight line connecting M and � (Bawa and Lindenberg, 1977). The intercept of this 

line is � = rf.

(2) If the order of the lower partial moment equals one, portfolios of M and rf can be posi-

tioned on a straight line connecting M and rf. This is a result of Harlow and Rao 

(1989). If � > rf, the risk-free asset’s lower partial moment amounts to 

1,LPM ( )f fr r� �� � . The intercept of the portfolio line is neither rf nor � in this case. 

(3) If n > 1, 
,LPM ( )n

n PR�  is convex in x. Therefore, portfolios of M and rf in (E(R),

,LPM ( )n
n R� )-space are positioned on a curved line similar to portfolios of two (im-

perfectly correlated) risky assets in standard mean-volatility portfolio selection. This 

extends the result of Harlow and Rao (1989) – who show the convexity of 

,LPM ( )n PR�  in x – because a concave transformation of a convex function can be 

convex, concave or linear in general. 
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We follow the idea of the proof of Harlow and Rao (1989) but analyze the n-th root of 

,LPM ( )n PR� :

(A.2)

1

,LPM ( ) ( )  ( )
n

nn
n P P PR R dF R

�	

� �
� �� �
� �
�
�

� �

Solving RP in formula (A.1) for 
(1 )P f

M

R x r
R

x
� � �

�  and substituting, then the upper limit of 

the integral in formula (A.2) becomes 
(1 )

( )
fx r

x
x

� � �
�
�

� . Subsequently, taking the first 

derivate of (A.2) with respect to x yields: 

(A.3)

� �

( )1
1

, ,

1
LPM ( ) LPM ( ) ( (1 ) )  ( )

x
nnn

n P n P M f M

I x

d dR R x R x r dF R
dx n dx

�

�	




� � � � � � � ��
���������������

�

� � �

We used here that for a positive linear transformation of the return (x > 0), the corresponding 

density functions are related as follows: 

( ) ( )
( ) ( ) 1

( ) ( )

M M M
M P

P P P

dF R f R dRf R x f R
dF R f R dR

� � � � � �

Applying Leibniz’ rule for parameter integral I(x) in formula (A.3) yields: 

 (A.4) 

( )

1

0

1
1

, ,

( )
                       ( ( ) ) ( ) ( )

                                     ( ( ) (1 ) ) ( )

LPM ( ) LPM ( ) ( ( ) )

x
n

M f f f M M

n
f

nnn
n P n P M f f

dI x n x R r r r R dF R
dx

dx x x r x
dx

d R R x R r r
dx

�

�	

�

� �

� � � � � � � �

� � � � � � �

� � � � � � �

�

���������

�

� �

�

� � �

�
( )

1 ( ) ( )

x

f M Mr R dF R
�	

� ��
�
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Utilizing Leibniz’ integral rule again, the second derivate of (A.2) reads as follows: 

 (A.5) 

� �

2

,2

2
( )1

2
1

,

( )1
1

2 2

,

1
2

,

0

LPM ( )

1 LPM ( ) ( ( ) ) ( ) ( )

   LPM ( ) ( 1) ( ( ) ) ( )  ( )

(1 ) LPM ( ) ( ( ) )

n
n P

x
nn

n P M f f f M M

x
nn

n P M f f f M M

n
n P M f f

d R
dx

n R x R r r r R dF R

R n x R r r r R dF R

n R x R r r

� �

�	

� �

�	

�

�

� �
� � � � � � � � � �� �� �

� �

� � � � � � � � � �

� � � � � � � �

�

�

�������

�

�

�

�

�

�

�

�

�
2

( )

1

( )

( )

2 2

( ) ( )

   ( ( ) )  ( )

      ( ( ) ) ( )  ( )

x
n

f M M

x
n

M f f M

x
n

M f f f M M

r R dF R

x R r r dF R

x R r r r R dF R

�

�	

�	

�

�	

�� �� � �� ��� �
� ���

� �
� � � � �� �� �
� �

�� ��� � � � � � �� � � ��� �!

�

�

�

�

�

�

�

�

Clearly, for n = 1, 
2

1,2
LPM ( )P

d R
dx �  becomes zero. Therefore and because the expected value 

is a linear operator, portfolios of M and rf can be positioned on a straight line in (E(R),

1,LPM ( )R� )-space. This is property (2). 

For � = rf, the term in curly brackets in formula (A.5) simplifies to: 

2

1

2

( )  ( )

( )  ( ) ( )  ( ) 0

f

f f

r
n n

f M M

r r
n n n n

f M M f M M

x r R dF R

x r R dF R x r R dF R

�

�	

�

�	 �	

� �
� � �� �� �

� �
� � � �

� � � � � �� � � �� � � �
� � � �

�

� �

Hence, if the target is set equal to the risk-free rate, portfolios of M and rf can be positioned 

on a straight line in (E(R),
,LPM ( )

f
n n r R )-space (property (1)). 
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Finally, the term in curly brackets in formula (A.5) is negative in general because rewriting 

and applying the Cauchy-Schwarz inequality yields: 

2( )

2

2( ) 2

2

2
( )

1

( ( ) ) ( )

( ( ) ) ( ) ( )

( ( ) ) ( ) ( )

x n

M f f M

x n

M f f f M M

x
n

M f f f M M

x R r r dF R

x R r r r R dF R

x R r r r R dF R

�	

�

�	

�

�	

� �
� � � �� �

� �

� �
� � � � � � �� �

� �

� �
" � � � � � �� �� �
� �

�

�

�

�

�

�

�

�

�

Therefore,
2

,2
LPM ( ) 0n

n P
d R
dx

"�  for n > 1 (property (3)), which completes our proof. 
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