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Abstract

In the area of reverse logistics, remanufacturing has been proven to be a valu-
able option for product recovery. In many industries, each step of the products’
recovery is carried out in lot sizes which leads to the assumption that for each of
the different recovery steps some kind of fixed costs prevail. Furthermore, holding
costs can be observed for all recovery states of the returned product. Although
several authors study how the different lot sizes in a remanufacturing system
shall be determined, they do not consider the specificity of the remanufacturing
process itself. Thus, the disassembly operations which are always neglected in
former analyses are included in this contribution as a specific recovery step. In
addition, the assumption of deterministic yields (number of reworkable compo-
nents obtained by disassembly) is extended in this work to study the system
behavior in a stochastic environment. Three different heuristic approaches are
presented for this environment that differ in their degree of sophistication. The
least sophisticated method ignores yield randomness and uses the expected yield
fraction as certainty equivalent. As a numerical experiment shows, this method
already yields fairly good results in most of the investigated problem instances in
comparison to the other heuristics which incorporate yield uncertainties. How-
ever, there exist instances for which the performance loss between the least and
the most sophisticated heuristic amounts to more than 6%.

keywords: reverse logistics, remanufacturing, lot sizing, disassembly,
random yield

1 Introduction

The reuse field has grown significantly in the past decades due to its economical bene-
fits and the environmental requirements. Remanufacturing which represents a sophisti-
cated form of reuse focusses on value-added recovery and has been introduced in many
different industry sectors such as automotive, telecommunication, electrical equipment,
machinery, etc. Within the process of remanufacturing, products that are returned by
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the customers to the producer are disassembled to obtain functional components. The
obtained components are afterwards cleaned and reworked until a “good-as-new” qual-
ity is assured. Having met the required quality standards, these components can be
used for the assembly of a remanufactured product that is delivered to the customers
with the same warranty as a newly produced one. In addition to the economic prof-
itability, as a part of the embedded economic value can be saved by remanufacturing,
there is an increasingly legislative restriction that assigns the producers the responsi-
bility for their used products, for instance the Directive 2002/96/EC related to Waste
Electrical and Electronic Equipment and the Directive 2002/525/EC related to End
of Life Vehicles. Because of that, remanufacturing has become an important industry
sector to achieve the goal of sustainable development. Therefore, the management and
control of inventory systems that incorporate joint manufacturing and remanufacturing
options has received considerable attention in recent literature contributions.

One of the main topics in these contributions is the assessment of joint lot sizing de-
cisions for remanufacturing and manufacturing which has been thoroughly investigated
in recent years. One of the first authors who established a basic modelling approach
was Schrady [8] who developed a simple heuristic procedure for determining the lot
sizes of repair and manufacturing lots. He assumes in his work that a constant and
continuous demand for a single product has to be satisfied over an infinite planning
horizon. Furthermore, a constant return fraction is established that describes the per-
centage of used products that return to the producer. By using that assumption a
constant and continuous return rate is ensured. Presuming fixed costs for remanufac-
turing and manufacturing as well as different holding costs for repairable and newly
manufactured products, a simple EOQ-type formula is proposed that minimizes the
sum of fixed and holding costs per time unit. As a result, an efficient cyclic pattern is
established which is characterized by the fact that within each repair cycle a number of
repair lots of equal size succeed exactly one manufacturing lot. By solving the proposed
EOQ-formula which can be applied because an infinite production and repair rate is
presumed as well, the number of repair lots and the length of a repair cycle can be
determined. Teunter [10] generalized the results of Schrady in a way that he examined
different structures of a repair cycle. His analysis concludes that it is not efficient if
more than one repair lot and more than one manufacturing lot are established in the
same repair cycle. This result extends the efficient cycle patterns by a cycle in which
several manufacturing lots of equal size are followed by exactly one repair lot. The
assumption of equal lot sizes is among other aspects critically studied in the contribu-
tion of Minner and Lindner [4]. They show that a policy with non-identical lot sizes
can outperform a policy with identical lot sizes. However, the structure of an efficient
repair cycle prevails also when the assumption of equal lot sizes is lifted.

Next to the analysis of the basic model context several extensions have been pro-
posed that relax some of the assumptions made so far. Teunter [11], for instance,
relaxes the assumption of an instantaneous manufacturing and repair process in order
to derive more general expressions for the number of manufacturing and repair lots
and their corresponding lot sizes. Since only a heuristic procedure was introduced on
how to determine these values, Konstantaras and Papachristos [3] extended Teunter’s
work by developing an algorithm that leads to the optimal policy for certain parameter
classes. By incorporating stochastic leadtimes and thereby including the possiblity of
backorders, Tang and Grubbstrom [9] extend the basic model. Two general options
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are recommended on how such a system can be dealt with, a cycle ordering model and
a dual sourcing ordering policy. Both approaches are compared in a numerical study
that indicates certain parameter specifications under which conditions one approach
outperforms the other. Furthermore, several papers have been published by Richter
and Dobos (e.g. [5] and [6]) that relax the assumption of a constant rate of return. In
their work they derived for several situations that a so called pure strategy is always
optimal. In this context, a pure strategy means that either every returned product
is repaired or everything is disposed of immediately. Therefore, a mixed strategy in
which a part of the returned products is repaired and the rest is disposed of is al-
ways dominated by one of the pure strategies. Finally, the assumption of continuous
demand and return rates has been relaxed by several authors. Consequently, the for-
merly EOQ-type model becomes a dynamic lot sizing problem. The contribution of
Teunter et al. [12] shall be named representatively for this research area in which they
extended well-known dynamic lot sizing heuristics such as the Silver Meal or the Part
Period algorithm in order to test their performance in a remanufacturing environment.

Common to all contributions is that they do not consider the remanufacturing
process explicitly. Although some authors speak of remanufacturing, they analyze a
remanufacturing system in the same way as a repair system. This may lead to wrong
conclusions as it is not regarded that the remanufacturing process itself consists of
two different subprocesses, a disassembly process in which the returned products are
disassembled and a rework process in which the obtained components are brought
to an as-good-as-new quality (for a definition see Thierry et al. [14]). By explicitly
incorporating both subprocesses in this contribution, the decisions that need to be
made regarding disassembly and rework are decoupled which generalizes the basic
models used so far.

Next to this generalization, this contribution will relax furthermore the assumption
of a deterministic yield. This means that the number of components obtained by
disassembly is not known with certainty beforehand. Considering stochastic yields has
attained significant interest in the scientific literature as the basic work of Yano and Lee
[16] as well as the overview of Grosfeld-Nir and Gerchak [1] present. However, most of
the contributions presented in [1] describe purely manufacturing environments which
can not be entirely translated to a remanufacturing system as this inherits greater
risks to be dealt with [15]. Nevertheless, stochastic yields have also been studied in a
remanufacturing environment. Inderfurth and Langella, for instance, have concentrated
their analysis specifically on the yield risk within the disassembly process [2]. Yet, they
focussed on a multi-product multi-component problem setting in which a given discrete
demand for components needs to be satisfied by either disassembling used products or
manufacturing new components. The authors develop in their contribution heuristic
methods on how to deal with such a problem in which they neglected the presence of
fixed costs for the disassembly and the remanufacturing process.

After this short introduction the problem assumptions and the nomenclature used
in the remainder of the paper are illustrated in section 2. Section 3 presents there-
after two solution procedures to find the optimal solution in the deterministic yield
scenario before section 4 widens the scope to a stochastic yield problem and presents
three heuristic approaches that facilitate the decision making process in such an en-
vironment. The fifth section conducts a numerical experiment in order to test the
heuristics’ performance. Finally, a conclusion and an outlook are given in the last
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section.

2 Problem setting and model formulation

A company engaged in the area of remanufacturing that remanufactures several used
products (e.g. engines) coming back from their customers shall be the background for
the problem setting. To keep the analysis simple, the focus shall be restricted to only
one specific remanufactured product named A. Figure 1 presents the general structure
of this simplified system which is modeled as a multi-level inventory system containing
three stages. Further simplifications are made regarding the fact that there are neither
lead nor processing times. Furthermore, no disposal option is included in the problem
setting.
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Figure 1: Inventory system in a remanufacturing environment

The customers’ demand for the final product A is assumed to be constant and
depletes the finished goods inventory continuously by a constant rate of λ units per time
unit. In order to satisfy that demand, the company manufactures the final product by
using component C which represents the most important component of the product.
For the sake of simplicity only the most important component C is included in the
analysis. However, the proposed model could be easily extended to a multi-component
setting. The assembly process is supposed to be a flow line process at which the
final product is assembled continuously and immediately delivered to the customers.
When the customers have no further use for their product A (e.g. it is broken or its
leasing contract ends) they have the opportunity to return the product to the company.
However, only a fraction (named α) of those products in the market returns to the
producer. For the subsequent analysis, the return flow of used products (which are
denoted A′) fills the used product inventory by the constant and continuous rate of
λα. By disassembling A′ the worn component C ′ is obtained. Although the process of
disassembly typically consists of manual work, fixed costs prevail for setting up required
disassembly tools and/or measuring devices that allow an improved assessment of the
reusability of components before disassembly. Within this model Kd represents the
fixed costs for a disassembly batch while hd is the holding cost incurred for storing one
unit of A′ for one time unit. Due to different stages of wear, not all returned products
contain a reworkable component C ′. The ratio of the number of reworkable items
obtained from the disassembly of A′ to the rate of product returns λα is denoted by β.
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Assuming that at most one reworkable component C ′ can be obtained by disassembling
one unit of A′ the ratio β must not exceed one while being non-negative. As the
released components C ′ can not be used directly for the assembly of the final product
A since they usually do not meet the designated quality standards, these components
have to be remanufactured. Since the remanufacturing process incurs fixed costs of
Kr for setting up the cleaning and mechanical rework tools, a batching of reworkable
components takes place as well. Hence, some reworkable components need to be stored
before the next remanufacturing batch is started resulting in costs of hr per unit and
time unit. It is furthermore assumed that every component that is remanufactured
is brought to an as-good-as-new condition. All successfully reworked components are
held in a serviceables inventory at a cost of hs per unit and time unit. In order to secure
the final product assembly of A, some components of C have to be manufactured in
addition (as α and β are usually smaller than one). The decision relevant fixed costs are
denoted by Km representing the cost for setting up a manufacturing lot for component
C. Newly manufactured components are held in the same serviceables inventory as
remanufactured ones and it is supposed that the holding costs do not differ between
both sourcing options. A detailed discussion on the topic on how to set the holding
cost parameters can be found in [13]. In general, the holding costs (when interpreted
as costs for capital lockup) of all levels are connected by the following inequality since
more value is added to the component on each level, i.e. hd < hr < hs.

Balancing fixed and holding costs shall be achieved by applying an average cost
approach to this model. This is commonly done for one-level inventory systems as for
the well known EOQ-model formulation but can be easily extended to a multi-level
environment by respecting the stipulated assumptions of the EOQ-model (e.g. infinite
planning horizon with constant costs over time). As a result an optimal cyclic pattern
is obtained by minimizing the average cost per time unit. In order to control the entire
system, three decision variables are required. Firstly, the length of the disassembly
cycle T determines the lot size of each disassembly batch (λαT ) under the assumption
that there is only one disassembly lot per cycle. This assumption is made for the sake
of simplicity as an additional decision variable (number of disassembly lots per cycle)
would complicate the analysis significantly. However, if we consider high fixed costs
of disassembly, we conjecture that this assumption of one disassembly lot per cycle
assures the optimality of the introduced deterministic policy. Furthermore, by fixing
the number of remanufacturing lots R per disassembly cycle, their equal lot size can be
computed by λαβT/R. Finally, the number of manufacturing lots M per disassembly
cycle determines the lot sizes of the manufacturing lots to be λ(1 − αβ)T/M . The
subsequent chapter presents the optimal solution of a completely deterministic setting
in which all parameters are known with certainty.

3 Deterministic yields

In this section a model is introduced that permits the evaluation of the optimal number
of manufacturing and remanufacturing lots in a disassembly cycle. Before expanding
the scope to stochastic yields from disassembly which represents the core issue of this
contribution, the deterministic setting is studied in order to gain insight into the in-
terrelations of the whole system. Figure 2 illustrates the behavior of the relevant
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inventory levels for three consecutive disassembly cycles. As a matter of fact, the op-
timal decision variables (T , R, and M) remain constant over time in a deterministic
environment. As shown in the figure below the manufacturing lots are positioned al-
ways after the remanufacturing lots in the serviceables inventory. This is obvious as
this strategy strictly dominates the strategy of starting a cycle on the serviceables level
with a manufacturing lot due to the increased holding costs on the remanufacturables
level.
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Figure 2: Used product, remanufacturables, and serviceables inventory in a determin-
istic yield environment (with R=2 and M=1)

By minimizing the total average cost per time unit, this specific example shows
for the optimal cycle length T two remanufacturing lots (R = 2) which split the
remanufacturables inventory inflow equally and one manufacturing lot (M = 1) which
satisfies the remaining demand of the assembly process for component C. To analyze
the total cost function (TCD) only two main types of costs have to be considered, the
fixed costs FD and the holding cost HD in which the index D indicates the deterministic
setting. A detailed discussion on how this formula can be obtained is presented in
appendix A while appendix B discusses the optimality of equal lot sizes in this setting.
The total cost function in the deterministic setting can be formulated as follows:

TCD =
FD

T
+

λTHD

2
(1)

with FD = Kd + RKr + MKm and

HD = αhd + R−1
R

α2β2hr + (α2β2

R
+ (1−αβ)2

M
)hs.

In order to minimize the total cost function which is a mixed-integer non-linear
optimization problem two procedures can be applied. The first procedure that can be
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used is a simple enumerative procedure. Since R and M need to be integer valued only
a finite number of calculations (in which are R and M are set to an integer value) has
to be compared if R and M are restricted to certain intervals. The original objective
function simplifies for given values of R and M to a non-linear convex function that
only depends on T . Such a problem can be solved easily by using the subsequent
equations:

TD∗

=

√
2FD

λHD
(2)

TCD∗

=
√

2λFDHD. (3)

The formulas presented above are comparable to the determination of the economic
order interval. However, the optimality of this solution approach can only be guaran-
teed if the optimal total cost TCD∗

is determined for every combination of realization
of R and M which leads to a quite large number of calculations. Nevertheless, a
good solution can be obtained in a fast manner by restricting the number of possible
realizations.

After introducing an enumerative procedure another promising approach will be
presented next. By relaxating the original objective function (1) such that R and M
need not to take on integer values, one can prove that the total cost function has only
a single local minimum in the relevant area (for T , R, M > 0). Appendix C focusses
on this specific aspect. Yet, by evaluating the Hessian matrix in this area, it can
be shown that the total cost function is not entirely convex in all variables which is
presented in appendix D. This leads to the significant problem that a simple rounding
procedure can not be used to obtain the optimal solution for the integer valued number
of remanufacturing and manufacturing lots. Therefore, a solution algorithm could be
implemented that can globally determine the minimum cost of this mixed-integer non-
linear optimization problem. The BARON algorithm, as implemented in the GAMS
software package, proved to be a valuable tool for this problem setting. In general,
BARON implements deterministic global optimization algorithms of the branch-and-
reduce type in order to determine the optimal solution for a mixed-integer non-linear
optimization problem. For a detailed description of the algorithm see [7].

The subsequent chapter extends the deterministic model of this section to incorpo-
rate stochastic yields.

4 Stochastic yields

One of the main problems for many practical applications in the area of remanufac-
turing is that they have to deal with stochastic yields which means that the amount
of remanufacturable components obtained from disassembling used returned products
is not known with certainty (see also [2]). Due to the significance of that problem in
a remanufacturing planning environment, we will now put forth the extension of the
deterministic model that was introduced in the last section to incorporate stochastic
yield fractions resulting from the disassembly process. Although being uncertain, it
can be assured that the lowest possible yield fraction βl can not be smaller than zero
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as negative yields would not be reasonable. The largest possible yield fraction βu, how-
ever, can not exceed the value of one since this describes the situation that from every
disassembled used product more than one remanufacturable component is obtained
which is ruled out by the assumptions made. Within the range from βl to βu a specific
distribution function can be defined which will be denoted in the following analysis
by ϕ(β). As the number of returned products disassembled per cycle corresponds to
λαT , the independence of ϕ(β) with respect to T reflects the fact that the subsequent
analysis assumes stochastic proportional yields (for a definition see [16]). Therefore,
the formerly used total cost function for a deterministic yield scenario (formula (1))
has to be extended in order to incorporate any possible yield outcome. Hence, the
total cost of a given stochastic yield scenario can only be formulated as an expected
total cost (which will be further denoted as TCS) that is presented in the following
equation:

TCS =
F S

T
+

λTHS

2
(4)

with F S = Kd +
∫ βu

βl
(R(β)Kr + M(β)Km) · ϕ(β)dβ and

HS = αhd + hs

∫ βu

βl

1
M(β)

· ϕ(β)dβ − 2αhs

∫ βu

βl

1
M(β)

· β · ϕ(β)dβ+

α2
∫ βu

βl
(hr − hr

R(β)
+ hs

R(β)
+ hs

M(β)
) · β2 · ϕ(β)dβ.

The fact that for any possible yield realization β an integer number of R and M
has to be defined complicates the analysis of the total cost function TCS significantly.
In this setting, R(β) describes the optimal number of remanufacturing lots for a given
yield fraction β. Likewise, M(β) represents the optimal number of manufacturing lots
if the yield fraction β is fixed. Due to the fact that β is not known with certainty
the total cost per time unit can only be formulated as an expectation over all different
yield realizations. In contrast to the total cost function of the deterministic case (1),
F S and HS can be regarded as an expectation of their corresponding deterministic
equivalents FD and HD. As finding the optimal solution for any problem setting can
not be guaranteed, which will be shown later in this chapter, three different heuristic
policies will be presented in the succeeding paragraphs that differ in their degree of
sophistication. The first and least complex policy is introduced in the following:

Policy I

The easiest option on how to handle a stochastic problem is to neglect the underlying
stochastics in order to derive a deterministic equivalent of the stochastic problem. The
firstly introduced policy proceeds exactly in this manner as it neglects the fact that
R and M depend on the yield realization β. Thus, only one value for R and M
needs to be derived that is valid for every yield realization between βl and βu. To
obtain these values, one can insert a specific yield fraction into the deterministic total
cost function of the last chapter (1) and apply the recommended solution procedures
to obtain R and M . As any yield fraction can be inserted that lies in the range of
possible yield realizations and therefore many different combinations of R and M may
prevail, we limit the focus of policy I on inserting only the mean yield fraction into the
deterministic model since the mean yield is one of the most important characteristics
of the underlying yield distribution. As a result we obtain the values of RD and MD

that replace R(β) and M(β) for every possible yield realization β in formula (4). The
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expected total cost of the first policy (TCI) can therefore be easily calculated by the
subsequent equation:

TCI = TCS(T,RD,MD). (5)

Since policy I is a very simple approach the decision maker can improve the expected
total cost by incorporating the underlying stochastics in the decision making process
which is introduced in policy II.

Policy II

Contrary to the first policy, the second policy does not neglect the dependence of
R and M on the realization of the random yield fraction β any more. Nevertheless, in
order to keep this policy simple, the disassembly cycle length T is kept constant which
reduces the policies’ complexity significantly. For the sake of simplicity the length
of the disassembly cycle T will be set to the optimal deterministic cycle length TD∗

obtained by formula (2) assuming that the mean yield fraction has been inserted as the
deterministic equivalent for the underlying yield distribution. The assumption of fixing
the cycle length to a specific value can be further used to draw some basic conclusions
that can only be drawn for a given cycle length. The stochastic yield realization β
determines for every disassembly cycle the number of remanufacturable items. As
the number of remanufacturable and manufactured components per cycle always adds
up to the value of λT , the number of manufactured items depends as well on the
yield realization. However, for both options of demand fulfillment it can be observed
that if more items are processed (either by manufacturing or remanufacturing) the
number of respective lots in a cycle does not decrease. Therefore, when comparing
two different yield realizations with all other parameters set equally it can be said:
For the larger yield realization the number of remanufacturable components increases
which means that the number of remanufacturing lots per cycle does not decrease. On
the other hand, the number of newly manufactured components decreases with larger
yield realizations which means that the number of manufacturing lots per cycle does
not increase. The figures 3 and 4 compare both heuristic policies introduced so far
for three consecutive disassembly cycles. On the left hand side (figure 3), it can be
observed for policy I that regardless of the realized yield fraction the same number of
R and M is applied in every cycle (R=2 and M=1). Figure 4 on the right hand side
shows policy II that reacts for the same cycle length T on the different realizations
of β which is supported by the fact that for a small yield realization the number of
remanufacturing lots is smaller than for a large yield realization (R=1 in the first cycle
compared to R=3 in the third cycle). An opposing behavior can be observed for the
number of manufacturing lots per cycle that does not increase as smaller the yield
realization is.

These general conclusions can not only be formulated verbally but also in a mathe-
matical form by introducing so-called transition yield fractions which have the property
that either the number of remanufacturing lots or the number of manufacturing lots
changes when optimizing the deterministic equivalent problem. For the calculation of
the specific yield fraction that is characterized by a switch of the optimal policy from R
to R+1 remanufacturing lots, one needs to equate the deterministic total cost functions
for R and R+1 as presented in the following equation:
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Figure 3: Inventory system in a
stochastic yield environment ap-
plying policy I (R=2 and M=1)
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Figure 4: Inventory system in a
stochastic yield environment ap-
plying policy II

FD(R)

T
+

λTHD(R)

2
=

FD(R + 1)

T
+

λTHD(R + 1)

2

with FD(R) = Kd + RKr + MKm and

HD(R) = αhd + R−1
R

α2β2hr + (α2β2

R
+ (1−αβ)2

M
)hs.

This equation can be solved with respect to β in order to obtain the transition yield
fraction β(R) at which the optimal decision in the deterministic case switches from R
to R+1 for a given cycle length T :

β(R) =
1

αT
·
√

2KrR(R + 1)

λ(hs − hr)
. (6)

Not only is this function monotonously increasing in R which corresponds to the find-
ings above that the number of remanufacturing lots does not decrease for larger values
of β but it also does not depend on the number of manufacturing lots per cycle M .
Thus, the same analysis can be carried out independently for the transition from M
to M -1 manufacturing lots per cycle by equating both total cost functions in order to
obtain the transition yield fraction β(M):

β(M) =
1

α
− 1

αT
·
√

2KmM(M − 1)

λhs

. (7)

Because this function is monotonously decreasing in M , the insight that a larger
yield fraction does not lead to less manufacturing lots in a cycle is approved. Conse-
quently, the lowest and highest values for R and M can be determined by exploiting
the two formulas given above. Thus, for the lowest possible yield fraction βl Rmin and
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Mmax can be computed by the following procedure (analogously Rmax and Mmin can
be computed for the highest possible yield fraction βu):

Rmin = min
R

{β(R) ≥ βl} Mmax = max
M

{β(M) ≥ βl} (8)

As the disassembly cycle length is fixed to a given value, the distribution function of
the stochastic yield fraction can be subdivided into several intervals j being defined
in the interval lj ≤ β ≤ uj. The main characteristic of such an interval is the fact
that within this interval only one number of remanufacturing and manufacturing lots
induces the optimal solution for any possible yield fraction within this interval. The
optimal number of remanufacturing and manufacturing lots in a certain interval j are
furthermore denoted by Rj and Mj, respectively. For the identification of the respective
interval bounds the following pseudocode can be used:

start j = 1, lj = βl, Rj = Rmin, Mj = Mmax, β(0) = ∞

while min{β(Rj + 1), β(Mj − 1)} < βu do

if β(Rj + 1) < β(Mj − 1) then

uj = β(Rj + 1)

j = j + 1, lj = uj−1, Rj = Rj−1 + 1, Mj = Mj−1

else

uj = β(Mj − 1)

j = j + 1, lj = uj−1, Rj = Rj−1, Mj = Mj−1 − 1

end if

end do

uj = βu, J = j

end

After the initialization in which the first interval j=1 is opened (l1=βl) and given
the values Rmin and Mmax the procedure evaluates if the transition to Rmin+1 or
Mmax-1 is closer to βl. For the lower one of these two values, the upper bound of the
first interval u1 is fixed to the transition rate and the next interval is opened (l2 = u1).
This procedure stops when both next transitions to R+1 and M -1 are larger than
the highest possible yield fraction βu. At this point the total number of intervals into
which the yield distribution can be separated is determined by the index j which is
set to the number of intervals J . As a result the total yield distribution is separated
into several intervals which is depicted for an example in figure 5. In this example
(with βl = 0 and βu = 1) it can be observed that the solution of policy I would have
been R=3 and M=4 as this would solve the deterministic equivalent to optimality for
β=0.5 .

As the interval bounds vary with a changing disassembly cycle length T , the ex-
pected total cost function for policy II can be formulated as follows using the optimal
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Figure 5: Exemplary separation of a yield distribution according to policy II

disassembly cycle length TD∗ obtained by inserting the mean yield fraction into equa-
tion (3):

TCII =
F S

TD∗
+

λTD∗

HS

2
(9)

with F S = Kd +
∑

j∈J(RjKr + MjKm) · ∫ uj

lj
ϕ(β)dβ and

HS = αhd + hs

∑
j∈J

1
Mj

· ∫ uj

lj
ϕ(β)dβ − 2αhs

∑
j∈J

1
Mj

· ∫ uj

lj
β · ϕ(β)dβ+

α2
∑

j∈J(hr − hr

Rj
+ hs

Rj
+ hs

Mj
) · ∫ uj

lj
β2 · ϕ(β)dβ.

In comparison to formula (4) only a finite number of R and M has to be considered
in order to determine the solution using policy II. The formerly required R(β) which
represents the optimal number of remanufacturing lots for any given yield fraction β
can be replaced with Rj after separating the yield distribution into intervals in which
only one R is optimal for each yield realization. Consequently, the same simplification
holds for the number of manufacturing lots M as well. However, this solution can be
further improved by varying the disassembly cycle length T which shall be done in the
most sophisticated heuristic approach of this contribution.

Policy III

As the convexity of the expected total cost function of policy II (9) regarding the
only remaining variable T can not be proven for any possible yield distribution we face
the fact that obtaining the optimal solution for this system can not be guaranteed.
Nevertheless, a simple local search heuristic can be implemented that alters the dis-
assembly cycle length T from its initial value of policy II in order to check whether
the expected total cost increases or decreases. The expected total cost function is
evaluated by applying the procedure of policy II for any chosen parameter T . The
local search procedure stops when both an increase or a decrease of T results in an
increasing expected total cost meaning that at least a local minimum has been found
that improves the solution of policy II at the expense of an increased complexity. Two
heuristic approaches on how a lower and an upper bound for T can be obtained are
presented in appendix E.
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The following chapter elaborates a numerical experiment in which all three in-
troduced heuristic approaches are tested in order to evaluate their performance in a
stochastic yield environment.

5 Numerical experiment

The main objective of the numerical experiment conducted in this section is to evaluate
the error that can be made when the simplest approach (policy I) is used compared
to the more complex ones (policies II and III). In order to estimate the error several
numerical tests have been conducted using randomly generated instances. All para-
meters were drawn from a discrete uniform distribution DU(a, b) with a as the lower
bound and b representing the upper bound of the distribution. Some parameters were
multiplied after the random draw with a constant term in order to obtain reasonable
values. Table 1 lists all parameters that were randomly drawn in this experiment:

Table 1: Parameters generated randomly in numerical experiment
Parameter Generation method

Demand rate λ ∼ DU(1, 10) · 100

Return fraction α ∼ DU(6, 18) · 0.05

Fixed cost for disassembly Kd ∼ DU(0, 50)

Fixed cost for remanufacturing Kr ∼ DU(1, 100)

Fixed cost for manufacturing Km ∼ DU(1, 100)

Holding cost for used product hd ∼ DU(1, 10) · 0.01

Holding cost for remanufacturable component hr ∼ DU(5, 15) · 0.01

Holding cost for serviceable component hs ∼ DU(10, 20) · 0.01

The return fraction α, for instance, can take on values between 30 % and 90 %,
only limited by the fact that the percentage must be an integer multiple of 5 %.
Regarding the fixed costs, we restricted the possible region on integer values between
0 and 50 for the disassembly process and 1 to 100 for setting up a remanufacturing
or a manufacturing lot. For the disassembly lot we established smaller values as these
processes are done manually in some industrial applications and do not necessarily
require a specific setup time. With respect to the holding costs we implicitly assumed
that the holding cost increase from level to level as more effort has been put into
the components. This means that every randomly generated instance has to fulfill
the presumed inequality hd < hr < hs. From these probability distributions 1,000
instances were drawn and tested for different yield distributions. Generally, the yield
distribution followed a symmetric beta-distribution within the limits βl=0 and βu=1.
The parameter that altered the yield distribution was the coefficient of variation ρ that
was changed in the limits between 0.05 and 0.55 which is motivated by our experience
with an automotive remanufacturer regarding its yield fractions. While a coefficient of
variation of 0.05 indicates that almost the entire probability mass is centered around the
distribution’s mean, a coefficient of variation of 0.55 indicates for a beta-distribution
within the interval 0 to 1 an approximately uniform yield distribution.
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The three introduced heuristic approaches were tested for all instances. Figure 6
illustrates, for instance, the percentage deviation of the total costs of policies I and II.
ΔI−>II denotes this percentage deviation and is calculated by ΔI−>II=TCI/TCII-1. In
detail, this deviation shows the percentage loss in performance if policy I (at which only
the mean yield fraction is considered) is applied instead of policy II. The deviation with
respect to the coefficient of variation of the underlying yield distribution is presented
with the aid of box plots that do not only show the maximum and minimum deviation
but also where half of the deviations are located inside the shaded area around the
median.
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Figure 6: Percentage deviation of policy I compared to policy II

For very small coefficients of variation that are characterized by the fact that al-
most the entire probability mass is centered around the mean, the deviation between
policy I and policy II is almost negligible. The reason for that is easy to be found.
Although the yield distribution is defined in the interval between 0 and 1, the range
of realizations that have a significant probability is very small. If the optimal number
of remanufacturing and manufacturing lots per cycle that is determined by policy I is
also optimal for a wide range of yield fractions around the distribution’s mean both
policies arrive at the same result. However, if the coefficient of variation grows larger
the deviations increase as well. For an approximately uniformly distributed yield, for
instance, the maximum deviation between policy I and II is around 5.4 %. On the
other hand, the minimum deviation is 0 % which means that the optimal cycle pat-
tern of policy I is still optimal for every yield realization between 0 and 1 even for
such a widespread distribution. Although many instances have been tested, the effect
of every parameter on the deviation can not be observed without doubt. Yet, some
general trends can be derived from the experiments. For instance, it seems to be the
case that the percentage gap in the total cost between policy I and II increases in most
scenarios for instances with an increasing return rate α. Additionally, the different
fixed costs seem to influence this gap as well. For high fixed costs for disassembly
and remanufacturing (Kd and Kr) as well as for small fixed costs for manufacturing
(Km) the observed percentage gap increases for a large coefficient of variation of the
yield distribution. The same analysis can be conducted for the different holding cost
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parameters, too. The percentage gap between policy I and II increases if the holding
costs hd, hr, and hs deviate significantly. Furthermore, it can be said as larger the
difference between Rmin and Rmax as well as the difference between Mmin and Mmax

is as larger is the percentage gap. Finally, no considerable influence on the percentage
gap can be observed for the demand per time unit λ.

Figure 7 presents the deviation of policy II from policy III which means that the
cycle length T is variied in order to decrease the total cost function. By ΔII−>III

this deviation is represented. Regarding the coefficients of variation the same can be
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Figure 7: Percentage deviation of policy II compared to policy III

observed as for the first examined deviation. For small coefficients of variation there is
almost no improvement possible by changing the cycle length. On the other hand, for
larger coefficients the percentage gap grows larger which means that an adaption of T
can improve the total cost function. However, these improvements are relatively small
(in 97.4 % of all cases smaller than 1 % for ρ=0.55). Regarding the cost deviation
between policy II and III, it is even more difficult (in comparison to the deviation
between policy I and II)to define parameter areas at which the deviation is typically
high or low. Yet, two general trends can be noticed. The largest deviations can be
observed for instances with a large α and a wide spread of the holding cost levels.
However, this observation can not be generalized for all instances with this parameter
constellation.

Another interesting question that can be analyzed with this numerical experiment
is whether the optimal cycle length increases or decreases in comparison to the cycle
length of policy I and II that remains constant for all coefficients of variation. In 69.1%
of all instances the cycle length decreased while it increased in the remaining 31.9%.
Therefore, no general conclusion can be drawn regarding this aspect as no specific
parameter constellation can be identified that increases or decreases the cycle length
in general.
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6 Conclusion and outlook

This contribution outlined an approach on how to handle deterministic and stochastic
yield fractions within a multi-level remanufacturing system that considers the disas-
sembly process explicitly. While being restricted to a single disassembly lot per cycle,
simple derivations are made with respect to the three necessary parameters, the op-
timal disassembly cycle length as well as the optimal number of remanufacturing and
manufacturing lots per disassembly cycle. By examining both the stochastic and the
deterministic case, the error that can be made by neglecting the underlying stochastics
is evaluated. The numerical experiment in section 5 has confirmed a quite straight-
forward assumption. The less variability of the random yield fraction is faced, the
smaller is the error that is made by using the mean yield policy I instead of the more
sophisticated ones. However, there exist situations in which using the simple policy I
results in performance losses of more than 5 %. Nevertheless, in most cases the decision
maker will obtain fairly good results if he neglects the underlying yield distribution and
follows the deterministic mean yield fraction approach of policy I.

Finally, an outlook regarding future research efforts shall be given. The proposed
model can be extended in several ways. For both the stochastic and the determinis-
tic one, the option of allowing more than one disassembly lot per disassembly cycle
is a promising extension of the model presented in this contribution. Especially for
instances showing a small fixed cost of disassembly this might provide a valuable op-
tion to decrease the average costs per time unit. Furthermore, it can be studied how
a multi-product multi-component setting affects the decision making process in both
environments since aspects like multiplicity (one component can be obtained by the
disassembly of different product types) have to be incorporated. Another interesting
topic that can be included in the analysis is a disposal option. This might be a worth-
while option if the fixed costs of remanufacturing is quite high and the yield realization
is very small. In the proposed model context, at least one remanufacturing has to be
set up in such a disassembly cycle. However, if there is a disposal option, the obtained
components can be disposed of and the total customer demand will be satisfied by
newly manufactured components, i.e. the optimal number of remanufacturing lots R
can be 0. As a last extension, all heuristic approaches can be tested not only for pro-
portional stochastic yields but also for non-proportional yields. In order to achieve this
objective, the yield fraction distribution can not be modeled as a beta-distribution any
more but needs to be modeled for instance with a binomial distribution.
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7 Appendix

A Calculation of TCD

The total cost function TCD minimizes the sum of all necessary fixed and holding
costs per time unit which is optimal in the model setting presented in chapter 2. The
decisions that need to be made in order to calculate the cost minimum consist of
determining the disassembly cycle length T as well as the number of remanufacturing
and manufacturing lots per disassembly cycle R and M , respectively. All three decision
variables depend on both the fixed and the holding costs. The total cost function TCD

is presented subsequently as it has been formulated in chapter 3:

TCD =
FD

T
+

λTHD

2

with FD = Kd + RKr + MKm and

HD = αhd + R−1
R

α2β2hr + (α2β2

R
+ (1−αβ)2

M
)hs.

The fixed cost term FD contains all relevant fixed costs multiplied with the number
of respective lots that are set up in a disassembly cycle. As defined in the model
setting, only one disassembly lot is allowed per cycle which leads to 1 · Kd. However,
the number of remanufacturing lots R and manufacturing lots M has to be determined.
Consequently, the fixed costs for remanufacturing in a disassembly cycle are represented
by R · Kr and the fixed costs for manufacturing in a disassembly cycle by M · Km.
Afterwards, the sum of all fixed costs FD needs to be divided by T in order to determine
the fixed costs per time unit.

Regarding the holding costs, the three different stock levels shall be analyzed seper-
ately. Beginning with the used product level, one disassembly cycle is presented in
figure 8. As only one disassembly lot is allowed per cycle and the disassembly cycle
length is a decision variable, this lot has the size of λαT .
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Figure 8: Used product level for one disassembly cycle

The holding costs at the used product level per disassembly cycle can be determined
as:

1

2
T · λαT · hd
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As the holding costs at the used product level need to be calculated per time unit,
the formula simplifies to the following equation which represents the first part of HD:

T · λαT · hd

2 · T =
λT

2
· αhd

After analyzing the holding costs at the used product level, it shall be focussed
on the holding costs at the remanufacturables level in the following. Assuming equal
remanufacturing lot sizes which is proven to be optimal in appendix B, each remanu-
facturing lot has the size of λαβT

R
. By setting up such a remanufacturing lot one obtains

λαβT

R
serviceable components which satisfy the customer demand for αβT

R
periods. Sub-

sequently, another remanufacturing lot or a manufacturing lot has to be set up since
no backlogs are allowed in the model. As the number of remanufacturing lots per cycle
R is a decision variable, the remanufacturables inventory depends on the value of R.
This dependency is visualized in figures 9 and 10. While on the left hand side the
remanufacturables inventory is displayed for R = 2, the right hand side presents the
inventory for R = 3.
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Figure 9: Remanufacturables in-
ventory for R=2
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Figure 10: Remanufacturables
inventory for R=3

Depending on the number of remanufacturing lots R, the remanufacturables inven-
tory area that is used to calculate the inventory cost can be subdivided into several
equally sized rectangles. For R = 2 as presented in figure 9 only one rectangle of the
size λα2β2T 2

R2 needs to be evaluated. If R = 3 on the other hand, three rectangles have to
be considered. In general, the number of equally sized rectangles that has to be eval-
uated can be formulated as R(R−1)

2
. Thus, the holding costs for the remanufacturables

level per time unit can be formulated as:

R(R − 1)

2
· λα2β2T 2

R2
· hr · 1

T
=

λT

2
· R − 1

R
α2β2hr

Finally, the holding costs at the serviceables level need to be evaluated. Following
the R remanufacturing lots, M equally sized manufacturing lots are set up at this
level. While satisfying αβ % of the customer demand by remanufacturing, (1 − αβ)
% of this demand has to be satisfied by manufacturing new components. Hence, each
manufacturing lot has the size of λ(1−αβ)T

M
units and lasts for (1−αβ)T

M
time units. Figure

11 presents the serviceables inventory for a disassembly cycle with two remanufacturing
and two manufacturing lots.
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Figure 11: Serviceables level for R = 2 and M = 2

The holding costs for the serviceables level per time unit can be formulated as
follows:

(R · 1

2
· λα2β2T 2

R2
· hs + M · 1

2
· λ(1 − αβ)2T 2

M2
· hs) · 1

T
=

λT

2
· (α

2β2

R
+

(1 − αβ)2

M
)hs.

By determining the holding costs of the serviceables level the holding cost term HD

is completed and can be used to derive the total cost function TCD.

B Optimality of equal lot sizes in a disassembly cy-

cle

B.1 Optimality of equal remanufacturing lots

For a given cycle length T the total number of remanufactured components is given in
the deterministic setting by λαβT . As a decision variable, the number of remanufac-
turing lots needs to be determined. Let qi denote the lot size of remanufacturing lot i
with i = 1, .., R. If all lot sizes are equal each qi contains λαβT

R
units. This analysis shall

prove that unequal remanufacturing lot sizes result in higher total cost than equal ones.
Therefore, the remanufacturing lot sizes in a more general setting shall be described
as:

qi =
λαβT

R
+ Δi ∀i = 1, .., R − 1 (10)

qR =
λαβT

R
−

R−1∑
i=1

Δi (11)

The distortion from the equal lot sizes which is denoted for each remanufacturing
lot by Δi lies within the range of −λαβT

R
≤ Δi ≤ (R−1)·λαβT

R
as all lot sizes have to

be non-negative and cannot exceed the value of λαβT . In formula (11), the lot size
qR has been simplified using the fact that the sum of all distortions has to be zero,
i.e.

∑R

i=1 Δi = 0. As an illustration figure 12 presents the remanufacturables and the
serviceables inventory for three equally sized remanufacturing lots.
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Figure 12: Remanufacturables and serviceables inventory with three equally sized re-
manufacturing lots

As the remanufacturing lot sizes affect the remanufacturables as well as the service-
ables holding costs, these holding costs shall be analyzed subsequently. Starting with
the remanufacturables level, let HCrem denote the holding costs per time unit for the
remanufacturables inventory. It can be determined by:

HCrem =
hr

λT
· (

R−1∑
i=1

qi ·
R∑

j=i+1

qj).

By (
∑R−1

i=1 qi ·
∑R

j=i+1 qj)/λ the total remanufacturables inventory per disassembly
cycle is determined. While the first sum in this formula represents the width of the
rectangles the second sum represents the corresponding heights. Using this formula for
the example in figure 12 leads to q1 · (q2 + q3)+ q2 · q3. This expression can be simplified
using equations (10) and (11) and replacing the term λαβT/R by X:

HCrem =
hr

λT
·

R−1∑
i=1

qi ·
[

R−1∑
j=i+1

qj + qR

]

=
hr

λT
·

R−1∑
i=1

(X + Δi) ·
[

R−1∑
j=i+1

(X + Δj) + X −
R−1∑
j=1

Δj

]

=
hr

λT
·

R−1∑
i=1

(X + Δi) ·
[
(R − i) · X −

i∑
j=1

Δj

]
(12)

=
hr

λT
·
[
X2 ·

R−1∑
i=1

(R − i) + X ·
R−1∑
i=1

Δi ·(R − i) − X ·
R−1∑
i=1

i∑
j=1

Δj −
R−1∑
i=1

Δi ·
i∑

j=1

Δj

]
.

It can be shown that X · ∑R−1
i=1 Δi · (R − i) − X · ∑R−1

i=1

∑i

j=1 Δj equals to 0.

Furthermore, the sum
∑R−1

i=1 (R − i) can be simplified to
∑R−1

i=1 i. Consequently, the
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holding costs in the remanufacturables inventory can be formulated as:

HCrem =
hr

λT
·
[
X2 ·

R−1∑
i=1

i −
R−1∑
i=1

Δi ·
i∑

j=1

Δj

]
. (13)

Let HC0
rem denote the holding cost of the remanufacturables level with equally sized

remanufacturing lots, i.e. Δi = 0 ∀i = 1, .., R. Therefore, the difference in holding
costs for the remanufacturables level if the remanufacturing lots are not equally sized
can be expressed by the difference between HCrem and HC0

rem. This difference can be
formulated depending on the distortions Δi:

HCrem − HC0
rem =

hr

λT
·
[
X2 ·

R−1∑
i=1

i −
R−1∑
i=1

Δi ·
i∑

j=1

Δj − X2 ·
R−1∑
i=1

i

]

= − hr

λT
·

R−1∑
i=1

Δi ·
i∑

j=1

Δj. (14)

It can be shown that this term is strictly negative if at least one Δi is not zero.
Thus, the holding cost for the remanufacturables level always decrease whenever the
remanufacturing lots are not equally sized. The analysis shall now be put forth for the
serviceables level. Let HCserv denote the holding cost for the serviceables inventory
without considering the holding costs for manufacturing lots as these costs do not
depend on changes of the remanufacturing lot sizes.

HCserv =
hs

2λT
·
[
q2
R +

R−1∑
i=1

q2
i

]

=
hs

2λT
·
[
(X −

R−1∑
i=1

Δi)
2 +

R−1∑
i=1

(X + Δi)
2

]

=
hs

2λT
·
[
X2−2X

R−1∑
i=1

Δi + 2
R−1∑
i=1

Δi

i∑
j=1

Δj−
R−1∑
i=1

Δ2
i +

R−1∑
i=1

(X2 + 2XΔi + Δ2
i )

]

=
hs

2λT
·
[
R · X2 + 2

R−1∑
i=1

Δi

i∑
j=1

Δj

]
. (15)

Consistent to the analysis of the remanufacturables level, HC0
serv denotes the hold-

ing cost of the serviceables inventory if all remanufacturing lots are equally sized.
Hence, the cost effect of a possible distortion can be calculated by the difference of
HCserv − HC0

serv which is presented in the following formula:

HCserv − HC0
serv =

hs

2λT
·
[
R · X2 + 2

R−1∑
i=1

Δi

i∑
j=1

Δj − R · X2

]

=
hs

λT
·

R−1∑
i=1

Δi

i∑
j=1

Δj. (16)

This term proves that whenever the remanufacturing lots are not equally sized
(which means that at least one Δi is not zero), the holding cost of the serviceables
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inventory increase. As the increase of holding cost at the serviceables level is always
larger than the decrease of the holding cost at the remanufacturables level because of
hs > hr the total cost increase in any situation that is characterized by the fact that
all remanufacturing lots in a disassembly cycle are not of equal size. This means as a
conclusion that it is optimal to choose equal remanufacturing lot sizes in a disassembly
cycle in this problem setting.

The differences to the results that were derived in the work of Minner and Lindner
[4] can be explained twofold. On the one hand their problem setting does not consider
that the recovery process can be separated into a disassembly and a remanufacturing
process. Because of that, they compare a two stage inventory system with a continuous
inflow of old products to the first stage and a continuous outflow from the second
one. In our paper’s problem setting the remanufacturing stage with discrete inflows
is compared to the serviceables inventory with a continuous outflow. This fact can be
used to explain the different results because the basic flow pattern of the analysis has
changed. On the other hand a cycle is defined differently in the analysis of Minner
and Lindner and in our work. While the former includes the possibility that more
than one recovery lot can be set up on the first stage of the system (the one with
a continuous inflow), the latter only allows for one disassembly lot per cycle. The
results derived above that only equally sized remanufacturing lots are optimal depend
on this assumption since different disassembly lot sizes would mean that the size of all
remanufacturing lots can not be kept constant over the entire planning horizon.

B.2 Optimality of equal manufacturing lots

The analysis of manufacturing lots that are not equally sized is similar to the analysis
of not equal remanufacturing lots on the serviceables inventory level. Thus, a distortion
of the manufacturing lot sizes leads always to higher holding costs on the serviceables
level. We omit the presentation of the mathematics behind that conclusion as the
analysis that led to the derivation of formula (16) can be applied.

C Optimizing the relaxated total cost function TCD

If the number of remanufacturing and manufacturing lots need not to be integer valued,
the relaxated total cost function (1) can be solved to optimality by simple calculations.
The partial derivatives of the total cost function with respect to all decision variables
have to be obtained firstly:

∂TCD

∂T
=

λ

2
(αhd + α2β2(hr +

hs − hr

R
) +

hs

M
(1 − αβ)2) − Kd + RKr + MKm

T 2
= 0

∂TCD

∂R
=

Kr

T
− λα2β2T · hs − hr

2R2
= 0

∂TCD

∂M
=

Km

T
− λThs · (1 − αβ)2

2M2
= 0.

The solution of this equation system with respect to all decision variables and
assuming that these decision variables have to be positive results in the optimal values
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for T , R, and M is:

R∗ = αβT ∗ ·
√

λ · (hs − hr)

2Kr

(17)

M∗ = (1 − αβ)T ∗ ·
√

λhs

2Km

(18)

T ∗ =

√
2(Kd + R∗Kr + M∗Km)

λ(αhd + α2β2(hr + hs−hr

R∗
) + hs

M∗
(1 − αβ)2)

. (19)

As equation (19) contains both optimal values of the remanufacturing and manu-
facturing lot sizes, this equation can be further simplified by equations (17) and (18):

T ∗ =

√
2(Kd + R∗Kr + M∗Km)

λ
(
αhd + α2β2

(
hr + hs−hr

R∗

)
+ hs

M∗
(1 − αβ)2)

T ∗ =

√√√√√√√
2

(
Kd + αβT ∗

√
λ(hs−hr)Kr

2
+ (1 − αβ) T ∗

√
λhsKm

2

)

λ

(
αhd + α2β2

(
hr + 1

αβT ∗

√
2Kr(hs−hr)

λ

)
+ (1−αβ)

T ∗

√
2Kmhs

λ

)

T ∗ =

√√√√√ 2Kd + T ∗
√

2λ
(
αβ

(√
Kr (hs − hr) −

√
Kmhs

)
+
√

Kmhs

)
λα (hd + αβ2hr) +

√
2λ

T ∗

(
αβ

(√
Kr (hs − hr) −

√
Kmhs

)
+
√

Kmhs

)

(T ∗)2 =
2Kd + T ∗√2λΘ

λα (hd + αβ2hr) +
√

2λ
T ∗

Θ
with Θ = αβ

(√
Kr (hs − hr) −

√
Kmhs

)
+

√
Kmhs

T ∗ =

√
2Kd

λα (hd + αβ2hr)
(20)

Equation (20) can be used to calculate the optimal number of remanufacturing and
manufacturing lot sizes by inserting it in equations (17) and (18):

R∗ = β ·
√

αKd(hs − hr)

Kr(hd + αβ2hr)
(21)

M∗ = (1 − αβ) ·
√

hsKd

Kmα(hd + αβ2hr)
(22)

By inserting the optimal values of T ∗, R∗, and M∗ into the respective second derivatives
it can be proven that the total cost function is in a minimum at this point.
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D Convexity of the total cost function TCD

In order to analyze the convexity of the total cost function it is necessary to show that
the Hessian matrix of the total cost function TCD is positive semidefinite. Therefore,
the Hessian matrix H has to be set up and analyzed:

H =

⎡
⎢⎢⎢⎣

∂2TCD

∂T 2

∂2TCD

∂T∂M
∂2TCD

∂T∂R

∂2TCD

∂M∂T
∂2TCD

∂M2

∂2TCD

∂M∂R

∂2TCD

∂R∂T
∂2TCD

∂R∂M
∂2TCD

∂R2

⎤
⎥⎥⎥⎦ .

By calculating the three eigenvalues of the Hessian matrix one can see that two
of them are always positive for positive values of T , R, and M . However, the third
eigenvalue becomes negative for certain parameter values. We omit the presentation of
the eigenvalues as they are of a very complex nature. Therefore, the total cost function
TCD is not entirely convex in all variables in all cases.

E Determining the upper and lower bound for T

for random yields

This section focusses on determining an upper and lower bound for the disassembly
cycle length T in a stochastic yield scenario which shall be denoted by Tmin and Tmax,
respectively. As the question on how to define these bounds exactly appears to be
very complex, two different heuristic approaches will be presented subsequently. Com-
mon to both approaches is the presumption that a stochastic yield distribution can
be regarded as a combination of several equivalent deterministic problems. Thus, the
approaches assume that the solution to a stochastic yield problem could also be ob-
tained by combining the solutions of a number of deterministic problems. Hence, the
lower and upper bound for the stochastic problem Tmin and Tmax, respectively can be
obtained by calculating the highest and lowest disassembly cycle length of all possible
deterministic yield scenarios. While appendix E.1 omits the integrality constraint of
the total cost function and studies the disassembly cycle lengths for all determinis-
tic settings, appendix E.2 includes the fact that the number of remanufacturing and
manufacturing lots have to be integer valued.

E.1 Analyzing the relaxated total cost function TCD

In order to determine the upper and lower bound for the disassembly cycle length for the
relaxated total cost function one needs to analyze the optimal disassembly cycle length
T ∗ presented in appendix C (formula (20)) for each possible deterministic yield fraction
β. One can see that the first derivative of T ∗ with respect to β is strictly negative for
0 < β < 1 which means that the optimal disassembly cycle length decreases as larger
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the deterministic yield is. This can be mathematically proven by the following formula:

dT ∗

dβ
=

−1
2
·
√

2λαKd

hd+αβ2hr
· 2αβhr

λα(hd + αβ2hr)

= −
√

2αKd

λ(hd + αβ2hr)
· βhr

hd + αβ2hr

< 0 (23)

Therefore, the upper bound of the disassembly cycle length for the relaxated total
cost function T rel

max can be observed for the lowest possible yield fraction, i.e. β = 0. On
the other hand, the lower bound for the disassembly cycle length T rel

min can be observed
for the largest possible yield fraction, i.e. β = 1. By inserting β = 0 and β = 1 into
equation (20) the values of T rel

min and T rel
max can be calculated by the following formulae:

T rel
min =

√
2Kd

λαhd

(24)

T rel
max =

√
2Kd

λα(hd + αhr)
(25)

However, these results were derived under the assumption that the number of re-
manufacturing and manufacturing lots in a disassembly cycle need not to be integer
valued. This fact shows the heuristic character of this procedure as for example, if
β = ε (with ε being a very small positive number) the optimal number of remanufac-
turing lots reveals only a very small but positive amount. This is of course not possible
in the model context presented above as the number of remanufacturing lots must be
a positive integer number. Hence, the smallest possible value for R is one which leads
to the fact that the bounds T int

min and T int
max must be calculated in a different way. The

next section focusses on this topic.

E.2 Analyzing the mixed-integer non-linear problem

If the number of remanufacturing and manufacturing lots have to be integer valued, the
simple procedure of appendix E.1 needs to be adjusted in order to cope with this change
in the problem setting. Yet, the general approach of the first heuristic is applied to
the second heuristic as well. This means that the disassembly cycle length is evaluated
for a certain number of possible deterministic yield fractions and the minimum and
maximum value become the lower and the upper bound for the cycle length. However,
if the number of remanufacturing and manufacturing lots need to be integer valued, the
cycle length T can not be formulated as a continuous function with respect to the yield
β as a switch in either R or M results in a discontinuity of the function. By analyzing
these discontinuities as well as the function T (β) between these discontinuities, heuristic
values for the lower and upper bound of the disassembly cycle length can be calculated.

However, the formulation of an algorithm that can handle this specific problem in an
efficient manner is very complex. Therefore, this paper presents a simpler approach on
how to deal with this problem setting that needs not to achieve the solution quality of
the complex algorithm discussed before. This approach solves q deterministic problems
between the smallest and largest yield fraction using formula (2). It shall be mentioned
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that the interval between two consecutively examined yield fractions is always 1/(q−1),
as a yield distribution is generally defined between 0 and 1. The following pseudocode
can be applied in order to obtain the upper and lower bound for the disassembly cycle
length:

For i = 1 to q

β = (i − 1)/(q − 1)

calculate Ti by using the deterministic model from chapter 3

Next i

T int
min = min

i
(Ti), T int

max = max
i

(Ti)

The numerical study conducted in chapter 5 provides a data set of 1000 instances.
Both heuristic approaches from the preceding subsection (which will be referred to as
the relaxated TC (total cost) approach) as well as from this subsection (which will
be referred to as the integer TC approach) are tested for these instances in order
to evaluate their performance. Therefore, the actual minimum and maximum cycle
lengths (denoted by T ∗

min and T ∗
max) for each instance were obtained by applying policy

III to all tested yield distributions for all instances. The actually observed minimum
values are afterwards compared to the lower bounds T rel

min and T int
min that were calculated

by both heuristic approaches. The left hand side of table 2 summarizes the results of
these experiments. The right hand side of this table illustrates the comparison of the
calculated upper bounds T rel

max and T int
max with the actually observed ones.

Table 2: Performance of the relaxated and integer total cost approach regarding their
estimations of the minimum and maximum disassembly cycle length

percentage of instances percentage of instances

with T rel
min < T ∗

min with T rel
max > T ∗

max

relaxated TC approach 100 % 13.6 %

percentage of instances percentage of instances

with T int
min < T ∗

min with T int
max > T ∗

max

integer TC approach (q=10) 90.7 % 100 %

integer TC approach (q=20) 96.9 % 100 %

integer TC approach (q=50) 98.4 % 100 %

integer TC approach (q=100) 98.8 % 100 %

integer TC approach (q=10000) 99.1 % 100 %

It can be seen that the performance of the relaxated TC approach introduced in
appendix E.1 is ambivalent. While the minimum cycle length is always estimated
correctly by formula (24), the maximum cycle length Tmax is frequently underestimated
by formula (25). By incorporating the fact that the number of remanufacturing and
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manufacturing lots must be integer valued, the performance of the heuristic approach
presented in this subsection can be described as very good. The actually observed
upper bounds Tmax have never been underestimated even for a very small number of
calculations. The lower bounds Tmin, on the other hand, seem to benefit from an
increasing number of calculations q. However, the performance of only 10 calculations
has been already very good (90.7 % of all estimations were correct). Although the
general performance of the integer TC heuristic of this subsection seems to improve with
an increasing number of calculations, the general heuristic approach can be observed by
the fact that even if q is very large not all lower bounds will be estimated correctly. Yet,
the percentage error that is made by the false estimation of the integer TC approach
is rather small. The average error over the 9 instances for which the bounds could
not be calculated correctly is around 0.463% with a maximum deviation of 0.6 % (for
q=10000). To conclude this section, it can be said, that the best method for calculating
the lower bound of the disassembly cycle length the relaxated TC approach should be
applied (formula (24)). For estimating the upper bound of the disassembly cycle length,
on the other hand, the integer TC approach from this subsection should be used as
it (even for low q values) always estimates the actually observed upper bound of all
instances correctly.
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