OTTO-VON-GUERICKE-UNIVERSITY MAGDEBURG
FACULTY OF ECONOMICS AND MANAGEMENT

Non-uniqueness of non-extensive
entropy under
Rényi's recipe.

Soénke Hoffmann

FEMM Workina Paper No. 11. March 2008

FEMM

Faculty of Economics and Management Magdeburg

Working Paper Series

Otto-von-Guericke-University Magdeburg
Faculty of Economics and Management
P.O. Box 4120

39016 Magdeburg, Germany
http://www.ww.uni-magdeburg.de/




Non uniqueness of non extensive entropy under
Rényi’s recipe.

S. Hoffmann ®*,

a0tto-von-Guericke University Magdeburg, Dept. of Economic Policy (VWL III),
Universitatsplatz 2, D-39106 Magdeburg, Germany

Abstract

In this note I show that Tsallis entropy (Tsallis, 1988) is not unique in the class of
non-additive, selfweighted and quasilinear means. A characterization is given which
disproves a result in Dukkipati et al. (2005a,b) and Dukkipati et al. (2006)
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1 Introduction

In one of his seminal contributions to information theory Rényi (1961)
defined information measures as a self-weighted quasilinear mean (h), =
¢~ (X, picd (hy)), with elementary information h; = H (p;), h = (hi),_, ,
and ¢(z) being a continuous and strictly monotonic function on a real interval
defined at x = 0. From the perspective of information theory H should be log—
additive (“lad”) such that H (p;q;) = H (p;) + H (¢;) for independent events
of the discrete n—outcome random variable at positive probability p; € (0, 1].
Log—additivity uniquely characterizes H'3 (p;) := cln(1/p;) as “elementary
information” in this domain (Aczél and Dardczy, 1975) and the famous
Shannon- or Boltzman-Gibbs statistic can be written as a self-weighted quasi-
linear mean of all H'®d (p;) for linear ¢, i.e. VS (p) := <h1ad> o= pihlad,
From this starting point Rényi derived the class of all linear and non linear ¢
which maintain log-additivity of <h1ad>¢, such that for any two independent
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distributions p and ¢ and their direct product p X ¢
lad o lad lad
(hpda), = (Hp), + (R, 1)

Rényi found that, given (1), generating functions must be either exponential
1
: ; : R R nad _ n l-a) «
or linear, which is tantamount to V,*(p) := <h a >¢exp = In (( 1 D ) )
or lim, o VE (p) = V3 (p).

Similar to this information theoretical foundation of entropy measures non
extensive statistical mechanics employs elementary quantities being non-—
additive of some degree ¢ (“nad”), ie. H(piq;) = H(pi) + H(q;) +
0H (p;) H (q;) (Tsallis, 1988). Again, this property is charactrerizing.

Proposition 1 (Non—additivity of degree §) Let x,y € (0,00) and f be
a continuous and non—constant function, then for constant ¢ # 0

z7—1 .
o ;v # 0

flxy) = f(x) + fly) +f(x) f(y) & f(z) = In,(z) :=
cIn(z) ;7 =0

(2)

where 6 = c.

Proof of Proposition 1. For non additivity of degree § # 0, g(x) :=
df(z) + 1 gives the Cauchy power equation g(zy) = g(x)g(y) which has the
most general continuous solution g(z) = 27, nonconstant for v # 0 (Aczél,
1966). Then for a constant ¢ = 6/~ (2) follows by resubstitution. Clearly, non—
additivity of degree o = 0 is log—additivity and then the most general non—
constant solution is the common Napier logarithm lim, oI, (z) = 1In(z),

¢

where ¢ defines its basis (e.g. ¢ = In(2) in information theory). m

In analogy to elementary information A2 and (1) we can define h?2d =
H™d (p;) == Ins (1/p;) and derive the self-weighted linear mean V7 (p) :=
<hnad> which is known to be non—additive of degree 4, such that

¢lin )

(e = (B, o+ (), +8 (), (), ?

Means generated by ¢y;, maintain log—additivity as well as non-additivity of
degree 9, once these properties are satisfied by some elementary quantity h.
Thus, it seems natural to ask whether a generalization of ¢);, similar to the one
by Rényi can be undertaken to find the most general <h“ad>¢ satisfying (3).
Dukkipati et al. (2005b) call this approach “Rényi’s recipe” (applied to non—

additivity) and suggest that there is no non-linear ¢ satisfying (3). In what
follows I give a non—linear counterexample and an alternative characterization.



2 Characterization of non—additivitve quasilinear means

Definition 1 Let the solution In, (x) of (2) be called degree-deformed loga-
rithm then for ¢ # 0

exp,, (z) = In

() = (cyz+1)7 ;7 #0
exp(cz) ;7 =0

18 the corresponding degree-deformed exponential.

Lemma 2 Let (h), satisfy (1), then g((h),) satisfies (3) for all ¢ # 0 where

exp(yz)—1 y 7& 0

g (x) =Iny (exp (z)) = { 7

ol8

;’Y:O.

Proof of Lemma 2. Let ¢,y # 0 then

+
< €Xp (’Y <thq>¢) = exp (7 <hp>¢) exp ('Y <hq>¢)
< exp (7 (hpxq>¢) = exp (7 <hp>¢) + exp (7 (hq>¢)
+ [exp (7 (hp)¢) - 1} [exp (7 (hq)y) — 1} -1
o &P (7 (rpa)y) — 1 _ XD (v (hp),) — 1 Lo (v (hg),) — 1
ey ey oy
+ey [eXP (7 <hp>¢> - 1} _ {eXP ('Y <hq>¢) - 1}
ey ey

<9 (<hp><q>¢) =49 ((hp>¢) +9 (<hq>¢) +0g (<hp>¢) 9 <<hq>¢) , (5)

which is the non additivity (degree §) condition for the function g({h),). In
the v — 0 limit g is linear and (5) reduces back to (4). =

Proposition 3 Let ¢(z) := In (eXp7 (a:)) then <h”“d>(27 satisfies (3) for all .

Proof of Proposition 3. As V®(p) is known to satisfy (1), <hnad>¢3 =

P (exp (nyS (p)) - 1) = In, (exp (VS (p))) must satisfy (3) due to Lemma
2. m

Now we want to find the most general set of functions satisfying (3) under
“Rényi’s recipe”. To this end the following classical Lemma is essential.



Lemma 4 (Hardy et al. (1934)) Let a # 0 and b be constants then

¢'(x) = ag(z) + b (h)y = (h),. (6)

Proposition 5 (Non—additivity—preserving means) Let H (p) be non—
additive of degree 6, then (H (p)), is non-additive of degree ¢ iff ¢ (x) =

¢ (z) = ad” (z) + b, a # 0 where

¢

(cyz+1)7 5a#v#0

o () = exp(car) ;a#0;7=0 . ™)
In(eyz+1) ;a0 =0;7#0
x ca=757#0

Proof of Proposition 5. By Proposition 1 H (p) = H' (p), which will
be written HT for convenience. First let o # v # 0 in (7) then <HT>¢* =

X
3 ((Z?Zl pll*“)a - 1) = In, (exp (VaR (p))) . VR (p) is known to satisfy (1)
for all real o (Rényi, 1961) thus <HT>¢* must satisfy (3) for all a and v due
to Lemma 2.

Vice versa, let <HT>¢ be non additive of degree ¢ then (3) must hold. Now

define 9 (z) := ¢(In,(z)) viz. ¢~ (2) = In, (1/1_1(2)> ,qj=~forallj=1...m
and p~! := (pi_l)izl...n then (3) becomes

o <<mp_1>w> = oy (<p_1>w> 1ny (m) + eyln, (m)n, (<p_1>¢>

& <mp’1>¢ =m <p’1>¢. (8)

In order to find out which v satisfy (8) we will use a slightly different notation
of 1. Let ) (z) = v (%) and ¢ (z) = ¢ (%) then (8) is equivalent to (p); =
(p); which holds due to (6) iff ¢ and 1) are affine maps of each other, such
that for constants a and b (being, however, different for different m)

m

D) = (%) = atmye () +bom). )

Note that the role of x as a variable and the one of m as a constant can be
interchanged from the beginning of the proof without changing the solutions
of (9). Neither would the assumption v (0) = 0 = b(m) = ¢(m) do, as ¥ (0) is
defined and we can, by (6), transform 1 linearly without changing the mean
generated by 1. Then, for t = 71 (9) can be rewritten as



(t) b(m) = a(t) (m) + (1)
—1_aft) -1

W (m ) RO

&a(m) =1 (m)f+1 (10)

with 3 being a constant. Substituting (10) into (9) one obtains the functional
equation ¥ (tm) = 1 (t) + ¥(m) + p (t) ¢ (m), which has by Proposition 1
the most general non—constant and continuous solution

Y a0
U(x) = Iny(z) = ! ne) .
Ln(z) ;a =

Then, recalling that ¢ (y) = ¢ (z) =1 (exp,y(y)) we have

(cyy+1)7 -1 A £y #0

cx

exp(cay)—1 e 7& 0, N = 0

—In, = - ' 1
¢ (y) n (eXp“’(y)) % a=0;7#0 .
Y =7

Finally, applying (6) gives the solution (7). Note that the o # 0;y = 0 case
recovers non additivity of degree zero, i.e. log additivity. m
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