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Abstract

There is an increasing economic literature considering personality traits as a source of individual dif-
ferences in labor market productivity and other outcomes. This paper provides an overview on the role of
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1 Introduction

There is a long literature in economics that investigates the sources and mechanisms of individual

differences in labor market productivity. Starting with the seminal work by Becker (1964), numerous

approaches modeling the relationship between innate ability, acquired skills, educational investment,

and economic outcomes in terms of educational or labor market success have been established.1 Un-

fortunately, empirical analysis in this field has been always burdened with a lack of observability of

individual differences in these determinants. For several decades, measures of cognitive ability, mostly

IQ or achievement tests, have been used for approximation.2 In psychology, the personality as another

source of individual differences in achievements has been a core topic for a long time (see, e.g., Roberts

et al., 2007, for an overview). Although these determinants have been implicitly addressed in human

capital theory, empirical economists have just started to take these findings into account and to em-

phasize the crucial role of personality traits in explaining economic outcomes (see, e.g., Heckman and

Rubinstein, 2001). For traits related to these outcomes economists use the term noncognitive skills.

The practical implementation of measurement is attained by means of psychometric constructs.3 The

consideration of trait measures in empirical analysis contributes to a better understanding of the gen-

esis and the evolvement of skills other than those indicated by formal education and labor market

experience.

However, the objectives in applying these measures in economics and psychology fundamentally

differ. Economists are interested in establishing traits as productivity enhancing skills for rather

specific settings. Personality psychologists, on the contrary, try to explain an individual’s complete

spread of behavior and thoughts. Delving into this literature is cumbersome for researchers from the

economic discipline. Nonetheless, using the set of psychometric measures in an ill-advised manner due

to a lack of knowledge of the broad notions in psychology can lead to very contradictory results.

The overview at hand gives an extensive treatise of central questions and findings regarding

definitions, measurement, development, theoretical modeling, outcomes, and problems arising with

empirical analysis of personality traits. It complements other surveys on the topic in that it focuses

on notational and methodological specifics of the psychological literature and links it to the field

of economics. It addresses some critical assumptions necessary to establish existence of a set of

noncognitive skills in the sense of the human capital theory. We also address econometric challenges

inherent to the analysis of personality traits and provide an overview on the methodological literature

that intends to overcome these problems. The survey is completed by a cursory summary of studies

1 Another landmark contribution to the literature on human capital development is due to Ben-Porath (1967). See
also Becker and Tomes (1986), Aiyagari et al. (2003), and Coleman and DeLeire (2003).

2 See, for example, Hause (1972), Leibowitz (1974), Bound et al. (1986), and Blackburn and Neumark (1992). See
also Griliches (1977) for an overview.

3 Psychometrics is the field of psychology that deals with measurement of psychological constructs, including person-
ality traits.
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relating to outcomes and formation of personality traits.

The topics are discussed in the following order: we will introduce crucial definitions and elicit

how the notion of noncognitive skills is embedded in the psychologic literature in the next section.

Afterwards, a selection of psychometric measures for personality traits will be presented and evalu-

ated with respect to their virtues and drawbacks. In addition, we give an introductory overview on

validity and reliability measures commonly used in psychometrics, and what should be considered

when applying them for construct choice. Section 4 embeds the psychologic and sociologic literature

on personality development into a formal framework of human capital formation suggested by Cunha

and Heckman (2007). Section 5 outlines general notions and first evidence on how to map personality

traits into economic preference parameters. In Section 6 we review a number of studies establishing

causal inference for noncognitive skills on several outcomes. Econometric approaches that account for

the fact that measures based on test scores only imperfectly represent latent personality traits are

introduced in section 7. It intends to provide a valuable means to researchers unfamiliar with the

topic. Section 8 concludes and gives an outlook.

2 Noncognitive Skills: Some Notational Clarifications

The term noncognitive skills originates from the economic literature starting to emerge in course of

the work by Heckman and Rubinstein (2001). It comprises the notion of personality traits which are,

besides pure intelligence, particularly relevant for several human capital outcomes, such as educational

or labor market achievements. These traits constitute, along with other determinants, an individual’s

personality. In economic terms, personality is a kind of response function to various tasks (see Alm-

lund et al., 2011). There are several approaches in the psychologic literature that target modeling

personality in light of environmental entities. A good point of departure is the model suggested by

Roberts et al. (2006) and therefore we use it as a reference framework for the remainder of this article.

It designates four core factors of personality: personality traits, abilities (cognitive), motives, and nar-

ratives. Together with social roles and cultural determinants, these core factors produce the identity

(consciously available self-image about the four factors, including self-reports) and reputation (others’

perspectives) of an individual. The model also accounts for the possibility of feedback processes, that

is, the possibility of environment activating the core factors and vice versa. In its original definition,

personality traits are relatively persistent attributes of behaviors, feelings and thoughts, i.e., they

are largely non-situational (see Allport, 1937). However, the prevalence of consistency (or at least a

certain degree) across situations is not without controversy in the literature. We will elaborate on this

in a later section.

Prominent examples for personality traits are self-discipline, self-control, agreeableness, self-
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esteem, or conscientiousness, just to mention a few.4 As the aforementioned model by Roberts et

al. (2006) suggests, few issues of personality are devoid of cognition. Sometimes it is even hard to con-

ceptually (not empirically, we will elaborate on this in section 3) distinguish cognitive and personality

traits. For instance, emotional intelligence (see Salovey et al., 2004), which describes the processing

ability to anticipate the consequences of feelings and the resulting behavior, is a marginal case in

terms of cognitive and personality traits.5 Hence, the denotation noncognitive is rather imprecise.

Nonetheless, in accordance with most of the economic literature, we use the terms noncognitive skills

and personality traits interchangeably in the following.

In order to relate the notions from psychology to economic terms, one can think of cognitive

and noncognitive skills as an acquired and inherited stock of human capital. However, to attain

definitional plainness we need to resolve the dichotomy of skills and abilities prevailing in traditional

human capital literature. Becker (1964) claims a binary stratification where abilities are innate and

genetically predetermined, whereas skills are acquired over the life cycle. According to this view, skills

and abilities are two distinct determinants of potential outcomes.6 Contemporary literature, enriched

by constructs of personality and intelligence as an interdisciplinary means of measuring human capital,

emphasizes and empirically proves that innate abilities provide the initial input in the process of skill

formation (see Cunha and Heckman, 2006, Cunha et al., 2010). These findings suggest to waive the

distinction between skills and abilities.

Put together, it is obvious that human personality is a highly complex construct that goes

beyond the concept of personality traits and requires consideration of multiple factors combined in an

interactional pattern. As the remainder of this paper will show, personality and its impact on various

outcomes are of particular interest for the field of economics. To make theory and assessment from

psychology a powerful toolbox for empirical research in economics, however, one has to presume a

sufficient degree of stability and make certain simplifications. Fortunately, an economist’s objective

is rarely to model and map virtually all facets of personality, but to identify relatively stable and

conveniently assessable determinants of the outcomes of interest. This circumstance in association

with a general tendency to reconcile different views about cross-situational stability of the personality

in the psychological field (Roberts, 2009) will ease some of the discussions rendered subsequently.

4 For example, Allport and Odbert (1936) obtained about 18,000 attributes describing individual differences in the
English language.

5 Borghans et al. (2008a) discuss further examples like cognitive style, typical intellectual engagement, and practical
intelligence.

6 To that effect, Becker (1964) figures out that acquired skills possess higher explanatory power for future earnings
than innate abilities do.
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3 Measuring Noncognitive Skills

There is no uniform assertion about the adequate assessment of personality and the underlying per-

sonality models prevalent in psychology. Hence a brief overview on the relevant psychologic literature

is a sensible first step. The crucial issue in terms of postulating persistent skills for economic analysis

is to ensure the stability of personality traits across situations. If consistency across situations is only

fragile or at worst non-existent, and situational and contextual determinants drive observed measures

instead, it would be meaningless to evaluate its relevance and to construe it as a persistent set of skills

which constitutes human capital.

3.1 Personality and Situations

The existence of persistent traits has been subject to vigorous discussion in the literature in the last

decades. The common reading of the influential work by Mischel (1968) is that all patterns of behavior,

feelings, and thoughts are manifestations of specific situations, not of personality traits. Mischel and

his proponents constitute this as a misinterpretation in the aftermath. Mischel (1973) has endeavored

to incorporate situation into whatever drives stable characteristics (e.g. personality traits), dubbing

it the if-then signature of personality. This signature characterizes an individual by stable patterns of

variability across situations. Orom and Cervone (2009) therefore claim that Mischel’s initial point was

that cross-situational consistency in personality assessment is low when limiting to global, nomothetic

trait constructs.7 Things become more clear-cut when dropping this rigid assumption and allowing for

other factors to affect measured personality. The ensuing discourse in the literature led to alternative

notions of personality.

The social-cognitive approach established and advocated by Mischel (1973) and Bandura (1986)

provides such an alternative structure of personality. It mainly focuses on explaining the cognitive

processing underlying thoughts and behaviors. Accordingly, people differ in terms of cognitive abilities

relevant for the implementation of certain behaviors. The awareness of these abilities in conjunction

with expectations about self-efficacy, goals, and valuation standards constitute the personality. All four

subsystems of personality are interactional in nature and therefore not separately assessable.8 Strictly

speaking, the evaluator has to account for the situation as perceived by the observed individual

and analyze consistent patterns in this situational context. One of Bandura’s contributions is the

concept of reciprocal determinism. It essentially states that there is no actual source of behavior as

asserted by trait theorist or behaviorists. Instead there is a triangular feedback system composed

of personal characteristics, behavior, and environmental factors. An interior processing approach

underlying this system is the cognitive-affective processing system by Mischel and Shoda (1995). It

7 This does not imply that cross-situational consistency is non-existent.
8 A social-cognitive theorist would not assign a certain score to one of these systems.
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interrelates the abovementioned subsystems (abilities, expectations, goals, and valuation standards)

by means of cognition and affects. Individual differences therefore arise from differences in activation

levels of cognitions and affects. The accessability of activation levels differs over various situations.

A contrary view to the whole situation debate is held by the proponents of the global dispositional

approach. It is exemplified best by concepts like the Five Factor Model of Goldberg (1971) and related.9

Proponents of the Five Factor Model constantly highlight the consistency of personality across time

and situation.

The most widely held approach in contemporary personality psychology is to combine the as-

sumption of a certain stability in traits with social-cognitive units, such as goals expectations, and

assign them to different levels of analysis.10 The Roberts model for personality that we use as a base-

line accounts for these units and their interaction with environmental factors.11 Moreover, it maintains

the notion of personality traits irrespective of the underlying cognitive processing function and refers

to other units of analysis in the system of personality when modeling contextual patterns.

All observed (or otherwise assessed) measures of latent personality traits can also be manifesta-

tions of the other units of analysis addressed in the Roberts model. For instance, fulfilling a certain

social role at the time the assessment takes place is a contextualizing variable one has to control for

(see Wood, 2007).12 This proceeding gives rise to a certain stability of personality traits across situa-

tions and therefore paves the way for application of the kind of personality tests empirical economists

are most interested in.

3.2 Types of Assessment-Tools

How do trait theorists or social-cognitive theorists assess the entities in their respective models and

what are the pros and cons of the respective methods with regard to different assessment situations?

There are three main dimensions an evaluator has to decide on: (1) the type of assessment, (2) the

person to be assessed, and (3) the dimension.

(1) Proponents of the social-cognitive approach usually rely on qualitative assessment methods

conducted by experts who passively observe or interview. This method involves variations of situational

stimuli and substitutions of the assessed person until systematic evidence for the underlying processing

is revealed. For applications within the scope of observational (and even experimental) data prevailing

in empirical economics this type of assessment is rather cumbersome and costly. For large scale

9 The most widely applied version is the Big Five inventory of Costa and McCrae (2008).
10 Even very early definitions of personality traits implicitly account for situational variance in behavior (Allport,

1961, p. 347)
11 Roberts (2009, p. 138) vividly summarizes this reconciling approach in the following manner: “The trait psycholo-

gists can continue to focus on factor structure and test retest stability. The social cognitive psychologists can study
goals, motives, beliefs, and affect - things that putatively change.”

12 As section 4 will briefly address, permanently fulfilling certain social roles does not solely affect measures of person-
ality, but induces changes of states of personality traits as well.
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investigations quantitative assessment methods are undeniably more appealing and, therefore, in our

focus henceforth. In general, their aim is to provide scores for respective dimensions of the construct.

These scores are directly used for analyses or employed to derive an underlying latent construct.

(2) Moreover, the evaluator has to choose between self-reports and observer reports. Self-

reported measures are convenient due to their simple implementation but implicitly assume that

respondents are capable to consciously perceive their personality or at least their actions manifesting

it. This prerequisite does not generally apply. For instance, infants and children are not capable of

doing so and, thus, are usually assessed by observers from the social environment (parents or teachers).

Distortions of self-reports or observer ratings can also be more generic. For traits related to typical

social settings, like meeting a stranger or having a discussion, observer ratings tend to predict behavior

better than self-reports since the potential for disorder in self-perception is high. For instance, what

the narrator of a joke believes to be funny is not perceived by others in the same manner. Vice versa,

self-reported personality ratings are more strongly related to assessments of emotional issues driven

by interior processes and less shared with others. An illustrative example for that is a person annoyed

by depressions who would usually try to conceal his or her problems from others. On the other hand,

they lack the virtue of easy implementation of test scores administered as a questionnaire. The choice

of the person to be assessed therefore strongly depends on the trait of interest.

(3) The remaining question is to which extent a measure captures the personality. Besides

various low-dimensional scores for assessing the magnitude of specific traits, there is a large number

of taxonomies mapping human personality as a whole. Proponents of these personality inventories

or high-order constructs advocate the global dispositional approach we discussed above and therefore

construe these models as comprehensive personality inventories.

Higher-Order Constructs: Most mappings of personality impute a hierarchical structure which

is based on common (exploratory) factor analytic approaches exploiting lexical-linguistic informa-

tion. These inventories build on measurement systems comprising a multitude of respective questions

(items). They follow the notion of the setups usually applying to the segmentation of general IQ.13

In case of personality the level of abstraction is lower. Despite early efforts to identify a general fac-

tor for personality (see Webb, 1915), personality inventories from the prosperity period of the global

dispositional approach usually assume at least three major factors. Table 1 provides an overview on

the commonly used concepts in the literature.

< Include Table 1 about here >
13 A version of Cattell (1971) includes fluid intelligence, that is, the ability to solve novel problems, and crystallized

intelligence, comprising knowledge and developed skills.
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A widely accepted taxonomy is the Five Factor Model established by Goldberg (1971) and the

related Big Five by Costa and McCrae (1992). The identification of five high-order factors is not

uncontested in the literature. Some factor analytic results suggest a lower number of factors, whereas

others claim a higher number. Eysenck (1991), for example, provides a model with just three factors;

Digman (1997) curtails the Big Five distinction to only two higher-order factors.14 In contrast to that,

Hough (1992) proposes a more stratified version of the Big Five taxonomy, the so-called Big Nine. Due

to their factor analytic genesis virtually all the aforementioned concepts lack a theoretical foundation

and, therefore, are largely inconsistent with the type of personality models discussed above. Only for

exceptional cases neurological support for the constructs is available (see, e.g., Canli, 2006, pertaining

to the Big Five).

As a consequence, low predictive power of a high-order factor does not necessarily imply that

all of the lower-order factors in Table 1 exert no influence on an outcome of interest. Using lower-

order constructs or even uni-dimensional factors often entails a gain in explanatory power, but at the

potential cost of not covering all relevant personality facets.

Lower-Order Constructs: There is also a large number of lower-order constructs. Prominent

examples in the context of educational outcomes are self-control (see Wolfe and Johnson, 1995) and

the related self-discipline (see Duckworth and Seligman, 2005). The Brief Self-Control Scale (Tangney

et al., 2004) is a commonly used means of assessing self-control. It includes 13 items which sum up

to a score increasing with self-control. The Internal-External Locus of Control by Rotter (1966) is

often perceived as a related measure, but merely assesses an individual’s attitude on how self-directed

(internal) or how coincidental attainments in her or his life are. The original Locus of Control (Rotter,

1966) comprises 60 items. Usually, longitudinal datasets apply abbreviated versions.15 A similar scale

for Locus of Control is the Internal Control Index (Duttweiler, 1984), a 28-item scale that scores

in the internal direction. Self-esteem provides a further important determinant of educational and

labor market outcomes (see Heckman et al., 2006). It is often quantified by the Rosenberg Self-

Esteem Scale (Rosenberg, 1965), a 10-item scale. For the assessment of children’s personality the

use of observation from third persons prevail. A corresponding scale based on observational report

is the Self-Control Rating Scale (Kendall and Wilcox, 1979), a 33-item scale indicating the ability of

inhibiting impulsiveness.

This leads to the related field of temperamental studies prevailing in developmental psychol-

ogy.16 Constructs to assess temperament rather refer to behavioral tendencies than pure behavioral

14 The factors are not presented in Table 1 since they are simply denoted metatraits without further specification.
15 The German Socio Economic Panel (SOEP), for instance, comprises a 10 item version, whereas the National

Longitudinal Survey of Youth uses a 23 item version.
16 Developmental psychology deals with all kind of psychological changes over the life course, not only personality.

The major focus, however, is on infancy and childhood.
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acts. An influential model has been suggested by Thomas et al. (1968). It stratifies temperament

to nine categories each grouped into three types of intensity. There are further established concepts

of temperament, e.g., Buss and Plomin (1975) and Rothbart (1981), but even more recent literature

is still involved in this topic (see, e.g., Rothbart and Bates, 2006).17 Meanwhile, some interrelations

between concepts of personality psychology and developmental psychology have been established. For

instance, Caspi (2000) reveals links between the extent of temperamental facets at age 3 and person-

ality at adulthood. Temperament at infancy and early childhood designates later personality but is

remittently affecting behavior as the individual matures. According to Thomas and Chess (1977),

purely temperamental expressions at later age are only likely in case of being faced with a new en-

vironmental setting. However, the inferences from studies linking temperament and personality are

far from being conclusive (see Rothbart et al., 2000, Shiner and Caspi, 2003, Caspi et al., 2005, for a

review of the literature).

3.3 Reliability

Reliability refers to the consistency of answers to a psychometric task over time or across observa-

tions.18 It originates from methods of classical test theory, one of the very first fields analyzing issues

of measurement error. What should be considered when picking tests in order to ensure a high de-

gree of reliability? The consistency of a task to measure a trait is mainly imperiled if other units of

analysis in the (Roberts) model are captured by it. Separately assessing these units is difficult due

to the fact that they are not isolated but instead influence each other simultaneously. For instance,

when measuring a certain personality trait by means of a questionnaire, it is important not to prompt

the respondent to project his thoughts into a particular situation in order to reply to an item. In this

case the score can be a manifestation of the trait of interest, but also of motivation, past experiences,

or narratives and abilities helpful for comprehension of the task.

Though proponents of the global dispositional approach claim that most of the variables dis-

cussed in the Roberts model can be mapped into the dimensions of their personality inventories (see

Costa and McCrae, 1992, for emprical evidence), this result is dissatisfying when it comes to identifi-

cation of persistent traits and subsequent anchoring to economic outcomes. Methods of exploratory

17 See Goldsmith et al. (1987) for an overview on temperamental measures.
18 Reliability could be most directly checked by means of test-retest correlations over time. Generally, each test item

i can be expressed as
xi = αiτi + εi,

where xi is the attained score, τi is the true score with αi as the corresponding scaling parameter, and εi is an
error term. Since test-retest settings are rarely at hand, other coefficients prevail. A standard measure to quantify
reliability across several items is Cronbach’s alpha (see Cronbach, 1951) which can be determined as follows:

ρα = ( l

l − 1)(1 − ∑
l
i=1 V ar(xi)

V ar(∑l
i=1 xi)) ,

where l is the number of items used to measure the true score. It relates item variance to the variance of the total
score and therefore increases with rising inner consistency of the construct.
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factor analysis are a widely used tool for development and construction of global personality map-

pings like the Big Five.19 In case of low-order constructs or uni-dimensional factors, exploratory factor

analysis is primarily used for verification of the assumed structure. In either instance, neglecting the

influences of accompanying determinants can be harmful for the resulting measures of traits.20 By

construction, exploratory factor analysis cannot disentangle the effects of immediate common factors

and indirect pathways. Therefore, the identification problem inhering a lack of contextualization fre-

quently causes some variation to be attributed to measurement error or spurious pattern of the trait

under study. The former may occur if the item formulation unsystematically induces the measured

scale to include framing effects due to motivation or social roles. The latter is likely to result from

more systematic distortions.

In order to elude these drawbacks it is necessary to contextualize the measurement, that is to

control for situational determinants that potentially affect expression of abilities, motivation and the

like. When using questionnaires as an assessment tool, the evaluator should avoid to mentally force the

respondent into specific situations to answer an item. Intuitively, low-dimensional or uni-dimensional

constructs are less susceptible to these phenomena since they usually rely on a higher number of items

to examine a certain trait and are easier to validate by means of other constructs or outcomes (see

next section).

Contextualization comprises all interactions between entities of the personality that may distort

identification of traits. If this bias, however, is solely conscious, the researcher has to deal with

faking.21 The potential for faking is higher for measures of personality traits than for cognitive abilities.

The background of the assessment can urge the respondent to understate and/or overstate. As an

example consider a test administered for making a hiring decision. The faking behavior in tests is

also a projection of other personality traits or cognitive capabilities. Borghans et al. (2008b) provide

evidence for an interrelation between personality and incentive responsiveness. Fortunately, Morgeson

et al. (2007) conclude that correcting for intentional faking does not improve the validity of measures.22

3.4 Validity

After a construct has been developed by means of data reduction (exploratory factor analysis) or

detailed theoretical knowledge, validity is concerned with whether a scale measures what it is supposed

to measure. It should be tested when developing a scale, but should also be considered whenever a

construct is otherwise applied. In the psychometric literature, three types of validity are distinguished

(see, e.g., Cervone et al., 2005).

19 A comprehensive introduction into the methods of exploratory factor analysis is provided by Mulaik (2010).
20 A vivid impression of construct development is given in Tangney et al. (2004).
21 If one assumes intentional faking to be part of the influences accounted for by contextualization.
22 The next section discusses drawbacks of psychometric validity measures.
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Content Validity: Content Validity is a qualitative type of validity and requires sound theoretical

foundation in order to evaluate whether the whole theoretical domain is captured by the data. For

instance, if a construct justified by theory comprises three different dimensions, that is, three latent

factors, one needs measures for all of them. Otherwise, content validity is questionable. A lack of

theoretical consensus is the major weakness of this kind of validity.

Criterion Validity: To test for criterion validity one needs a variable that constitutes a standard

measure to which to compare the used measures. It can be a concurrent measure from the same

measurement system or a predictive measure provided by a future outcome. The magnitude is usually

represented by means of correlations between measurement and criterion variables. It can be shown

(see Bollen, 1989, for a detailed discussion) that the magnitude is largely sensitive to unsystematic

error variance in both, measurement and criterion variable, and depends on the choice of criteria.23

Moreover, validity measures based on simple correlation are not necessarily capturing a causal rela-

tionship.

Construct Validity: For many constructs in psychometrics it is difficult to find measures that

establish criterion validity. Instead one has to rely on construct validity. It assesses to what extent a

construct relates to other constructs in a fashion that is in line with underlying theory. The resulting

coefficient is again a correlation. By arguments similar to those invoked for criterion validity, other

driving forces than the quality of the proxy, like factor correlation and reliability of the measure,

can contaminate the validity coefficient.24 Moreover, the choice of comparison constructs is arbitrary.

A more systematic approach of establishing construct validity is the multitrait-multimethod design

23 Consider both variables in an additive separable factor representation

x = λ1θ1 + ε1
C = λ2θ1 + ε2,

where x is the applied measure, C is the criterion measure, θ is the latent factor constituting both with respective
factor loadings λ1 and λ2 (i.e. the scale), and ε is the measurement error. The correlation between x and C (which
is the validity coefficient by Lord and Novick, 1968) is

ρx,C = λ1λ2φ11√
V ar(x)V ar(C) .

Even if all measures are standardized (usually this assumption extends to the latent factors, which makes φ11 a
correlation matrix) and the denominator therefore vanishes, the coefficient depends on more than the quality of x
as a proxy for θ1 (quantified by λ1 and ε1).

24 A formalization is less straight forward than in the previous case but can be sketched as follows. Consider two
measures x1 and x2 for two latent traits θ1 and θ2 with different loadings λ11 and λ22.

x1 = λ11θ1 + ε1
x2 = λ22θ2 + ε2.

It can be shown that the construct validity depends on more than the relation of the latent factors:

ρx1x2 = √ρx1x1ρx2x2ρθ1θ2 ,

where ρx1x1 represents reliability.
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suggested by Campbell and Fiske (1959). It requires that two or more traits are measured by two or

more constructs (i.e. methods). If the correlations for the same trait across measures are significantly

large, there is evidence for convergent validity. Discriminant validity arises if convergent validity is

higher than the correlation between measures which neither share trait nor method and higher than

the correlation between different traits measured with the same method. Again, the magnitude of

convergent validity can be sensitive for other reasons than closeness of the measure, like latent factor

correlation and reliability.

As the foregoing discussion suggests, there is a twofold circularity to solve in order to obtain

reasonable validity measures. The first is circularity in a statistical sense, that is, a simultaneous

causality between measures and the latent traits. The second is a circularity in justification of genuine

measures and resultant measures of validation. This is what Almlund et al. (2011) denote an intrinsic

identification problem rather than a parameter identification problem. Loosely speaking, one should

always be aware of the “chicken and egg problem” of choosing a construct and validating it by means

of constructs that were established in the same manner. In order to resolve the former problem and

to ensure causality one has to rely on structural equation approaches.

To deal with the latter, at least one dedicated measurement equation per trait is required

(following the term by Carneiro et al., 2003), that is, a measure that exclusively depends on a particular

trait. At the same time the use of dedicated measures warrants parameter identification. Consider

a psychometric task. Even if one controls for situational determinants, identification is restricted to

tuples of traits without dedicated measures. In case of low-order constructs and respective real world

outcomes this reasoning is easier to achieve. For more general dimensions it requires a more profound

justification in choosing measurement and validation constructs.

4 Determinants and Dynamics of Personality Traits

Arguably, only those components that are sufficiently stable across situations, that is personality traits

and cognitive abilities, can be construed as skills in the sense of the human capital literature.

With this subtle notion about the complexity of personality at hand, the remaining questions

with particular relevance for policy recommendation are (1) what determines the formation of the

personality traits and (2) to what extent are they influenced by the environment. In the following

we will present a theoretical approach known as the Technology of Skill Formation (see Cunha and

Heckman, 2007) along with a brief overview on the underlying empirical literature.

Similar to the Roberts model of thoughts and behavior in an environmental context, the inter-

actional pattern between personality traits and IQ has to be considered for the formation process.25

25 As mentioned in the previous section, cognitive capabilities can have an impact on faking behavior in responding
to a personality test. Vice versa, IQ tests never exactly measure pure cognitive intelligence. The results also can
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Cunha et al. (2006) refer to a range of intervention studies which capture different periods of childhood

and adolescence. The respective results are summarized in Table 2. Most of the data sets used in the

empirical studies cover childhood and adolescence retrospectively and only provide measures of cogni-

tive abilities and scholastic achievement. Fortunately, there is a strong consensus in the literature that

IQ largely stabilizes before schooling age. If scholastic achievements are an outcome of intelligence

and some other abilities and a certain treatment results in a permanent shift in achievements but not

in IQ, then there are other, presumably noncognitive, skills that are affected by the treatment.

< Include Table 2 about here >

Although the evaluation of interventions providing such kind of treatment does only provide

implicit evidence for the formation of noncognitive skills, Cunha et al. (2006) reveal a clear for-

mation pattern involving two important features: self-productivity and dynamic complementarity.

Self-productivity postulates that skills acquired at one stage enhance the formation of skills at later

stages. Dynamic complementarity captures that a higher level of skills at an earlier stage enhances

the productivity of investments in the ensuing stages and that early investments should be followed

by later ones. As a consequence, the early childhood constitutes a bottleneck period for investments

in the formation process.

Evidence for this pattern is provided by research from various disciplines. In neurobiology

the existence of such critical periods is attributed to a superior susceptibility of neural circuits and

brain architecture in early lifetime (see Knudsen, 2004, Knudsen et al., 2006). Studies from clinical

psychology draw the same inference. For instance O’Connor et al. (2000) assess cognitive abilities

among a group of Romanian orphans who were adopted into UK families between 1990 and 1992

and compare them at ages four and six to adopted children from within the UK. As opposed to

the Romanian orphans, the UK orphans were all placed into their new families before the age of six

months. Their findings suggest that early deprived children never catch up. In case of personality

traits the time period of malleability is longer. Intervention studies aiming at children in school age

usually report gains in behavioral measures. As the findings of Table 2 illustrate, even interventions at

primary school age boost scholastic performance in a lasting manner without permanently raising IQ.

By the arguments above, these findings provide implicit evidence on the susceptibility of personality

beyond early childhood. This is in line with the literature in pediatric psychiatry (see, e.g., Dahl,

2004) highlighting the role of the prefrontal cortex in governing emotion and self-regulation and its

malleability up into the early twenties of life. There is evidence for an even more extensive period of

plasticity. For instance, Roberts and Delvecchio (2000) in a meta-analysis show that the rank-order of

the Big Five factors stabilizes beyond adolescence, but there are still moderate changes until age 50.

reflect motivational and thus aspects of personality traits.
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Roberts et al. (2006) show the highest mean-level change to be concentrated on young adulthood. The

authors suggest that these changes are induced by persistent shifts in social roles and role expectations

common to most individuals. Given the discussion on the accuracy of the Big Five to measure pure

traits in the previous section, these findings seem reasonable. A social role is a situational factor that

determines measured traits. As long as there are changes in social roles over the life course, it is

tempting to interpret them as instability in actual traits.26

The assumption of complementarity across stages is in line with the following empirical picture.

Table 2 shows that early interventions which involve a long-term follow-up are most successful. How-

ever, most of the gains fade out if no further efforts are made. Vice versa, sole remediation attempts

in adolescence exhibit only weak effects.27 However, the efficiency of interventions in adolescence is

definitely lower compared to early intervention programs. As established by Cunha and Heckman

(2007), a CES production function provides enough flexibility to account for complementarity and

self-productivity of investments. It allows for different elasticities of substitution between inputs at

different stages and for different skills. This yields the following functional form for successive periods

t ∈ {1, . . . , T}:
θjt+1 = [γj1,t(It)ρ

j
t + γj2,t(θCt )ρ

j
t + (1 − γj1,t − γj2,t)(θNt )ρ

j
t ]

1

ρ
j
t , (1)

where θ with j ∈ {C,N} denotes the latent cognitive and noncognitive skills. Moreover, ρjt , γ
j
1,t and γj2,t

are the respective complementarity and multiplier parameters. The notation in equation (1) therefore

accounts for cross-productivity between cognitive and noncognitive skills. The functional specification

also allows for the explicit incorporation of additional determinants like parental characteristics, pre-

natal environment, or children’s health capabilities (see, e.g., Coneus and Pfeiffer, 2007; Cunha and

Heckman, 2009). Gene endowment could be regarded as the initial input into the skill formation pro-

cess and not as an additive component. Even before birth, crucial modules for future skill formation

are established by environmental influences (see Shonkoff and Phillips, 2000). These environmental

and genetic components are not simply additive. A large literature from behavioral genetics deals

with this question. For instance, Fraga et al. (2005) reveal that monozygotic twins exerted to dif-

ferent stimuli throughout early childhood can exhibit significantly different gene expressions due to

differences in DNA methylation. This is in line with twin and adoption studies from social science.

For example Turkheimer et al. (2003) show that a simple additive model structure is inappropriate

26 According to Almlund et al. (2011) there can be a kind of feedback between traits and situation since many situations
are a consequence of trait endowment earlier in life.

27 There are a number of studies evaluating adolescent mentoring programs, like the Big Brothers/Big Sisters (BB/BS)
and the Philadelphia Futures Sponsor-A-Scholar (SAS) program. The BB/BS assigns educated volunteers to youths
from single parent households for the purpose of providing surrogate parenthood or at least an adult friend. Gross-
man and Tierney (1998) stress that meeting with mentors decreases the probability of initial drug and alcohol abuse,
exertion of violence, and absence from school. Moreover, the participants had higher grade points and felt more
competent in their school activities. SAS targets at public high school students and supports them in making it to
college by academic and financial support. Johnson (1996) reveals a significant increase in grade point average and
college attendance.
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to capture the complexity of the IQ generating process and that there are substantial interactions of

genes and environment. The fact that most empirical results from adoption studies promote genetical

factors as the main driving force of skill formation is due to the low share of low income families from

adverse environments in these samples. Personality and behavioral patterns also have a genetic and

an environmental component (see Bouchard and Loehlin, 2001) and the same pattern applies. For

instance, Caspi et al. (2002) reveal this relationship for psycho-pathologic phenomena like antisocial

behavior.28

When adulthood is attained in period T + 1, the disposable stock of human capital can be

regarded as the outcome of the acquired cognitive and noncognitive skills developed up to T in a

specification as in equation (1). Cunha and Heckman (2006) present estimates of the parameters of

equation (1) and directly quantify the degrees of self-productivity and complementarity. The data they

use comprise measures of cognitive ability, temperament, motor and social development, behavioral

problems, and self-confidence of the children and of their home environment. The results yield strong

evidence for self-productivity within the production of the respective skill types.29 The cross-effects

are weaker. Complementarity is evident for both, cognitive and noncognitive stocks, but somewhat

higher in case of the former. The average parameter estimate is slightly below zero which indicates

that the production technology could be approximated well by a Cobb-Douglas function. Slightly

altered estimation strategies yielding similar results are provided by Cunha and Heckman (2008) and

Cunha et al. (2010).

The estimation approaches used to quantify the parameter values in equation (1) yield factor

loadings that represent the roles played by different environmental resources in the skill formation

process. According to these results, indicators that relate to cultural and educational involvement,

like having special lessons or going to the theater, are of particular importance. Family income

however is less important. As Currie (2009) suggests, parents obtaining higher labor market returns

may invest less time in children and are only partially able to compensate this neglect by provision

of substituting goods. The properties of the skill formation discussed above, suggest that schooling,

in particular post-primary schooling, is a minor determinant compared to investments outside school.

The major foundation is already set in preschool age. Additional data constraints even bolster these

effects. As discussed by Todd and Wolpin (2007) in context of education production functions it

is generally difficult to find data that combine rich information on schooling and home resources.

Moreover, there is always less variation in more aggregated indicators for schooling resources. This

could lead to additional attenuation of the estimated effects.

28 A further discussion including additional empirical evidence is given in Heckman (2008) and Cunha and Heckman
(2009).

29 The identification strategy is in spirit of the factor structure models discussed in section 7. It allows for endogenous
choice variables and measurement error in indicators.
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5 Personality Traits and Economic Preference Parameters

It is clearly intuitive to assume a relationship between the expressions of cognitive and noncognitive

skills and economic preference parameters. For instance, the patience of an individual is arguably

related to his or her time preference. As Borghans et al. (2008a) summarize, from an economic point

of view it is meaningful to relate personality concepts to common parameters like time-preference, risk-

preference, and leisure-preference, but also to the more recently studied concepts of social preferences

like altruism and reciprocity (Fehr and Gächter, 2000). Relating traits and preference parameters in

a causal way requires a notion of the underlying theory. Due to the complexity of human thoughts

and behavior, such a theory is difficult to establish. Even without consideration of traits, finding a

functional form for a utility function that accounts for all facets of social preferences observed in the

lab is tedious (see Fehr and Schmidt, 2006, for a discussion). Following Almlund et al. (2011) and

their various model suggestions, from an economic point of view personality traits can be construed

as preferences as well as constraints. Formally, a utility maximizing agent under uncertainty could be

characterized by the following implicit representation:

E [U(x,Pθ,e, e∣ψθ)∣Iθ] s.t. I + r′Pθ,e = x′w and ∑ e = ē (2)

All variables with θ as a subscript constitute a possible pathway of influence of traits on the

economic representation of an agent’s response function. E [U(⋅)∣Iθ] is the expected utility for the

arguments x, P (⋅), and e given the information set I which in turn depends on traits. All arguments

are vectors: x is a vector of consumption goods and e is the vector of effort devoted to all possible tasks

and the sum of its elements cannot exceed ē.30 Since effort can cause a kind of “good feeling” after

endeavor, it also enters the utility function directly. In addition, it is a complement for the vector of

available traits θ in the vector function for productivity P (θ, e), which maps θ and e into outcomes for

all possible tasks. P (⋅) is the intangible pathway of productivity into utility, whereas the tangible one

is through consumption goods. The goods with price vector w are funded by income not depending on

productivity for tasks I and the income from performing tasks for task-specific rewards r. Traits can

also be a constraint in another sense than in equation (2). Dohmen et al. (2007) discuss the potential

for confounding due to observational equivalence of differences in actual preferences and differences

in capabilities required to perform the task that is used to measure the preferences. In terms of

equation (2) this means it is difficult to disentangle ψ and I. As an example, consider the degree of

numeracy that affects the comprehension of an investment decision used to assess time preference.

Borghans et al. (2008b) examine potential links between noncognitive traits and responsive-

ness for incentives in answering cognitive tests using primary data for a sample of Dutch students.

30 Think of effort as a representation of the situational parameters discussed in the psychologic literature above.
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The responsiveness is captured by common economic preference parameters. They find a negative

correlation between the Internal Locus of Control and the personal discount-rate and similarly a cor-

relation between emotional stability and risk-preference. Both appeal intuitively plausible. Dohmen

et al. (2008) use data from the German Socioeconomic Panel (SOEP) to reveal possible relationships

between Big Five personality traits, measures of reciprocity, and trust. All Big Five factors exert

significant positive influence on positive reciprocity, especially conscientiousness and agreeableness.

Moreover, neuroticism promotes trust and negative reciprocity.

Given the complexity described above, studies which rely on correlations between skills and

economic preference parameters provide only vague and sometimes inconclusive evidence. Generally,

questionnaire assessments of preference parameters are likely to suffer from a number of potential

problems. The observed preferences are either simply stated, i.e., on hypothetical items, or if revealed,

only within a non-market setting. Yet, it is ambiguous whether preferences for artificial and real

market settings are identical (see Kirby, 1997, and Madden et al., 2003, for two opposing views). If an

experimental assessment embodies real rewards, choosing the respective payoffs binds the participant

to maintain his or her choice. In a real life setting, however, the individual also has to withstand other

opportunities, and there may be a higher degree of uncertainty for future payoffs. It proves difficult to

partial out time preference from risk-aversion (see Borghans et al., 2008a, and the literature they refer

to). Moreover, measures of time preference may be subject to framing effects. Non-linearities with

respect to the payoffs are also likely and limit the external validity of experimental findings. There

are numerous other inconsistencies which indicate the premature status of this research field.31

6 Direct and Indirect Outcomes of Personality Traits

Until recently, noncognitive skills have not played an important role in explaining labor market out-

comes. Bowles et al. (2001) argue that early explanations of wage differentials like disequilibrium rents

(Schumpeter, 1934) and incentive effects (Coase, 1937) can be explained in light of personality traits.

In the sense of these models, the respective traits are construed as not being productivity enhancing.

They stress that it is important to distinguish different scopes of the labor market. Two illustrative

examples demonstrate this: in a working environment where monitoring is difficult, behavioral traits

like truth telling may be higher rewarded than in other cases. Considering a low-skill labor market,

docility, dependability, and persistence may be highly rewarded, whereas self-direction may generate

higher earnings for someone who is a white collar worker. Besides different rewards in different occu-

pation segments of the labor market, people also opt in these occupations owing to personality (see

Antecol and Cobb-Clark, 2010). Heinicke and Thomsen (2011) show that returns to noncognitive skills

31 For further discussio see Almlund et al. (2011).
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within occupational groups provide a mixed signal due to group-specific returns and self-selection.

It is difficult to determine if certain traits increase wages by affecting occupational choice, pro-

ductivity, or if market mechanisms additionally induce wage premiums for certain traits. On a more

general level Borghans et al. (2008c) show that supply and demand for workers more or less endowed

with directness relative to caring create a wage premium for directness. Another explanation is that

the society solidifies certain expectations about appropriate traits and behavior, and rewards or pun-

ishes individuals who deviate from them in either direction. This interpretation is fostered by the

results of Mueller and Plug (2006) for the gender wage gap in the US. They show that particularly

men obtain a wage penalty for Big Five agreeableness, a trait stronger associated with women.

Our aim in what follows is to give a very short review of empirical studies dealing with predictive

power of noncognitive skills. Tables 3 and 4 provide characteristics of a selection of studies but are

far from comprehensive. Borghans et al. (2008a) and Almlund et al. (2011) give a more widespread

overview of empirical evidence, including the literature from other disciplines.

< Include Tables 3 and 4 about here >

Irrespective of how the traits are valued in the market, noncognitive skills explain differences

in the earnings structure well. Heckman et al. (2006) provide empirical evidence on the effects of

noncognitve skills constituted by self-control and self-esteem on log hourly wages. Especially for the

lower deciles of the distribution of latent skills a strong influence is revealed. Flossmann et al. (2007)

reproduce these results for German data.

< Include Figure 1 about here >

Figure 1 compares the net effects of an increase in noncognitive abilities on log wages obtained

in the two studies. Particularly for the upper and lower deciles of the distribution the marginal effect

of an increase in noncognitive skills is higher. Both results provide an important indication on how

personality traits affect earnings.

Noncognitive (and cognitive) abilities do not solely affect wages, but educational outcomes as

well. Presumably, the major effects of abilities on wages are mediated through the endogenous school-

ing choice (see Piatek and Pinger, 2010). The structural approach pursued by Heckman et al. (2006)

and Flossmann et al. (2006) accounts for this issue. Besides wages in general Heckman et al. (2006)

also assess the effects of cognitive and noncognitive abilities on wages given certain levels of schooling

and on the probability of graduating at certain levels. For instance, for males, noncognitive skills

hardly affect the probability of being a regular high school dropout but rather promote the probabili-

ties of being a GED32 participant, of graduating from high school, of graduating from a two year, and

32 GED stands for General Educational Development and is a test that certifies college eligibility of US high school
graduates.
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from a four year college.

Hence, it is of particular interest to identify which traits affect educational performance and

along with it schooling choices. Duckworth and Seligman (2005) show that self-discipline even exceeds

the explanatory power of IQ in predicting performance at school. They define self-discipline as a

hybrid of impulsiveness and self-control. Highly self-disciplined adolescents outperform their peers on

all inquired outcomes including average grades, achievement-test scores, and school attendance.

The choice of self-discipline as the noncognitive skill of interest is related to the findings by

Wolfe and Johnson (1995). They assess which measure is most eligible for predicting grade point

averages (GPA) in a sample of 201 psychology students. The outstanding GPA predictors are measures

displaying the level of control and items closely related, like self-discipline. Thus, besides cognitive

skills, noncognitive skills play an equally important role in affecting schooling choices or years of

schooling, respectively.

Since personality is malleable throughout adolescence and IQ is fairly set earlier in life, the

inverse causation also applies. This induces the aforementioned simultaneity. Hansen et al. (2003)

determine causal effects of schooling on achievement tests. They reveal that an additional year of

schooling increases the Armed Forces Qualification Test (AFQT) score by 3 to 4 points. Achievement

tests provide a mixed signal constituted of IQ and personality traits (see Borghans et al., 2011), where

IQ is relatively stable from school age on.

Noncognitive abilities also exhibit an intense influence on social outcomes. Closely related to

the previously discussed wage achievements are employment status and mean work experience which

are likewise substantially affected by the personality.33 Further outcomes like the probabilities of

daily smoking, of incarceration, and of drug abuse are examined and are significantly determined by

noncognitive skills, albeit to different extents.

7 A Brief Guide to Empirical Analysis

This section intends to give a brief overview on the eligibility of different estimation strategies to

deal with the specifics of personality test scores. The previous sections on formation of personality

traits and measurement suggest various sources for simultaneity and measurement error. Therefore,

one has to scrutinize the data generating process very carefully before using measures obtained from

test scores for empirical analysis. There are occasions when measured traits are employed as an

outcome variable, usually program evaluation or longitudinal settings, which aim at examining the

role of environmental influences on the formation processes. As discussed by Cunha and Heckman

(2008), the multiplicity and endogeneity of investments that foster the development of personality

33 See also Heckman et al. (2006) for a detailed discussion and magnitudes.
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traits causes a lack of instruments. To overcome the resultant econometric problems one needs proper

randomization of investments or structural approaches in the spirit of those employed to generate the

results referred to in section 4. Most research questions dealing with noncognitive skills and their

relation to human capital outcomes, however, incorporate them as explanatory variables. In this

case the threat to parameter consistency of standard regression approaches is more severe. Again,

instrumental variable methods are a self-evident response to various kinds of endogeneity problems,

but as with the endogeneity of investments in the formation process, it is difficult to find a sufficient

number.34 As an alternative eluding both problems, one can try to correct standard estimates and

avoid settings with obvious simultaneity, or one can use latent variable approaches imposing some

additional structure.35 Below, we will elaborate on both approaches.

7.1 Adjusted Regression

The virtue of measurement error correction, as opposed to all approaches presented in what follows,

is its simplicity. When it comes to more complex structures, including simultaneity, factor approaches

are more due. The simplicity of estimation comes at another cost: relatively precise information about

the magnitude of measurement error, i.e. reliability, is required. Such a source of information can be

reliability measures from classical test theory, which, however, impose very strong assumptions on the

relation between true and measured score. For instance, Cronbach’s alpha requires scaling parameters

(or slope parameters in regression terms) between measured and true score to be equal across items

in order to yield a consistent reliability estimate (see Bollen, 1989, for discussion). For most measures

this assumption does not hold and reliability is therefore underestimated. Nonetheless, given a decent

estimate of the share of measurement error in overall variation of the item sum, it is straightforward

to adjust least square estimates by weighting the variation in the erroneous explanatory variables.36

Unfortunately, accounting for simultaneity still requires proper instruments in this set up. To resolve

this problem structural approaches with latent variables are more common.

34 In conjecture with the problem of attaining the just-identified case, the existence of weak instruments entails further
complications.

35 We follow the definition of Aigner et al. (1984) for latent variables. According to their definition, as opposed to
unobserved variables, latent variables cannot be represented as a linear combination of observed variables.

36 In the univariate case one would simply use

β̂A = ∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 − nV ar(error) .
Using an arbitrary coefficient of reliability ρ this expression can also be written as

β̂A = ∑n
i=1(xi − x̄)(yi − ȳ)
ρ∑n

i=1(xi − x̄)2 .

The multivariate case is derived by Schneeweiss (1976) among others.
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7.2 Methods based on Factor Analysis

Latent variable models are a generalization of error-in-measurement (EIV) models in that in either

case the observed personality score is a manifestation of the latent true score (see Aigner et al., 1984).

However, the aim of the EIV literature is somewhat different. It primarily intends to obtain consistent

estimates when some explanatory variables are erroneous. In contrast, latent variable approaches

also aim at estimation of parameters that represent the relationship between latent factors and ob-

served response variables.37 Most common in estimation are different kinds of maximum likelihood

approaches. Parameters which designate the model are referred to as structural parameters, whereas

those parameters which vary over observation (like individual latent skills) are denoted incidental

parameters.

In EIV models it is common to maximize the conditional likelihoods iteratively or to integrate

out the latent factor to obtain a closed form expression. In case of the former, simultaneous ML

estimation of structural and incidental parameters can cause severe consistency problems (see Neyman

and Scott, 1948).38 In case of maximizing the marginal likelihood one has to impose mostly overly

restrictive distributional assumptions on the latent factors (see Heckman et al., 2006). However, both

approaches provide no inference about the latent factors.

In order to overcome this, traditional factor analysis uses other estimation strategies. Given

some identification restrictions on the latent factors and their factor loadings (see, e.g, Jöreskog, 1977,

and Aigner et al., 1984, for discussion) latent factor structure models can identify both, structural and

incidental parameters.39 Moreover, depending on the number of latent factors, a sufficient number

of measurement equations and some knowledge about the structure between the latent factors and

other observables is required.40 The LISREL approach by Jöreskog (1977) estimates the parameters

of the complete model by minimizing the discrepancy between the sample correlation matrix and the

correlation matrix imputed by the model. This can be attained by different estimation techniques

such as maximum likelihood or least squares (see Bollen, 1989, for a comparison of the different

approaches with regard to consistency and efficiency). Generally, the scale for the loadings is set

by standardizing all observables in the system. Hence, the estimates are only interpretable to a

37 To illustrate the close relation, consider the following notations for an erroneous explanatory variable and a simple
factor model with x representing the observed manifestation of a latent factor θ and an unexplained residual ε.

x = λθ + ε
x = θ + ε

The obvious difference is that factor analysis is interested in identification of both, factor loadings λ and latent
factors θ.

38 Baker and Kim (2004) discuss assumptions for iterative estimation to resolve this problem.
39 It is common in standard factor analysis to assume uncorrelated factors. However, there are infinite combinations of

factors and loadings that are in a sense observationally equivalent. The standard approach to warrant identifcation
is to fix the variances of the common factors to unity and to impose sign restrictions on the factors.

40 This number can be reduced if the underlying theory justifies to fix some parameters or to introduce identities
among parameters.
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limited extent. One possible way to overcome this limitation is to simulate the model with different

specifications of standardized observables and latent factors (see Piatek and Pinger, 2010). A more

severe problem in classical factor structure models, however, is the strong distributional dependence

of the results. Tractability of the discrepancy function even requires normality assumption for the

observables. If these assumptions are not valid for the population, the estimates are inconsistent.41

Another drawback is that classical factor structure models require linear responses in measurements

and outcome equations. The critical assumption for this functional form to apply is that the responses

are linear in latent traits, which is very restrictive. The restrictiveness increases as the item scales get

smaller.

Carneiro et al. (2003) discuss identification assumptions of more general types of factor struc-

ture models accounting for multiple factors and different types of link functions for the response

variables. They show how identification of the factor loadings can be established by exploiting co-

variance structures in conjecture with some additional restrictions. Identification is eased by using

dedicated measures, that is, a response variable per latent factor that is only determined by this

particular factor. This step even allows for dropping the independence assumption between factors.42

Carneiro et al. (2003) solve the problem of switching signs causing observationally equivalent struc-

tures of factors and loadings by normalizing a particular factor loading in the measurement system to

unity. Given a subtle choice of this normalization one can anchor the estimated parameters into ap-

propriate real world outcomes (see, e.g., Cunha and Heckman, 2008) and thus assign an interpretable

metric to them. These, along with some further independence and support conditions discussed by

Carneiro et al. (2003), finally establish identification of the factor model. When choosing a measure-

ment construct one should always consider that increasing the dimensionality dramatically raises the

required number of measurement equations. Therefore, some careful exploratory analysis should be

conducted in advance.

Extensions of discrepancy function estimation described above for ordered discrete response

variables are available (see Jöreskog and Moustaki, 2001, for an overview). However, these meth-

ods become more intricate as the number of factors and, therefore, the number of discrete response

equations increases. The same holds for most of the suitable frequentist approaches like Expecta-

tion Maximization (EM, Dempster et al., 1977) or Maximum Simulated Likelihood (MSL, Gouriéroux

and Monfort, 1991). More flexible approaches drawing on Bayesian techniques, particularly Markov

Chain Monte Carlo methods (MCMC), have evolved in the last years due to progress in computational

speed.43 The most convenient properties for estimation of factor structure models for latent abilities

41 As shown by Heckman et al. (2006), the distributions of latent cognitive and noncognitive skills are non-normal.
42 In common factor analysis this factor rotation problem prohibits identification without additional assumptions.
43 Bayesian estimation builds on the notion to enhance the imposed assumptions on the data generation process

(which is the likelihood in common reading) by prior beliefs about the parameter distribution. Applying Bayes’
Theorem yields a posterior distribution that unifies the assumptions made on the data generating process and the

21



has the Gibbs sampler (Geman and Geman, 1984) and its extension due to Tanner and Wong (1987),

the so-called Data Augmentation (see also van Dyk and Meng, 2001). It uses a simple contrivance for

ease of computation. Instead of relying on the posterior of the parameters conditional on observable

responses, latent responses, and latent factors for estimation, it explicitly models the posterior for

parameters and latent elements conditional on observed data. This is achieved by integrating over the

product of the latent factors, latent responses and the initial posterior conditional on both. Since it is

only a reformulation, the marginal distributions implied by the augmented distribution have to coin-

cide with the original posterior. The procedure is a two step version of the Gibbs sampler. First, the

latent components are drawn from their distributions conditional on data and parameters within the

so-called imputation step and then draws for the parameters conditional on those from the imputation

step are conducted in a posterior step. The algorithm cycles between imputation and posterior step

until convergence.44 A very precise summary for practitioners along with some refinements is provided

by Piatek (2010).

Given covariance structures, only the first two moments of the distributions of latent factors

can be identified and therefore is not sufficient for relaxation of normality assumptions. Carneiro et

al. (2003) show conditions under which the complete distribution of a latent factor is nonparametrically

identified.45 The imputation step can then be sampled from a mixture of normals which provides

enough flexibility to approximate any other distribution (see Diebolt and Robert, 1984).46 Another

virtue of the Data Augmentation Algorithm is that the sampled results for the individual latent factors

can be stored after convergence. For a better illustration and interpretation of the results it is common

to use them to simulate the outcomes of interest for different percentile ranges of the latent factors

and, for instance, the mean of the observable variables (see Piatek and Pinger, 2010). This yields a

graphical representation of the results as shown in Figure 1.

unconditional parameter distribution (a comprehensive introduction to the topic is provided by Geweke, 2005).
Formally, this implies

p(Θ∣data) = f(data∣Θ)f(Θ)
f(data) ∝ L(data∣Θ)f(Θ),

where Θ is a set of parameters, p(Θ∣data) is the posterior, L(data∣Θ) is the data generating process or the Likelihood,
and f(Θ) is the imposed prior distribution of the parameters. The outstanding virtue of this approach is its ability
to deal with lacking closed forms. Estimates from the posterior distribution can be obtained in different manners.
One possibility is to compute marginal distributions for the parameters of interest by means of numerical or Monte
Carlo integration and obtaining the respective moments of the marginal as a spinoff. Another way is to directly
simulate draws from the posterior. Both methods become increasingly complex as the dimensionality of the posterior
rises. This is where MCMC algorithms come into play (Gilks et al., 1996, provide a detailed treatise of the topic).
MCMC algorithms sample from chains of conditional distributions more simple in nature than the posterior. The
simulation finally converges to draws from the joint posterior. The resulting chains fulfil the Markov chain condition
in that transition probabilities between states only depend on the current state and that after a sufficient number
of iterations the probability of being in particular state is independent of the initial state (stationarity).

44 In that sense, Data Augmentation is the Bayesian equivalent to EM algorithm.
45 Particularly, the identification requires combinations of continuous and discrete response variables.
46 The implementation is also discussed in Piatek (2010).
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7.3 Item Response Theory

Another strand of the psychometric literature which arose from classical test theory is item response

theory (IRT, see Sijtsma and Junker, 2006, for a historical classification). It traces back to the work of

Lazarsfeld (1950) and Lord (1952). The breakthrough contributions in the psychometric field are by

Lord and Novick (1968) and Samejima (1952). The basic notion that IRT exploits is the probabilistic

relation between latent ability and categorical responses by analyzing the pattern across observations

and items. The most convenient way to illustrate IRT is to consider dichotomous items. If abilities are

positively related to the response, the response probability is usually modeled by means of a normal

or logistic cumulative density function, the so-called item characteristic curve (ICC).47 In terms of the

normal density the mean provides the scale location, which in some sense is the difficulty, whereas the

variance determines the discriminatory power of the item. The extension to polytomous responses is

analogous. The ICC for the lowest response on the scale has an inverted shape, whereas the ICC for

the highest response has the usual CDF form. The scale realizations in between exhibit a decreasing

response probability towards both bounds of the scale and therefore have a bell shape with probability

mass at different locations. A more consistent functional form for estimation is obtained by treating

different permutations as dichotomous and cumulate the ICCs accordingly. For m response categories

this yields m − 1 non-intersecting and monotonic characteristic curves of the usual shape.

The aim is then to estimate the parameters determining the shape of the ICC, i.e., the structural

parameters, and the incidental parameters representing the latent abilities of the assessed individuals.

Given some independence assumptions traditional estimation approaches use an iterative maximum

likelihood procedure cycling between conditional likelihoods for incidental and structural parameters

(see Birnbaum, 1968). As pointed out by Neyman and Scott (1948), simultaneous ML estimation

of structural and incidental parameters can lead to severe inconsistency. Eluding these problem

requires assumptions only valid for models with a discrimination parameter fixed at unity, so-called

Rasch Models (see Andersen, 1972). Enhancements in computational speed have led to more robust

strategies like the Bock and Aitken solution (Bock and Aitken, 1981) which uses EM over numerically

integrated marginal likelihoods.48

The previous techniques, however, impose several parametric assumptions to enforce properties

like monotonicity and non-intersection. There are more flexible contributions from the econometric

literature which rely on semiparametric estimation approaches.49 Conditions for this kind of model to

be feasible are established by Spady (2006) and comprise monotonicity, stochastic dominance and local

47 For the opposite relation the survival function can be used.
48 See Baker and Kim (2004) for a discussion of further methods. Common Item Response Models can be formulated

as Generalized Linear Latent and Mixed Models (GLLAMM) and estimated accordingly (see, Rijmen et al., 2003,
Rabe-Hesketh et al., 2007, for a detailed treatise).

49 Following the notation of Chen (2007) the applied methods are semi-nonparametric. See also Härdle et al. (2004)
and Horowitz (2009) for a comprehensive overview of such techniques.
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independence assumptions (i.e. independence of item responses conditional on the latent attitude).

Suggestions for the implementation of potential estimation procedures are provided by Spady (2007)

and Weiss (2010).50 The basic notion is to exploit the joint empirical distribution of item responses to

obtain the item characteristic curves.51 As opposed to the fully parametric IRT approaches discussed

above, the semiparametric version only imposes a specific distribution for the latent trait conditional on

background information and approximates the response functions nonparametrically. The most direct

way is to use a Sieve Maximum Likelihood strategy established by Grenander (1981).52 Alternatively,

the response functions can be approximated via an Exponential Tilting procedure (see Barron and

Sheu, 1991).53 Given a set of items the estimates can be used to estimate expected values (or other

moments) of the latent ability location on a continuum like the interval [0,1].54 If an interpretable

scale is chosen the estimated latent ability can be directly employed for further regression analysis.55

8 Concluding Remarks

This paper has reviewed the recent influential literature that considers the role of noncognitive skills

as a determinant of human capital. In addition, a selection of the empirical evidence that highlights

the determinism of crucial achievements and outcomes as a result of these skills has been briefly sum-

marized. Moreover, we have discussed the notion of noncognitive skills in light of the relevant psycho-

logical literature. In terms of measuring noncognitive skills, empirical research in economics strongly

benefits from psychometric concepts, and economists should be aware of the underlying assumptions.

The commonly used approaches to measure personality traits are not completely conclusive. On the

one hand, overall measures tend to be too general in that they veil important variation, whereas on the

50 Conditional independence also implies that background characteristics affect the response probabilities only through
latent abilities.

51 Formally this means that the observed pattern is assumed to be generated by the following ML setup:

p(r1, r2, . . . , pm∣X) = ∫ p1(r1∣θ)p2(r2∣θ) . . . pm(rm∣θ)f(θ∣X)dθ,
where pi (i = 1, . . . ,m) is the response probability for the ith item, θ is a scalar latent skill, and X is a set of
background characteristics.

52 Sieve methods can be extended to other estimators than ML. Without distributional assumptions the parameter
space for the response functions is infinite and maximization of the criterion function is therefore infeasible. The
Method of Sieves defines a series of approximation spaces in order to reduce dimensionality of the previously infinite
dimensional parameter space. For concave optimization problems with finite dimensional linear sieve spaces, this
technique is also denoted series estimation (see Geman and Hwang, 1982, Barron and Sheu, 1991, and Chen, 2007
for technical overview). Appropriate base functions are orthogonal polynomials, trigonometric polynomials and
shape-preserving splines, just to mention a few (see Härdle, 1994, and Chen, 2007).

53 The tilting procedure for density approximation is part of the computationally feasible optimization problem of the
Exponential Tilting estimator discussed by Kitamura and Stutzer (1997) and Imbens et al. (1998).

54 Applying Bayes’ Theorem, the distribution providing the expectations can be computed as follows:

f(θ∣r,X) = f(r, θ∣X)
p(r∣X) = p1(r1∣θ) . . . pm(rm∣θ)f(θ∣X)

∫ p1(r1∣θ)p2(r2∣θ) . . . pm(rm∣θ)f(θ∣X)dθ ,
where the numerator uses the distribution imposed on θ conditional on X together with the estimates for the item
response functions and the denominator is its integral obtained by numerical integration.

55 See Spady (2007) for simultaneous estimation strategies.
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other hand, measures of specific personality traits may put the researcher to a hard choice regarding

their adequacy. As shown, psychometric coefficients that assess the eligibility of constructs all have

their own limitations.

With regard to formation and stratification of skills, the role and the timing of educational

and parental investments have been proven to be crucial in the empirical literature. Regardless of the

particular effects, virtually all empirical studies suggest a joint conclusions: early investments are most

crucial, but nonetheless, should be complemented later on. Early neglect, on the other hand, cannot

be compensated in later stages of life without prohibitively high costs. Hence, in terms of support for

low skilled or disadvantaged individuals the focus should be on early preschool age. Given this pattern

for the intertemporal allocation of resources, the role of schooling investments is rather subordinate.

The Cunha-Heckman model formalizes this process by means of a dynamic production function and

also provides parameter estimates. Though the estimation approach accounts for measurement error,

the insights on pattern and transmission of parental investments are far from definite. Attributing

parental traits to preferences like altruism that allow to model the investment behavior of parents into

their children is a complex but desirable aim.

As has been briefly discussed, noncognitive skills are important determinants of several outcomes,

like educational achievement and labor market success. The revealed pattern for different personality

traits are relatively unequivocal across studies. However, yet it is mostly unclear in how far the

compound of productivity enhancement, occupational sorting, wage premia due to social desirability,

and self-selection affects the results.

Personality measures applied within an econometric framework tend to suffer from measurement

error, simultaneity bias, and spurious influences by other unobservables. Due to these issues, the

relation between personality traits and economic preference parameters is still patchwork and leaves

many unanswered questions. Drawing inference on correlations between traits and preferences is

a necessary first step but provides only cursory results. A better theoretical understanding of the

pathways between both concepts is inevitable in order to obtain more conclusive insights. As a

consequence, empirical analysis urges adequate methods. The literature reviewed in Section 7 has

given an introductory glance on appropriate factor analytic methods and those based on Item Response

Theory.

The summarized findings of this very recent literature enrich the traditional view on human

capital in economics by considering noncognitive skills as an additional determinant of lifetime labor

market and social outcomes. Moreover, the essential role of infancy and early childhood in producing

these outcomes is accentuated. This provides new policy implications. First, good parenting is (and

will remain) the major source of educational success; this is only indirectly driven by family income.

Therefore, intervention policies should be adopted already at preschool age and should primarily focus
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on home environment. Second, the time interval for sufficient governmental influence is more limited

in case of cognitive skills than for noncognitive skills. The malleability of personality throughout

adolescence and beyond provides a powerful and instantaneous policy tool. Nonetheless, this is just

a crude guidance originating from an evolving literature. Both, the optimal timing and intensity for

reducing upcoming and existent inequalities remain still to be determined.
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Jöreskog, K. (1977): “Structural Equation Models in the Social Sciences: Specification, Estimation

and Testing,” in Applications of Statistics, ed. by P. R. Krishnaih, pp. 265–287. Elsevier B.V.,

Amsterdam, North Holland.
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Table 1: Personality Models and Sub-Factors

Inventory Factors Lower-order Factors

Big Five (Costa and
McCrae, 1992)a

Openness to Experience Fantasy, Aesthetics, Feelings,
Actions, Ideas, Values

Conscientiousness Competence, Order, Dutifulness,
Achievement Striving, Self-Control/
Self-Discipline, Deliberation

Extraversion Warmth, Gregariousness,
Assertiveness, Activity, Excitement
Seeking, Positive Emotions

Agreeableness Trust, Straightforwardness,
Altruism, Compliance, Modesty,
Tender-Mindedness

Neuroticism Anxiety, Vulnerability, Depression,
Self-Consciousness, Impulsiveness,
Hostility

MPQb (Tellegen, 1985) Negative Emotionality Stress Reaction, Alienation,
Aggression

Constraint Control, Traditionalism, Harm
Avoidance

Positive Emotionality Achievement, Social Closeness,
Well-Being

Big Three (Eysenck,
1991)

Neuroticism Anxious, Depressed, Guilt-Feeling,
Low Self-Esteem, Tease, Irrational,
Shy, Moody, Emotional

Psychoticism Aggressive, Cold, Egocentric,
Impersonal, Anti-Social,
Unempathic, Tough-Minded,
Impulsive

Extraversion Venturesome, Active, Sociable,
Carefree, Lively, Assertive,
Dominant

JPIc (Jackson, 1976) Anxiety, Breadth of Interest, Complexity, Conformity,
Energy Level, Innovation, Interpersonal Warmth,
Organization, Responsibility, Risk Taking, Self-Esteem,
Social Adroitness, Social Participation, Tolerance, Value
Orthodoxy, Infrequency

Big Nine (Hough, 1992) Adjustment, Agreeableness, Rugged Individualism,
Dependability, Locus of Control, Achievement, Affiliation,
Potency, Intelligence

italic: Affiliation of facet is still in debate (see Bouchard and Loehlin, 2001).
a see also Costa and McCrae (2008)
b Multidimensional Personality Questionnaire.
c Jackson Personality Inventory.
Source: Bouchard and Loehlin (2001) and own inquiry.
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Figure 1: Net effect of noncognitive skills on log wages for 30-year old males and females in Germany
and the United States. Upper panel: males (a) and females (b) in Germany. Lower panel: males (c)
and females (d) in the United States. Sources: Flossmann, Piatek, and Wichert (2007) and Heckman,
Stixrud, and Urzua (2006).
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