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In ride-sharing systems, platform providers aim to distribute the drivers in the city to meet current and

potential future demand and to avoid service cancellations. Ensuring such distribution is particularly chal-

lenging in the case of a crowdsourced fleet, as drivers are not centrally controlled but are free to decide where

to reposition when idle. Thus, providers look for alternative ways to ensure a vehicle distribution that ben-

efits both users and drivers, and consequently the provider. We propose an intuitive means to improve idle

ride-sharing vehicles’ repositioning: repositioning opportunity heatmaps. These heatmaps highlight driver-

specific earning opportunities approximated based on the expected future demand, fleet distribution, and

location of the specific driver. Based on the heatmaps, drivers make decentralized yet better-informed repo-

sitioning decisions. As our heatmap policy changes the driver distribution, we propose an adaptive learning

algorithm for designing our heatmaps in large-scale ride-sharing systems. We simulate the system and gen-

erate heatmaps based on previously learned repositioning opportunities in every iteration. We then update

these based on the simulation’s outcome and use the updated values in the next iteration. We test our

heatmap design in a comprehensive case study on New York ride-sharing data. We show that carefully

designed heatmaps reduce service cancellations therefore revenue loss for platform and drivers significantly.

Key words : mobility-on-demand, vehicle repositioning, crowdsourced transportation, heatmap, stochastic

dynamic decision making, adaptive learning

1. Introduction

The trend of ride-sharing is unbroken. Services like UberXShare

(https://www.uber.com/us/en/ride/uberpool) and Berlkönig (https://www.berlkoenig.de) offer

convenient and affordable services at low costs. In these systems, ride-sharing users spontaneously

submit transportation requests online, are picked up a short time afterward, and driven to their

destination, while possibly sharing part of their ride with other users. In some cases, it may not

be possible to provide a sufficient level of service because no driver from the ride-sharing fleet is
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currently available in the vicinity of the user, creating high waiting times. Service cancellations due

to insufficient levels of service lead to loss of revenue and customer dissatisfaction. Thus, service

providers aim for a good distribution of the drivers in the city to meet current and potential

future demand.

The tools for ensuring such distribution depend on the type of service provider. Services associ-

ated with public transport like Berlkönig as well as some private providers own a fleet of employed

drivers and, therefore, can make repositioning decisions centrally. Since the future demand is uncer-

tain, efficient repositioning decisions are a challenging task on their own, even if they can be made

centrally (Pouls, Meyer, and Ahuja 2020). Other providers such as UberXShare crowdsource trans-

portation for their ride-sharing services to private individuals that are paid on a per-job basis. In

that case, drivers are not controlled by the service provider directly but are free to decide where

to reposition in the city when unoccupied. This is an additional challenge, as decentralized reposi-

tioning likely leads to inconvenience for users and drivers. For example, many drivers may prefer

waiting in the city center where new requests are more likely to occur, which may lead to an

overflow of resources, while there is a driver shortage at other locations. This means poor service

availability for users in other areas of the city, and fewer earning opportunities for the many drivers

in the city center. Another challenge with crowdsourced drivers is that they are reluctant to follow

directions by the platform if they do not understand them (Möhlmann et al. 2020). Thus, service

providers look for alternative and intuitive ways to ensure a good distribution of crowdsourced

drivers that benefits users, drivers, and the provider.

In this paper, we propose an intuitive means to improve the repositioning of unoccupied vehicles

in ride-sharing systems: Repositioning Opportunity Heatmaps (ROH). These heatmaps highlight

driver-specific earning opportunities, approximated based on the travel time to areas with a short-

age of drivers to satisfy the expected demand in the near future. In the heatmaps, repositioning

locations with high expected opportunities are shown in green shades while repositioning locations

with low expectations are shown in red shades. Both shades can have different intensities, e.g.,

dependent on the relative opportunity volumes. Based on the heatmaps, drivers then make decisions

on repositioning in a decentral and independent manner. Ideally, heatmaps guide drivers intuitively

to increase service availability, reduce cancellations, and improve drivers’ earning opportunities.

Creating heatmaps is challenging for several reasons. As with centralized approaches, future

user demand is uncertain, therefore, the earning opportunities are unknown. Furthermore, showing

heatmaps changes the repositioning decisions of drivers in the system, which in turn may lead again

to too many or not enough drivers in certain areas. To address this issue, we propose an adaptive

learning algorithm for designing our heatmaps. In every iteration, we simulate the system and
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generate heatmaps based on previously learned opportunities. We then update the earning oppor-

tunities based on the simulation’s outcome and use the updated opportunities in the next iteration.

Eventually, the expected opportunities and therefore the heatmap design policy converges.

We test our heatmap design in a comprehensive case study on New York ride-sharing data with

200 drivers and around 6400 expected users per planning period. We show that carefully designed

heatmaps reduce service cancellations therefore revenue loss for platform and drivers significantly.

Furthermore, providing heatmaps to drivers does not only increase the average earnings per driver

but also reduces the volatility in earnings among the drivers. Even though an analysis of these

results is beyond the scope of this paper, such “fair” earnings might be an important factor for the

longer-term commitment of a driver to a platform. We also show that heatmaps not only lead to

a better but also more balanced distribution of service availability in the city, another important

factor for long-term user retention. Finally, we analyze how the adoption or denial of the heatmap’s

recommendations impact driver earnings locally and globally. The overall system performs best

when all drivers are relatively compliant, but results show that there is potential for and danger

of single drivers gaming the system. Our paper makes the following contributions:

• We investigate and define a new problem and formalize the corresponding sequential decision

process.

• We are among the first to introduce heatmaps for nudging crowdsourced drivers. We show

that heatmaps are a powerful, intuitive tool for the management of complex and dynamic systems,

which is likely applicable for other applications such as restaurant meal delivery.

• We present a large-scale, real-time decision policy based on adaptive learning with very limited

calculation efforts.

• We show that our policy is superior to a variety of benchmark policies and partially outper-

forms even state-of-the-art centralized repositioning policies.

• We provide a comprehensive computational study including valuable managerial insights on

central and decentral management of ride-sharing systems.

We begin with an overview of related literature in Section 2. The repositioning problem is

stated and formalized in Section 3. How we develop repositioning heatmaps by adaptive learning

is presented in Section 4. The experimental setup with modeling of compliant and non-compliant

driver behavior is discussed in Section 5. Computational experiments are reported in Section 6.

We conclude with final remarks in Section 7.

2. Related Literature

Our work addresses the management of crowdsourced drivers for ride-sharing services. In the

following, we will briefly discuss the (very limited) related work from crowdsourced transportation,

and then embed our work in the literature on ride-sharing optimization.
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2.1. Crowdsourced Transportation

Crowdsourced transportation service providers outsource jobs to private individuals, inducing cost

advantages for the service provider on the one hand, and flexible working hours and uncertain

earning opportunities for the drivers on the other hand. Uncertainty in crowdsourced transportation

plays a major role for service providers as well, as it is not clear when, where, and how many drivers

are available. Moreover, the freedom of choice of the drivers leads to further planning uncertainty,

since they decide on the acceptance of a job assignment and the execution of a repositioning

recommendation. Optimization in the face of these uncertainties is a major challenge that has

only recently come into the focus of transportation research. For a recent overview, we refer to

Savelsbergh and Ulmer (2022). The rather limited work in this area focuses on the uncertain

number of drivers being in the system (see, e.g., Dayarian and Savelsbergh 2020 or Ulmer and

Savelsbergh 2020) or hedging against drivers rejecting offered requests (see, e.g., Gdowska, Viana,

and Pedroso 2018 or Ausseil, Pazour, and Ulmer 2022).

Uncertainty in repositioning has not been explored much so far. One of the few works that address

repositioning under these conditions is Alnaggar (2021). Similar to our work Alnaggar (2021)

proposes using a heatmap to guide drivers, in their case, for crowdsourced last-mile deliveries. They

use a short-term demand forecast to derive global heatmaps with up to three different levels, for

systems with up to nine repositioning locations. We differ from their work as follows. First, we

consider the problem of ride-sharing with consolidation potential and tighter time commitments.

Second, our work differs in scale with hundreds of repositioning locations and drivers and thousands

of customers. Third, we propose heatmaps of continuous granularity designed for individual drivers.

2.2. Ride-Sharing

In the following, we present related work from ride-sharing, which suffers from an unbalanced

driver distribution due to spatial and temporal imbalanced demand (Jiao et al. 2021). Besides the

assignment of transport requests, imbalanced demand is one of the most considered challenges for

the efficient operation of ride-sharing services (Wang, Shim, and Wu 2019). In the following, we

examine the extent to which the literature for large-scale repositioning of unoccupied drivers in

ride-sharing services meets the requirements of a crowdsourced fleet (see Table 1) .

With regard to the unique requirements of crowdsourced fleets, four criteria have been identified

as particularly relevant: (1) Pursuing a system-wide balance between demand and supply in the

best interest of provider revenue and driver earning opportunities; (2) The balance is achieved by

supporting drivers in their decision about when and where to reposition; (3) The recommendations

include comprehensive information to enable well-founded decision making (no take it or leave it);

(4) Non-compliance is not penalized to ensure long-term driver satisfaction and therefore retention.
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Platform-wide
demand-supply balance

Supports drivers
in decision making

Indicates multiple
repositioning options

No discrimination against
inconvenient drivers/users

Pavone et al. (2012)

Queueing-based
√ √Zhang and Pavone (2016)

Sayarshad and Chow (2017)
Braverman et al. (2019)

Zhang, Rossi, and Pavone (2016)

Model
predictive control

√ √
Iglesias et al. (2018)
Wallar et al. (2018)
Pouls, Meyer, and Ahuja (2020)
Lei, Qian, and Ukkusuri (2020)
Li et al. (2021)

Wen, Zhao, and Jaillet (2017)

Reinforcement
learning

√ √ √
Holler et al. (2019)
Jiao et al. (2021)
Liu, Chen, and Chen (2021)
Xi et al. (2021)
Yu and Hu (2021)

Li et al. (2011)
Data-based

taxi guidance

√ √ √
Powell et al. (2011)
Yuan et al. (2011)

Bimpikis, Candogan, and Saban (2019)
Surge pricing

√ √ √
Guda and Subramanian (2019)
Hu, Hu, and Zhu (2021)

ROH Heatmaps
√ √ √ √

Table 1 Literature classification

The related approaches can be divided into five main streams: queueing-based, model predictive

control, reinforcement learning, data-based driver guidance, and surge pricing. In the following, we

briefly present the related work per category and highlight the relationship to our work.

We first consider queueing-based approaches and model predictive control, as they are similar

in their applicability for crowdsourced fleets. Queueing-based approaches for determining optimal

repositioning policies have been widely researched (e.g. Pavone et al. (2012), Zhang and Pavone

(2016), Sayarshad and Chow (2017), and Braverman et al. (2019)). Sayarshad and Chow (2017)

proved that these are also applicable for services of real-world size. Braverman et al. (2019) show

that, in addition to classical repositioning, the optimal routing for unoccupied vehicles in search of

a next passenger can be determined. Model predictive control typically builds on demand forecasts

combined with mathematical programming to solve the repositioning problem online periodically.

The first contribution in this direction comes from Zhang, Rossi, and Pavone (2016). Others like

Iglesias et al. (2018), Wallar et al. (2018), Pouls, Meyer, and Ahuja (2020) focus on large-scale

ride-sharing or shared rides. Lei, Qian, and Ukkusuri (2020) propose model predictive control to

train a neural network offline that allows for a quick repositioning policy prediction online. Li et al.

(2021) also propose a neural network but use it to improve the demand prediction within a model

predictive control approach. Although queueing-based approaches and model predictive control are

based on very different concepts of ride-sharing systems, they share the general assumption that

the system is controlled centrally and that drivers play no or only a minor role in repositioning

decisions. They are hence inapplicable for guiding individual drivers in a crowdsourced ride-sharing

system. In contrast, with the proposed heatmap, we offer a decision support tool at the request of

a driver that helps to make better-informed decisions on an individual basis.
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A different approach for repositioning in large-scale ride-sharing services that gained attention

in recent years is agent-based reinforcement learning (e.g. Wen, Zhao, and Jaillet (2017), Holler

et al. (2019), and Jiao et al. (2021)). In agent-based approaches, decentralized decision making

for individual drivers is considered instead of centralized decisions for the entire fleet. While Wen,

Zhao, and Jaillet (2017) focus on decentralized learning of a repositioning policy, Holler et al. (2019)

compare the benefits of both centralized and decentralized learning. Of particular interest for our

work are the results of Jiao et al. (2021). The results show that policies learned via reinforcement

learning can be transferred to the real world and are advantageous over the intuitive decisions

of drivers. It is further shown that driver collaboration is particularly relevant for large fleets.

Moreover, it is argued that driver repositioning may deviate from central recommendations, but

this has not been considered further in the experiments. Finally, recent contributions by Liu,

Chen, and Chen (2021), Xi et al. (2021), and Yu and Hu (2021) propose technical innovations for

reinforcement learning of repositioning policies.

As Jiao et al. (2021) have shown, reinforcement learning can be a good foundation for learning

recommendations for the repositioning of drivers. However, due to the nature of reinforcement

learning, the recommendations as described in the above papers are limited to the driving direction

to be taken or the neighboring area to be approached. Furthermore, these are overall black-box

approaches. Drivers therefore only have the choice of complying with recommendations or mak-

ing completely unsupported repositioning decisions. Our repositioning heatmaps differ from this,

despite their learning capability, by providing drivers with an assessment of repositioning locations

distributed across the service area while highlighting the best individual option. Moreover, the

information used to generate the heatmap as well as the resulting indications can be communicated

in a comprehensible way.

Further papers have focused on providing taxi guidance by indicating the profitability of different

repositioning options (e.g., Li et al. (2011), Powell et al. (2011), and Yuan et al. (2011)). These

papers are based on the analysis of large amounts of historical booking data in order to derive

profitable behavioral strategies. They have in common that a profitability maximizing behavior

is considered only for one driver without reflecting the distribution of the fleet. Demand-supply

balancing to maximize platform revenue is not considered; instead, having all drivers follow the

recommended strategy may lead to larger imbalances and less total revenue. We, therefore, integrate

a learning process as well as fleet-related information that ensures balancing recommendations by

the heatmap from which both service providers and all drivers can benefit.

Finally, another way to rebalance a crowdsourced fleet while focusing on platforms’ revenue is

surge pricing, where user fees (and therefore driver compensation) are increased to attract drivers

(e.g. Bimpikis, Candogan, and Saban (2019), Guda and Subramanian (2019), and Hu, Hu, and
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Zhu (2021)). In this context, heatmaps have already been applied to indicate drivers of the current

distribution of prices (Guda and Subramanian 2019). This provides drivers with a strong monetary

incentive to behave as the platform requires. However, surge pricing is usually used to serve peak

demand and does not necessarily increase service availability in every part of the city (Bimpikis,

Candogan, and Saban 2019). Furthermore, volatile prices are often not well received by users and

drivers (see e.g. Dholakia (2015), Goncharova (2017), and Conger (2021)). As a result, first cities

have begun to ban surge pricing (Spielman 2021). With our repositioning heatmap, we, therefore,

aim to provide a less controversial means supporting ride-sharing service providers in managing a

crowdsourced fleet without inducing disadvantages for particular driver or user groups.

3. Problem Statement and Formulation

In the following, we give a problem narrative to define the system and its dynamics. We then

provide an example to illustrate the sequential decision process model.

3.1. Problem Narrative

We take the perspective of a ride-sharing service provider that connects transportation requests

with self-employed drivers following the goal of minimizing the overall number of daily service

cancellations. Over the course of the service horizon, users request instant transportation from

an origin to a destination within the city. To fulfill a transportation request, the service provider

can assign a nearby driver that is either currently idling, or assign an already busy driver who is

currently transporting another user. Thus, pooling is possible with respect to a maximum vehicle

capacity. If no driver is nearby, e.g., the user cannot be picked up within 10 minutes, the user

cancels the service request. If the transportation request can be fulfilled, the user pays a fee. This

fee is split between driver and service provider. For simplicity, we assume that the fleet of self-

employed drivers work the entire service horizon, accept all transportation requests assigned to

them, and follow the routing suggested by the service provider. However, the drivers are free in

their decision where to reposition after finishing a job, which could be an area with high expected

demand (as described by Ermagun and Stathopoulos (2018), for example), or an area in the driver’s

neighborhood (as described by Rai, Verlinde, and Macharis (2021), for example).

We assume decentralized decision-making about the repositioning of the drivers. Thus, the

drivers’ repositioning behavior impacts the fleet distribution in the city and therefore future revenue

respectively earning opportunities for service providers and drivers. Having not enough drivers in

one area of the city leads to service cancellations and revenue loss for the service provider. Having

too many drivers in another area leads to fewer earning opportunities for the drivers. Therefore,

both service providers and drivers have some interest in the effective distribution of the fleet. How-

ever, research shows that self-employed drivers are reluctant to follow service providers’ directions
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straightforwardly, especially if they seem counterintuitive and their reasoning is not immediately

clear (Möhlmann et al. 2020). Hence, in our problem, we propose an alternative tool that is both

intuitive and leaves drivers with the final repositioning decision: driver guidance through heatmaps.

Driver-specific heatmaps indicate earning opportunities for the drivers in the city. Earning oppor-

tunities depend on the repositioning time from the driver’s current to the repositioning location,

the expected demand in the area as well as how well the area is already covered by the fleet. Promis-

ing repositioning locations imply significant opportunities due to short travel times, high expected

demand, and/or few drivers in the surrounding area. These repositioning locations are indicated in

shades of green with different intensities; other, rather unfavorable repositioning locations are col-

ored in different shades of red. Whenever drivers are without an assignment to fulfill and consider

repositioning, they consult their heatmap to make a well-informed repositioning decision.

The service provider searches for a heatmap strategy that nudges drivers towards lucrative areas

and still maintains a flexible and effective distribution of the entire fleet to avoid future service

cancellations. Such a strategy creates a heatmap every time a driver becomes idle, based on the

current state information and the expected demand. Since our work focuses on heatmap design, we

assume that for assignment and routing, the service provider follows an externally given strategy

(the optimization of this strategy is outside of the scope of this paper).

3.2. Example

In the following, we give an example to illustrate the dynamics of the system under consideration

(see Figure 1). The system can be described by its state (on the left), potential decisions (in the

center), and a realization of stochastic information including the resulting transition to a new state

(on the right). The example is at time t= 60 of the service horizon. The city consists of four regions,

each with one repositioning location. The locations of the three drivers are given. Two of them,

drivers two and three, depicted in light, already have done their repositioning and are now waiting

for new requests to be assigned. Driver one, depicted in dark, just finished a trip and now needs

to make a repositioning decision via a heatmap provided by the service provider.

A potential heatmap recommendation is shown in the center. As the two areas on the right are

already covered by a driver, a reasonable decision would be to color these locations in red to indicate

fewer earning opportunities. The areas on the left are both uncovered currently, thus, the heatmap

highlights them in green, indicating more earning opportunities for these two locations. We note

that in the real problem and in the following model and method, the levels of color intensities are

continuous and therefore, the number of decisions per state is infinite.

The final part of Figure 1 shows the realization of stochastic information and the transition

to the next state at time t= 75. This part is relatively complex for this problem. The stochastic

information is twofold:
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2

3

1 1

3

1

t=60 t=60 t=75

2

Heatmap required Other driver Repositioning decision Successful request Canceled request

State Decision Stochastic Information and Transition

“High”

“High”

“Low”

“Low”

Repositioning location

Figure 1 Example for a state, decision, the realization of stochastic information, and transition to the next state

1. First, the repositioning decision of driver one has been revealed, indicated by the large white

arrow. We assume that the driver informs the service provider about the selected repositioning

location as it is beneficial for all parties. The platform can provide a more informative heatmap

and as a result, the driver has less competition to worry about. Here, driver one has decided

to reposition to the bottom left, likely because expected earning opportunities are higher than

in the right corner and the trip was shorter than to the upper left corner.

2. Second, new demand occurs (and is assigned to drivers if possible) between the current and

new decision epoch, indicated by dark and light customer icons connected by a thin arrow. In

the example, three new requests occurred between t= 60 and t= 75. Two of them could be

assigned. The one in the bottom right was served by driver three, the other in the bottom left

was served by driver one. The request in the center of the city could not be assigned and was

canceled. As the platform aims on minimizing cancellations, the cost realized in the transition

is one.

The new decision epoch is initialized when the next driver, namely driver three in this example,

requires a repositioning heatmap. As the demand is uncertain, it is also uncertain when the next

decision epoch occurs (t = 75 in the example). The transition leads to a new distribution of the

fleet, based on the repositioning decision of driver one and the assignments of users to drivers and

the corresponding trips.

3.3. Sequential decision process

In the following, we present the sequential decision process for the problem, i.e., the definition of

decision epochs, states, decisions, stochastic information, and transitions. First, we introduce some

preliminary notations.
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Preliminaries. We assume operations during a time horizon T = [0, tmax], where time units are

discretized by rounding down to minutes. Operations take place in a service area (N,E,T ) with N

being the set of locations in the city, E the set of edges between the locations, and T the constant

travel times on the edges. We define a set of potential repositioning locations R⊂N . We further

assume a fleet of m drivers working all day with initial idling positions ρ0 = (ρ01, . . . , ρ0m) ∈ Rm

and homogeneous capacity and service duration per stop. There is no termination location, but all

operations end (latest) at time tmax.

Decision epochs. Decision epochs occur whenever a driver finished service and checks the app

for a heatmap. Thus, the time of the next decision epoch and the overall number of decision epochs

is uncertain. We denote decision epochs as k= 1, . . . ,K with K being a random variable.

States. A state Sk at decision point k contains the following information:

• The current point of time tk.

• The location information of the driver currently requesting a heatmap: nk.

• The status of the other drivers: Given the large scale of the underlying problem in drivers

and customers, we refrain from modeling the individual routes and stops for every driver (and

customer) in the system. Instead, we focus on the uk currently unoccupied drivers either idling

at or traveling to a repositioning location. We model the corresponding information using vectors

ρk = (r1k, . . . , ρukk) and τk = (τ1k, . . . , τukk) to represent locations and time. For driver i, ρik ∈ R

indicates the repositioning location and τik indicates the time the driver will arrive there. Notably,

in case of τik = tk, the driver is already waiting at the location ρik while in case of τik > tk, the

driver is still on the way.

In essence, a state can be summarized as Sk = (tk, nk, ρk, τk). The initial state is at time zero with

no driver requesting a heatmap and all drivers idling at their initial locations, S0 = (0,−, ρ0,~0).

There is no decision made in the initial state.

Decisions. A decision xk is the heatmap of repositioning opportunities shown to the driver. A

heatmap decision is a vector xk = (x1k, . . . , x|R|k) of values xrk ∈R+ for each repositioning location

r ∈R. Higher values of xrk indicate higher opportunities. There are no direct costs associated with

a decision.

Stochastic Information and Transition. The stochastic information wk+1 = (rwk+1,Dk+1) is

twofold and reflects repositioning and the occurrence and treatment of new demand:

First, it reveals a new repositioning location rwk+1 for the driver requesting a heatmap in Sk based

on heatmap decision xk. In our experiments, we assume that the probability of location r ∈R being

selected is based on the value xrk (higher probability with higher value).
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Second, demand Dk+1 realized and is served via the platform’s assignment and routing procedure

until another driver requests a heatmap. The demand is realized until a point of time tk+1 where the

assignment and routing procedure induces the next free driver requesting a heatmap and therefore

the next decision epoch k+1 at time tk+1. Furthermore, cancellations Dc
k+1 between tk and tk+1 due

to insufficient driver availability realize with information about time tp and the nearest repositioning

location lp ∈R for a cancellation p. The cancellations define the cost C(Sk, xk,Dk+1) = |Dc
k+1|.

In case tk+1 = tmax, the process terminates.

Solution and Objective Function. The solution for the problem is a policy π assigning a

heatmap decision X π(Sk) to every state Sk. An optimal policy π∗ minimizes the expected costs

(cancellations) when starting in state S0 and applying policy π∗ throughout the process:

π∗ = arg min
π∈Π

E

[
K∑
k=0

C(Sk,X π(Sk))|S0

]
. (1)

4. Repositioning Opportunity Heatmaps

In the following, we present the methodology behind creating repositioning opportunity heatmaps.

We first give a general motivation for and overview of our method and then present the details.

4.1. Motivation and Overview

Designing heatmaps is challenging for several reasons. The future earning opportunities at reposi-

tioning location r for the driver requesting a heatmap in k depend on three factors:

• The expected cancellations that drivers can reduce when being repositioned to r in the “near”

future. Higher cancellations will increase earning opportunities. However, expected cancellations

in the far-away future may be less relevant and may lead to unnecessary waiting for the driver as

well as missed earning opportunities and future cancellations elsewhere.

• The unoccupied drivers that are currently idling at or that are on their way to location r.

A larger number will decrease earning opportunities for the drivers. At the same time, sending

another driver will likely lead to driver shortage and future cancellations in other areas of the city.

• The travel time for the driver located nk to r. A longer trip will decrease earning opportunities

and increase future cancellations as the driver is occupied traveling.

Consequently, we design heatmaps based on the expected future cancellations, the current dis-

tribution of drivers at relocation locations, and the position of the driver requesting the heatmap

(We will later show that each part is essential for an effective heatmap design). Integrating all

these intuitive factors in one holistic heatmap is already difficult as we discuss in the following

section. However, we face an additional challenge, namely, that the expected cancellations (and

consequently, the future earning opportunities) are also affected by the policy applied since the
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(a) Expected Cancellations (b) Distribution of Idle Drivers (c) Repositioning Times (d) Repositioning Opportunity Heatmap

Figure 2 Exemplary Repositioning Heatmap

policy impacts not only the repositioning location of the driver in the current state but also the

distribution of all drivers due to the heatmaps shown to them in later states.

Integrating these large-scale stochastic dynamic developments in the heatmap design is difficult,

especially, since the intuitive composition of the heatmap should be maintained. To this end, we

propose an adaptive learning procedure that does not change the design process of the heatmap

itself but carefully adapts its most important component, the expected cancellations. The learning

procedure starts with initial expected cancellations values, iteratively applies the corresponding

policy, and adapts the expected cancellations based on the observed values. Therefore, the resulting

heatmaps maintain their intuition but integrate the stochastic dynamic developments at the same

time. The details of the learning process are presented later in this section, after introducing the

initial holistic heatmap design.

4.2. Heatmap Design

The intention of our heatmap design is to link state and learned information in a smart way to

provide superior and intuitive repositioning recommendations. The resulting advantages are better

explainability, adaptability, and reproducibility of our heatmaps. To achieve this, the repositioning

heatmap is designed as a combination of three underlying heatmaps: one reflecting information on

the expected cancellations, one reflecting the fleet distribution, and one reflecting the travel times

for the driver under consideration. Before formalizing this process, we illustrate how a heatmap is

created (see Figure 2):

2(a) The first heatmap shows the distribution of the learned expected cancellations given the cur-

rent point of time. The heatmap thus indicates expected future demand in the neighborhood

of repositioning locations as well as the demand that is covered by future driver movements.

Consequently, it combines both pieces of information to identify opportunities for proactive

repositioning. In the example, in the northwest high expected cancellations and therefore
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opportunities are highlighted in green, while in the eastern regions where the requesting driver

is located red colors indicate few opportunities for the near future. However, the black-filled

point in the far north shows that this heatmap alone would recommend a very time-consuming

repositioning.

2(b) The second heatmap is state-dependent. It displays the current distribution of the idle fleet

among the repositioning locations. It, therefore, indicates how many competing drivers are

to be expected and thus the extent to which expected opportunities are already covered. In

the example heatmap, unoccupied repositioning locations are colored in green, and the most

frequented ones are in red. Since the majority of repositioning locations are unoccupied, no

recommendation can be derived from this heatmap alone.

2(c) The third heatmap indicates the travel time between the driver’s current location and the

potential repositioning locations. Including travel times in the heatmap design personalizes

repositioning opportunities and counterbalances the expected cancellations. Accordingly, the

repositioning locations are colored in the example from green to red with increasing distance.

Based on this heatmap, the nearest repositioning locations would always be recommended.

2(d) Based on these three pieces of information visualized by heatmaps, the final repositioning

heatmap shown in Figure 2(d) is created. As can be noticed, a well-balanced recommendation

results from the three one-dimensional heatmaps, considering a trade-off between expected

cancellations and travel time while avoiding direct competitors.

After understanding how the heatmap should be constructed practically, we formalize the gen-

eration in the following. Let us first consider again the expected cancellation heatmap shown in

Figure 2(a). The information displayed here is based on a learned matrix c= (crt)r∈R,t∈T of val-

ues crt ∈ R+ for each repositioning location r ∈ R and each time t ∈ T . It specifies an expected

cancellation value based on the estimated spatially and temporally proximate cancellations. The

adaptive learning process applied to obtain reliable estimates of the expected cancellations c forms

the core of our approach and is discussed in detail in the next section. To rank the different repo-

sitioning locations, based on this matrix c a min-max-normalized expected cancellation vector c̄k

for a decision epoch k can be extracted as shown in Equation (2):

c̄k =
crk−min(crk)

max(crk)−min(crk)
∀r ∈R. (2)

As a result, vector c̄k specifies, on a scale of 0 to 1, the expected cancellations at time tk for each

repositioning location r ∈R. Similar normalizations are performed for the two other base heatmaps

to ensure comparable scaling when calculating the final heatmap.

While the first heatmap is based on learned information, the heatmaps of Figure 2(b) and (c) are

based on state information Sk. Figure 2(b) is determined by the min-max normalized frequencies
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with which each repositioning location r ∈R occurs in the vector of current and next repositioning

locations of idle drivers ρk:

b̄k =
|r ∈ ρk| −min(|r ∈ ρk|)

max(|r ∈ ρk|)−min(|r ∈ ρk|)
∀r ∈R. (3)

Repositioning locations r ∈R most occupied by idle drivers are thus assigned a value of 1 and

the least occupied ones a value of 0. Figure 2(c), on the other side, results from the min-max

normalized travel times T (nk, r) from current location nk to the repositioning locations r ∈R:

θ̄k =
T (nk, r)−min(T (nk, r))

max(T (nk, r))−min(T (nk, r))
∀r ∈R. (4)

The final repositioning heat map, shown in Figure 2(d), is derived according to Equation 5,

where the signs emphasize that high values for c̄k indicate high opportunities and for b̄k and θ̄k low

ones:

xk = c̄k− b̄k− θ̄k (5)

Values b̄k and θ̄k are derived directly from state Sk. Thus, the resulting policy directly depend

on the parametrization of c. In the following, we will describe how c is approximated.

4.3. Adaptive Learning Process

In the presented heatmap design, the expected cancellations c play a crucial role since they reflect

the complex interplay of future demand, its routing and assignment as well as future driver repo-

sitioning. The challenge in approximating them is that using the expected cancellations in the

heatmap design results in shifts in driver distribution that may affect subsequent states and eventu-

ally lead to new cancellations in different areas of the city. We therefore propose a learning process

that uses and adapts the approximated cancellations such that, as we show in our experiments,

cancellations are stepwise reduced until they converge to a final matrix c.

In the following, we first give an overview of the learning process based on Figure 3 before

explaining the algorithmic details. Figure 3 shows the data involved as well the four main steps of

the learning process. The data are:

A: As input the expected demand D. We assume that in practice it can be derived from forecasts

or historical booking data. However, for our experiments, we use a pool of trip requests to

sample expected demand scenarios.

B: The estimated expected cancellation values learned from the previous iteration. The values are

updated after each iteration and used as the expected cancellation matrix c introduced before

in the design of the policy applied in the next iteration.
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Figure 3 Adaptive learning process

Using this data, the following four process steps are executed iteratively:

1: Generation of multiple scenarios based on the expected demand D. Each demand scenario depicts

the demand for the entire service horizon. For this purpose, the demand is sampled (from A)

on the basis of varying random seeds. This implies that the spatial and temporal distribution

of demand remains fairly constant, but the actual trip requests vary.

2: Simulation of the generated scenarios. In the simulations, a repositioning heatmap is deter-

mined in each occurring decision epoch k based on the state information Sk and the expected

cancellations c (stored in B).

3: The occurrence of cancellations in time and space is evaluated for all scenarios.

4: The obtained cancellations are then used to replace the stored expected cancellations (in B).

In the following, we will discuss the details of the algorithm using pseudocode 1. First, we

motivate two important inputs: the temporal discount function F (t) and the spatial discount matrix

ḡ, as they control the extent to which a cancellation influences expectations in time and space:

• Time: With respect to the temporal discount function F (t), preliminary experiments indicated

that cancellations that occurred within the next 90 minutes should be accounted to varying degrees.

The resulting function F (t) increases for the first 20 minutes to reflect that repositioning is unlikely

to prevent cancellations in the short run, and then decreases monotonically as a repositioned driver

is more likely to be otherwise engaged in the long run. Cancellations later than t + 90 are not

integrated in the cancellation calculation for time t.

• Space: Cancelled demand could have been satisfied not only from the closest but from several

relocation locations. To integrate this, we define a spatial discount matrix ḡ defined in Equation (6):

ḡ= (1− (T (r, l)−minT (r, l)

max(T (r, l))−min(T (r, l))
∀l ∈R)∀r ∈R. (6)
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This matrix provides the converted min-max normalized travel times between all repositioning

locations r ∈R. Thus, neglecting the temporal aspect, cancellations are factored with a value of 1 for

the nearest repositioning location and with a value of 0 for the most distant one. The continuously

decreasing spatial impact of cancellations favors the balancing of expected cancellations. Moreover,

the indirect consideration of travel times also increases the value of conveniently repositioning

locations to a greater extent.

In addition to the two discount functions, the input of the algorithm consists of the expected

demand D for sampling scenarios, and the set of repositioning locations R. The output is a policy

πc that defines a repositioning opportunity heatmap for each state Sk based on the expected

cancellation matrix c.

The algorithm is initialized in the first 4 lines. As line 3 indicates no cancellations are expected

initially. Repositioning is thus restricted to the nearest repositioning location in the initial iteration.

In line 6 the actual learning process starts running over imax iterations. Each iteration starts by

deriving a heatmap generating policy πc based on the current expected cancellations c (line 7). In

addition, an empty set P is defined to collect cancellations to be processed later (line 8).

Line 11 to 16 cover the steps scenario generation, simulation and evaluation. How often these

steps are executed depends on the number of scenarios jmax considered for each learning iteration.

In line 12, a scenario Dj is generated from the expected demand D by sampling of trip requests (

function scenario(D)). The simulation of the scenario Dj is performed next, applying the incum-

bent policy πc (function simulate(Dj, πc)). In step 14, the cancellations are transferred from the

simulation result ODj ,πc to the set P (function cancellations(ODj ,πc)).

The cancellations collected in P are subsequently used in lines 18 to 25 to update the expected

cancellations c. For this purpose, it is iterated for each repositioning location r ∈ R over each

cancellation p∈ P . Furthermore, for each combination of r and p it is iterated over each time t∈ T

for which the function call F (t− tp) returns a positive value (line 21). The update of a matrix

entry crt is executed in line 22. In the update, an increase of the previous value of crt is done by

adding the result of multiplying the temporal discount factor F (t− tp) by the value of the spatial

discount matrix ḡrlp .

After the expected cancellations c have been updated, the next iteration of the learning process

begins. For our experiments we set the number of iterations performed imax = 20, as well as a

number of simulated scenarios per iteration jmax = 20, as preliminary tests indicated that this

amount is more then sufficient. We denote the final policy Repositioning Opportunity Heatmaps

(ROH).
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input : Expected demand D, Repositioning Locations R
Temporal-Discount-Function F (t),
Spatial-Discount-Matrix ḡ

output: Policy πc
1 Function ALP(D,R,F,G)
2 c(R, tmax)← 0 ; // Initialize cancellation matrix
3 i← 0 ; // Initialize learning iterations

/* Perform imax learning iterations: */
4 while (i < imax) do
5 πc← c ; // Create policy from cancellation

matrix
6 P ←∅ ; // Initialize empty set of

cancellations
7 j← 0 ; // Initialize simulation iterations

/* Simulate jmax scenarios: */
8 while (j < jmax) do
9 Dj← scenario(D) ; // Generation of a

scenario
10 ODj ,πc← simulate(Dj, πc) ; // Simulation of

the scenario
11 P ← P ∪ cancellations(ODj ,πc) ; // Collecting

the cancellations from the results
12 j← j+ 1
13 end

/* Update entries in cancellation matrix: */
14 for (r ∈R) do
15 for (p∈ P ) do
16 t← tp

17 while F (t− tp)> 0) do
18 crt← crt + (F (t− tp) · ḡrlp) ; // Update of

an entry in the cancellation matrix
19 t← t+ 1
20 end
21 end
22 end
23 i← i+ 1
24 end
25 return πc

Algorithm 1: Adaptive Learning Process

5. Experimental Setup

In this section, we present the setup for the computational evaluation of the proposed ROH. We

present the implementation of the decentralized repositioning decision-making, and the design of

the test instances. We also introduce the repositioning policies that serve as performance bench-

marks.
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5.1. Instances

In the following, we describe how we designed the service area from real-world data, and how we

create and assign demand of the ride-sharing system at hand.

Service Area. For the computational evaluation, we investigate ride-sharing systems operating

in the urban area of New York City. More precisely, we analyze the performance of two individual

systems that operate separately in the boroughs of Manhattan and Brooklyn. They differ in size,

shape, and demand distribution, which should make the comparison interesting. Manhattan is com-

paratively smaller, characterized by its island shape, and shows a more temporally and spatially

unbalanced demand. In contrast, Brooklyn is much broader and relatively circular, with a demand

concentration north of the center, although demand appears to be more evenly distributed. In

our simulations, the areas are represented by 3000 unique locations sampled from taxi trip data

from January 2014 (NYC Taxi and Limousine Commission n.d.). Travel times are based on Open-

StreetMap free-flow travel times which are multiplied by two to obtain a simple approximation of

rush-hour traffic congestion. For the operation of the ride-sharing system, for each service area, 100

of the 3000 possible locations are defined as taxi rank-like repositioning locations. To achieve an

fairly even distribution of these locations, the selection is made by means of a k-medians clustering

algorithm using latitude and longitude values. The crowdsourced ride-sharing fleet is assumed to

consist of 200 drivers operating homogeneous vehicles with four passenger seats.

Demand Creation. The planning period under consideration covers an 8-hour afternoon shift

from 14:00 to 22:00. To exclude warm-up and cool-down phases of the simulation, the first and last

30 minutes are not taken into account for the evaluation. At the beginning of the planning period,

the drivers are randomly distributed among the repositioning locations ready to fulfill incoming

transportation requests. A number of 6400 incoming transportation requests is assumed per sim-

ulation run. Precomputational experiments revealed that a total of 6400 requests would allow for

a reasonable relationship between fleet size and transportation requests, so that cancellation rates

range from a minimum of 2% to a maximum of 30%. Due to the warm-up and cool-down phases,

the number of requests within the evaluated period is not fixed, but varies around 5830. Each trans-

portation request includes the transportation of one user. For each simulation run, transportation

requests are sampled from a pool of 100,000 trips per service area performed by Uber or Lyft in

September 2019 (NYC Taxi and Limousine Commission n.d.).

We obtain a realistic spatial and temporal distribution following the real demand as follows.

Since information on request times is not provided in the data set and information on pickup and

drop-off locations is only available at zone level, we interpret the pickup times as request times

and randomly select the pick-up and drop-off locations of the sampled trips for each simulation
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run from the subset of locations belonging to the respective zones. Each performed simulation run

thus differs in the initial locations of the drivers, the request times, and the pick-up and drop-off

locations of the trips. For the requesting users, it is assumed that a maximum waiting time of 10

minutes and a maximum travel time of 1.5 times the direct trip’s travel time is acceptable.

Demand Assignment and Routing. The centralized assignment or cancellation of incoming

transportation requests is subject to time and capacity-related constraints and is performed by

means of a min-travel-time insertion heuristic. Given the limited number of repositioning locations,

the FIFO principle is applied to equally located vehicles in order to achieve an equitable assignment.

Finally, it is assumed that a repositioning that has been initiated must be completed, i.e., drivers

do not check the app while driving.

5.2. Modeling Driver Compliance

In case of full driver compliance, the drivers would always select the relocation location r ∈R with

maximum value xrk. However, since the drivers are crowdsourced, they may not be fully compliant.

To implement decision-making with varying levels of driver compliance, we assume that in addition

to the heatmaps provided by the ride-sharing platform, each driver has his or her own idea of

a heatmap for repositioning, capturing individual behavior and experience. We focus on the two

most prominent factors, current demand and repositioning time (Urata et al. 2021). We consider

one type of information at a time to analyze how varying compliance with the platform-based

heatmaps affects the performance of the service and the concerned drivers.

Non-compliance with demand as indicated by the platform-based heatmaps is linked to the

assumption that drivers may prefer to follow currently observable trends rather than relying on

the expectations of the central platform provider. To generate this additional decentral driver

heatmap, we use the information on how many times a repositioning location was the nearest

to a pickup requested in the past 10 minutes. The decentral driver heatmap for non-compliance

with recommended repositioning time is derived from the travel times between the current driver

location and the repositioning locations.

Non-compliant decision-making is then implemented by combining information from the

platform-based heatmaps with the decentral driver heatmap. The combination of both heatmaps

requires min-max normalization of both heatmaps’ scores. The driver heatmap scores are weighted

to control the extent of non-compliance with the provider-based heatmap. After the combination,

the repositioning location with the highest score is selected as the repositioning target. The weight-

ing is determined for each driver, by sampling a normal distribution with a mean value equal

to 0. Thus, on average, all drivers are fully compliant, while the actual non-compliance varies

considerably depending on the standard deviation of this distribution.
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We note that the sampled weighting for a driver can be positive or negative. This means that

the decision-making does not only vary in the degree of non-compliance, but also in how the

non-compliance affects the individual decision-making. We interpret positive and negative weights

as follows. In terms of current demand, a positive weighting means that drivers partially ignore

information from the provider-based heatmap in order to move closer to the demand center. We

call this type of behavior “demand chasers”. In contrast, a negative weighting implies that the

provider-based heatmap is ignored to avoid the current demand center. We call this “demand gap

chasers”. Similarly, when repositioning times are positively weighted, the resulting non-compliance

with the provider-based heatmap leads to longer repositionings. We call this type of behavior “time

investors”. For negative weights, shorter repositionings are preferred, which we call “time savers”.

In the experiments, we will examine the implication of decreasing compliance on cancellation

rates. As an extreme case, we set the standard deviation to zero leading to fully compliant drivers.

Then, the standard deviation for determining the weighting per driver is exponentially increased

from 0.15 to 19.2 across the experiments to model increasing non-compliance.

Furthermore, we will analyze whether drivers may benefit from decreasing compliance in their

decision-making. For this analysis, a standard deviation of 1.2 is used to determine the weighting per

driver. This value implies a balanced ratio of about 50% of the decisions being made in compliance

with the provided heatmap.

For all experiments, we will use ROH iteratively learned under the assumption of compliant

drivers. Re-learning with adapted non-compliant decision making has been tested for a few cases,

but brought only marginal improvements. This is probably due to the fact that ROH becomes less

important as compliance decreases, while at the same time increasing variance in driver decisions

makes it more difficult to learn expected cancellations.

5.3. Benchmarks

In our computational experiments, we will compare varying levels of compliance with fully com-

pliant drivers who always follow the heatmap as proposed by the service provider, and three

further benchmarks policies: “Nearest Repositioning” (NR), “Model Predictive Control” (MPC),

and “Expected Demand Heatmaps” (EDH). These three policies were selected as they feature

different degrees of freedom with respect to repositioning decisions of idle drivers. NR specifies

that a driver always repositions to the nearest repositioning location as soon as it becomes idle,

which minimizes repositioning efforts and freedom. For MPC, we implemented a mixed-integer

programming model proposed by Pouls, Meyer, and Ahuja (2020). This model is periodically solved

for centralized repositioning of all idle drivers in order to maximize the coverage of the predicted

demand at the minimal number of repositionings and minimum travel times. Details of how we
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adapted this approach can be found in Appendix A.1. Finally, EDH reflects the case of minimal

decision support for drivers’ decentralized repositioning by indicating only the expected demand

over the next 30 minutes. Non-compliant decision-making is considered for EDH in the same way

as previously explained for ROH.

6. Results

We will present the results in two parts. In the first, we aim at investigating the effectiveness of

the proposed heatmap design under “perfect” operating conditions, evaluating the impact of its

application on the different actors of a ride-sharing system. For this purpose, we will assume com-

pliant drivers who follow the repositioning recommendations provided by ROH. This is equivalent

to a centralized variant of the ride-sharing system under study w.r.t. repositioning decision mak-

ing. The evaluation will be made mainly in comparison to the three benchmark policies presented

in Section 5.3. In the second part, we will analyze repositioning under varying compliance levels.

Furthermore, we examine how the decentralized decision factors differ for individual drivers. All

reported results represent the average over 100 simulation runs, with instances generated based

on different random seeds for the preliminary experiments, the adaptive learning process, and the

evaluation.

6.1. Evaluation with Compliant Drivers

In the following, we will provide an overall analysis of the results for compliant driver behavior.

Based on this, we will demonstrate the learning process of the heatmaps and show their impact on

service availability and driver fairness.

6.1.1. Objective Value. For the setting of decision-making with compliant drivers, we first

analyze the impact of heatmap-based repositioning on minimizing cancellations. The idea is to

demonstrate the performance of the proposed heatmap compared to the benchmark policies and

to investigate the impact of the information considered to create ROH. The cancellation rates are

shown in Figure 4 for the service areas of Manhattan and Brooklyn. The crosses below indicate the

corresponding repositioning approach. We compare the proposed ROH to the benchmark policies

NR and MPC as well as to ROH variants in which one of the information is omitted.

For both service areas, the proposed ROH yield the lowest cancellation rates of 2.2% and 5.7%,

respectively. NR is clearly performing worst, with about 12.3% of transportation requests being

canceled in Manhattan and 12.7% in Brooklyn. The second best results are obtained with MPC,

with a slightly higher cancellation rate in Manhattan of 2.7% and a significantly higher one of 7.0%

in Brooklyn. For the other ROH variants, in the case of Manhattan, neglecting the expected cancel-

lation information proves especially disadvantageous, while in Brooklyn, neglecting repositioning
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Figure 4 Cancellation rates

time leads to inferior results. Furthermore, the comparison with NR proves the high potential of

active repositioning of unoccupied drivers. The resulting reduction in cancellations is significant

in Manhattan and in Brooklyn. Moreover, it is plausible that in the rather small service area of

Manhattan, dominated by a distinct demand center, expected cancellations is the most important

information, whereas in the comparatively larger service area of Brooklyn, the importance of repo-

sitioning times dominates. Hence, the different characteristics of the service areas in terms of size,

shape, and distribution of demand have a significant impact on the potential for repositioning idle

drivers as well as on the challenge of its realization.

In summary, the performance of ROH is best when all three pieces of information

are considered. This demonstrates that the proposed heatmaps are a powerful alternative for

repositioning idle vehicles in a ride-sharing system with compliant drivers, even compared to a

model predictive control approach.

6.1.2. Learning Process. One important feature of our policy is the adaptive learning of

the cancellations. The corresponding learning curves for Manhattan and Brooklyn are shown in

Figure 5, with the cancellation rate plotted on the X-axis and the process iteration plotted on the

Y-axis. The light gray curve reflects the cancellation rate of the current iteration, the dark gray

curve refers to the lowest cancellation rate found so far.

Iteration 1 corresponds to the cancellation rate after the initial expected cancellations are

included in the ROH. For Manhattan, the progression of the curves, starting from an value of about
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Figure 5 Learning Curves

2.6%, illustrates a steady decrease in cancellations to about 2.2% in the first five iterations. For all

further iterations, the brighter curve indicates that the cancellation rates oscillate around 2.2%.

For Brooklyn, the pattern looks quite similar, however with a much more distinct improvement in

the first iterations. Here, the initial cancellation rate is about 6.8%, decreases to 5.7%, and then

oscillates on this level.

The presented learning curves demonstrate that the iterative learning process improves the over-

all performance of the heatmaps. The substantial improvements are obtained after only a few

iterations, so the expected cancellations converge very quickly. The noticeable difference between

the levels of improvement in the areas suggests that in Manhattan, due to the focus on the mid-

dle of the island, the initial values are already quite dependable. In contrast, for Brooklyn, the

more balanced demand structure appears to make it more critical to adjust expected cancellations

through the learning process. In conclusion, adaptive learning of expected cancellations

can yield a significant improvement with relatively modest effort, especially in the

case of more complex demand structures.

In addition to presenting the general benefits of adaptive learning, we also want to illustrate the

actual adaptations of the expected cancellations through exemplary heatmaps. For this purpose,

we compare for a fixed point in time the distribution of expected cancellations after one and four

iterations as well as after completion of the learning process. Figure 6 shows the corresponding

heatmaps for 14:30, with the repositioning locations indicated as circles colored following the

normalized expected cancellations from green (high) over yellow (medium) to red (low). The first

heatmap (6a) shows a clear distribution characterized by decreasing expectations from the east

(green) to the west (red) of the service area. After four iterations of the adaptive learning process,

this distribution appears to be diminishing, with expected cancellations increasing particularly for
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Figure 6 Exemplary Learning Process

repositioning locations in the north and decreasing for those in the east (6b). For the final heatmap,

this trend is concluded with opportunities expected primarily in the north of the service area (6c).

From these exemplary visualizations, it can be reasoned that the distribution of

expected cancellations systematically adapts over the course of the learning process,

leading to better repositioning decisions that reduce cancellations.

6.1.3. Service Availability. In the evaluation of the learning process, it became visible that

the distribution of expected cancellations is learned systematically. This poses the question of

whether the associated avoidance of cancellations leads to an improved and more balanced service

availability throughout the service area. This would be critical for user retention, as insufficient

service availability or systematic discrimination against certain parts of the service areas lead to

user dissatisfaction and churn.

To examine regional service availability, we analyze the cancellation rates per repositioning loca-

tion compared to those of NR. For this purpose, the requests are assigned to the repositioning

location that is nearest to the pickup location in terms of travel time. Figure 7 shows the corre-

sponding cancellation rates per repositioning location by colored circles as well as their demand

volumes by means of their size. Here, the scale on which the cancellation rate is assigned to color

ranges from a minimum of 0% (dark blue) to a maximum of 50% (dark red). Therefore, a small blue

circle, for instance, indicates that a low cancellation rate for a low demand volume is observed in

the vicinity of the repositioning location, while a large red circle would indicate a high cancellation

rate for a high demand volume.

We first focus on the results for Manhattan, shown in the top two figures. With regard to the

distribution of demand, i.e. the size of the circles, the demand center in the middle of the island is
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Figure 7 Distribution of cancellation rates (color) and demand (size)

clearly visible as well as a relatively large region with very low demand in the north. Regarding the

color-visualized cancellations, for NR, the light red circles in the lower part of the demand center

are noticeable, indicating increased cancellation rates. Furthermore, lower cancellation rates are

visualized in the northern region, even in the far north where demand is very scarce. For ROH,

all repositioning locations are colored in different intensities of blue, indicating relatively balanced

cancellation rates. However, the upper and lower corners and parts of the demand center appear to

be slightly brighter blue, indicating a moderate increase in the cancellation rates in these regions.
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For Brooklyn, the demand center appears slightly north of the geographic center. From the

demand center, the volume of demand decreases slightly towards the borders, with isolated repo-

sitioning locations with hardly any demand in the vicinity. Cancellation rates follow a pattern

similar to the one observed in Manhattan. For NR, the light to dark red circles north of the demand

center are particularly prominent, indicating comparatively high cancellation rates in this region.

Again, in the case of ROH, all circles are in the blue range of the scale and thus indicate rather low

cancellation rates, with one small exception in the southeast where the size of the circle indicates

a very scarce demand.

From the results of both service areas, it can be concluded that ROH greatly contribute to

increased and more balanced availability of service compared to NR. It is apparent that the

heatmaps particularly help to decrease the otherwise high cancellation rates in high-demand

regions. Moreover, these improvements are only slightly detrimental to regions with very scarce

demand located at the outermost corners of the service area. The balancing improvement can be

attributed to better learning of expected earning opportunities while focusing on the repositioning

of idle vehicles ensures that only underutilized resources are redistributed. In conclusion, ROH

offer providers the opportunity to serve more users with a constant pool of drivers

and to ensure a more balanced service availability across their service area. Moreover,

these enhancements are likely to increase user satisfaction and therefore their commitment to the

ride-sharing system.

6.1.4. Driver Fairness. After showing that platform providers would benefit from the appli-

cation of ROH, it remains to be investigated whether the same is true for drivers.

To evaluate driver satisfaction, we focus on the distribution of jobs per driver, which is a proxy for

the distribution of earnings. The corresponding boxplots for Manhattan and Brooklyn are shown

in Figure 8 for ROH in comparison to those of NR and MPC. Each of these boxplots represents for

200 daily drivers×100 simulations = 20,000 drivers the number of fulfilled transportation requests.

For Manhattan, the median of transportation requests is about 30 for all approaches, with slightly

higher values for ROH and MPC as they lead to fewer cancellations. More distinct differences can

be observed among the interquartile ranges. This range is clearly widest for NR with 23 to 35

jobs, decreases to 28 to 35 jobs for MPC, and again slightly to 23 to 34 jobs for ROH. The same

ranking can be observed with respect to the length of the whiskers. For NR, outliers reveal that

some drivers perform only a very small number of jobs. In contrast, the outliers in ROH and MPC

are less pronounced and occur both positively and negatively. For Brooklyn, overall, the results are

very similar to Manhattan except that the interquartile ranges and the whiskers are significantly

narrower for all three approaches. In return, however, more and very pronounced negative outliers

are visible for NR and MPC.
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(a) Manhattan (b) Brooklyn

Figure 8 Number of fulfilled jobs per driver

The decreasing magnitudes of interquartile ranges illustrate that the distribution of jobs among

drivers is more balanced for ROH compared to NR and, to a lesser extent, to MPC. This involves

far fewer drivers receiving a significantly below-average and above-average number of jobs. The

absence of extremely negative outliers in ROH indicates that, in contrast to the other approaches,

no driver has to suffer from major drawbacks when following the repositioning recommendations

of our heatmaps. Another interesting aspect is that independent of the approach under considera-

tion, Brooklyn tends to provide a more balanced distribution of jobs per driver than Manhattan.

Reasons may include the larger size of Brooklyn as well as the more even distribution of demand;

this combination probably ensures that drivers are spread out further across the serves area and

still get assignments. In summary, ROH contribute to a more balanced and thus fairer

distribution of jobs among drivers. However, a more even distribution of earnings can have

both positive and negative effects concerning a driver’s personal income. Thus, the extent to which

the equitable distribution contributes to the acceptance of the proposed heatmaps depends on prior

earnings as well as the driver’s personal mindset toward equal opportunities. Regardless of the

heatmaps, it appears that a balanced distribution of jobs per driver tends to occur more naturally

in Brooklyn, while it must be maintained by the ride-sharing platform in Manhattan. Therefore,

it may be of interest for service areas like Manhattan to address income balance directly when

making repositioning recommendations.

6.2. Evaluation with Non-compliant Drivers

In the following, we examine what happens when drivers do not (completely) follow recommenda-

tions indicated by their heatmaps.

6.2.1. Provider Perspective. We first focus on the perspective of the provider of a ride-

sharing platform and evaluate the impact of decreasing compliance of drivers on minimizing cancel-

lations. Of the two factors presented in Section 5.2, in Figure 9, we analyze the effects of decreasing
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Figure 9 Demand: Cancellation rates at decreasing driver compliance

compliance with displayed information in favor of current demand information. The X-axis rep-

resents decreasing compliance by increasing standard deviations of weighting current demand in

drivers’ decentral decision-making, and the Y-axis indicates the system-wide cancellation rates for

Manhattan (a) and Brooklyn (b), respectively. The curves show the results for EDH in light gray

and for ROH in dark gray.

For Manhattan, ROH lead to smaller cancellation rates than EDH. For the latter, the cancellation

rate initially decreases from around 7.0% to 5.5% before it increases up to 16.2% with decreasing

compliance. For ROH, the cancellations also increase consistently with decreasing compliance from

the initial 2.2% to about 13.1%. For Brooklyn, similar trends can be observed, although charac-

teristics are more distinct there. For instance, the decrease in cancellations at EDH is initially

stronger, yet the overall gap in cancellations compared to ROH is stronger as well. Furthermore,

with decreasing compliance, cancellations increase more rapidly. One potential reason for this devel-

opment is that demand is more evenly distributed in Brooklyn. This requires a more balanced

distribution of drivers in the relatively large area compared to Manhattan where demand is clus-

tered in a smaller area. As non-compliance reduces the balanced distribution, cancellation rates in

Brooklyn rise more rapidly.

When drivers tend to ignore provided information in favor of current demand information, holis-

tic repositioning heatmaps still perform better than expected demand heatmaps with respect to

minimizing cancellation rates. However, EDH even benefit sometimes from non-compliance. This

is because EDH only map one piece of information, while ROH take a more holistic view of the

current decision state into account. Thus, for EDH, for smaller variances, using additional infor-

mation can help to improve the otherwise one-dimensional distribution of repositioning drivers. In

contrast, for ROH, a balanced distribution is already reflected in the design of the heatmaps.
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Figure 10 Repositioning time: Cancellation rates at decreasing driver compliance

Favoring current demand information has different implications for different service areas. As

can be seen from Figure 9, especially for small levels of non-compliance, performance gaps are quite

different. This is less detrimental for Manhattan and more for Brooklyn, which is consistent with

the observations made in the previous section that making good repositioning decisions depends

more on the expected cancellations in Manhattan, i.e. on the expected distribution of demand, and

more on the repositioning times in Brooklyn.

Secondly, we examine the impact of ignoring heatmap information in order to save/invest reposi-

tioning time. Figure 10 shows the cancellation rates (Y-axis) in dependency of the applied standard

deviation of the repositioning time weight (X-axis), which represents decreasing compliance with

the heatmaps. Again, the results are illustrated with EDH in light gray and for ROH in dark gray

for Manhattan (a) and Brooklyn (b).

For Manhattan, with decreasing compliance in order to save/invest repositioning time, cancella-

tions at EDH first decrease from 7.0% to 5.4%, followed by an increase to 23.1%. For ROH, cancel-

lations increase moderately at first, followed by a more rapid increase than for EDH. For Brooklyn,

the characteristics of the results again differ slightly. Here, for EDH, a moderate non-compliance

initially leads to a substantial decrease in cancellations. However, the subsequent increase in can-

cellations follows the continuous increase observed with ROH, yet on a higher level.

The results indicate that under most conditions, ROH lead to fewer cancellations than EDH.

For Manhattan, ROH are more affected by non-compliant drivers, which is because ROH already

covers repositioning time. Furthermore, EDH even benefit from moderately non-compliant drivers,

while the cancellation rates for ROH increase consistently. Here, it seems that adaptive reposition-

ing recommendations are already so well-designed that any deviation is detrimental. Decreasing
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Figure 11 ROH: Correlations between time usage and decreasing driver compliance

compliance with heatmaps has a greater impact in Manhattan. Moreover, the performance of ROH

is best when drivers always make decisions in compliance with the repositioning recommendations.

The extent to which non-compliance is detrimental depends on the combination of alternatively

used information and service area. In Manhattan, drivers not complying in favor of current demand

reduce system performance slightly less strongly. This is similar for Brooklyn, where those who do

not comply with respect to repositioning times reduce system performance slightly less strongly.

However, the overall rapid increase in cancellation rates indicates that it may be worthwhile to

partly hire drivers to ensure a limited influence of decentralized decisions, even if this entails higher

personnel costs (Lee and Savelsbergh 2015).

6.2.2. Driver Perspective. Lastly, we evaluate the impact of non-compliant repositioning

decisions from a driver’s perspective, considering the four types of individual driver behavior rep-

resented by demand chasers, demand gap chasers, time investors, and time savers, as described

in Section 5.2. To this end, a working day is assumed to be covered by paid working time, in

which assigned trips are performed, as well as idle and repositioning time. We compute Spearman’s

correlation coefficients between the amount of time spent per activity and the fixed weighting of

the decentral driver heatmap. The resulting correlations for both service areas are illustrated by

the symbols in Figure 11. The symbols can be interpreted as follows: “up” indicates a positive

correlation above 0.5, “diagonally up” indicates a slightly positive correlation above 0.25, a dash

indicates a low correlation between 0.25 and −0.25, “diagonally down”’ indicates a slightly negative

correlation below −0.25, and “down” a negative correlation below −0.5.

For demand chasers, the first column illustrates a slightly negative correlation between weighting

and paid working time. In contrast, a slightly positive correlation is indicated for the repositioning

time, while no correlation is observed for the amount of idle time. This indicates that demand

chasers make less earnings and spend more time repositioning than drivers who follow
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the platform-based heatmap. This can be attributed to the fact that regardless of their location,

the corresponding drivers spend much time reaching the demand center, while eventually competing

for assignments there with similarly acting drivers.

The second column demonstrates consequences for demand gap chasers. We can see a strong

negative correlation between weighting and paid work time, as well as a strong and weak positive

correlation with repositioning and idle time, respectively. Therefore, for demand gap chasers,

with increasing avoidance of the current demand center, drivers’ earnings decrease and

the time spent repositioning or idling increases. This suggests that demand gap chasers are

likely repositioning to regions with relatively low demand, only to perform another repositioning

after a period of idleness.

The third and fourth columns illustrate the impact of non-compliance with information on repo-

sitioning times (time investors, time savers). The arrows for repositioning time indicate strong

opposite correlations. In accordance with the positive and negative correlations of the repositioning

time, there is a slightly positive and strongly negative correlation for idle time. Of particular inter-

est, therefore, is the correlations for the paid working time. Here, the line indicates no significant

correlation between the degree of repositioning avoidance and paid work time. This means that

time-savers make, on average, the same earnings as drivers who follow the recommen-

dations of the platform-based heatmap. The previous results, which showed a substantial

increase in cancellations for NR demonstrate that time saving is only a good option if enough

other drivers are repositioning. In the opposite case of time investors, we see a strong

negative correlation between weighting and paid work time, indicating that increasing

repositioning beyond the recommendations leads to decreasing earnings.

In conclusion, our results demonstrate that decreasing compliance with heatmaps mostly results

in decreasing earnings and increasing repositioning times. An exception to this is the behavior

of time savers, which can be beneficial for drivers in order to decrease repositioning effort and

to increase the more convenient idle time. However, in order to obtain these benefits without

decreasing earnings, a sufficient number of drivers must comply with the repositioning information

recommended by the platform-based heatmaps. In this context, both game-theoretic considerations

and platform-based repositioning incentives are of interest for future research.

7. Final Remarks

As we have illustrated how heatmaps can lead to improved operations for service providers, drivers,

and customers, there are several avenues for future research. First, our experiments have shown

that carefully designed heatmaps reduce service cancellations even in cases that drivers are less

compliant with the provider’s recommendation. Future research may focus on explicitly identifying
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such non-compliant behavior by analyzing the drivers’ previous decisions. This analysis could then

be used to adapt the heatmap design accordingly, e.g., by providing “time savers” reluctant to

leave their neighborhood with recommendations nearby and use “time investors” to cover areas

further away. However, as we have seen in our experiments, heterogeneous driver behavior already

leads to imbalances in their earnings even when they are treated equally by the service provider.

The imbalances may increase in case the provider further differentiates driver preferences. This

leads to the question of fairness as very picky drivers may get very lucrative jobs while others do

the heavy lifting. Furthermore, such differentiation may increase the number of drivers gaming

the system once they realize that their behavior influences their recommendations. Future research

may therefore focus on a fair and balanced repositioning given the heterogeneous driver preferences

and ways to disengage drivers from gaming the system.

Another interesting aspect of our experiments is that the impact of driver compliance differs

for services areas with different spatio-temporal characteristics. While in the rather small area

of Manhattan, even less compliant drivers lead to a good demand coverage, in the larger area

of Brooklyn, non-compliance results in a rapid increase in cancellations. Thus, for larger and

more “complex” service areas such as Brooklyn, future research may focus on a better balance

when drivers are not fully compliant. Potential options could be different driver compensation in

different areas of the city. Alternatively, the provider might complement the crowdsourced fleet with

dedicated drivers. Finding the right balance in the fleet and using the potentially more expensive

dedicated drivers effectively may be an interesting challenge for future research.

Further, even though our method is independent of the underlying assignment and routing

strategy as well as of the drivers job acceptance and working time behavior, future work may analyze

the value of jointly learning heatmap design and assignment strategies, potentially under driver

non compliance with respect to job assignments. One (of many) challenges will be maintaining

the explainability of the heatmap design and creating intuitive and effective assignment policies.

Finally, in our experiments, we have shown that heatmaps lead to more and more fairly distributed

earnings amongst the drivers and better service availability for the customers. Future research may

analyze the longer-term impact of these improvements in comparison with the status quo., e.g.,

with respect to customer retention, business growth, and the drivers’ trust in and adoption of the

heatmap system.
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Appendix

A.1. Details of MPC Benchmark

Even though the implementation of MPC is based on Pouls, Meyer, and Ahuja (2020), there are some dif-

ferences. The first concerns the representation of the service area: To ensure comparability with the other

policies, we define subareas for each repositioning location instead of using a grid. Thereby, each location

belongs to the area of the nearest repositioning location in terms of travel time. Another difference is the pre-

diction of the expected demand. Instead of reactive or perfect demand, we determine the expected demand

by taking the average of the demand that occurred in preliminary simulations. Finally, there is a difference

in the execution of the repositionings determined by the model. This has been adapted so that drivers always

move directly to the repositioning locations, while the assignment of which driver performs which reposition-

ing is performed by a second travel time minimizing model. Regarding the extensive parameterization of the

first model, the original values are used, except for the two parameters that differ depending on the service

area. These two parameters which indicate how many requests can be fulfilled between two repositioning

periods and the distance over which a repositioning location can cover the demand of another repositioning

location were tuned sequentially for Manhattan and Brooklyn as part of preliminary simulations.
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