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Abstract

An increasing number of local shops offer local same-day delivery to compete with the on-
line giants. However, the distribution of parcels from individual shops to customers reduces
the rare consolidation opportunities in the last mile even further. Thus, shops start collabo-
rating on urban same-day delivery by using shared vehicles for consolidated transportation
of parcels. The shared vehicles conduct consistent daily routes between micro-hubs in the
city, serving as transshipment and consolidation centres. This allows stores to bring orders
to the next micro-hub, where the parcel is picked up by a vehicle and delivered to the micro-
hub closest to its destination — if it is feasible with respect to the vehicle’s consistent daily
schedule. Creating effective schedules is therefore very important. The difficulty of finding
an effective consistent route is amplified by the daily uncertainty in order placements. We
model the problem as a two-stage stochastic program. The first stage determines the vehicle
schedules. The second stage optimises the flow of realized orders. The goal is to satisfy as
many orders per day as possible with the shared vehicles. We propose a multiple scenario
approach and suggest problem-specific consensus functions for this framework. We assess
the method’s performance against an upper bound, a practically-inspired heuristic, and
the original consensus function. Our approach clearly outperforms the practically-inspired
heuristic and the original consensus function. We observe that collaborative delivery via
micro-hubs is worthwhile for delivery time promises of two hours or more. Noticeably, for
these service promises, the cost of consistency are surprisingly low.

Keywords — micro-hubs, same-day delivery, routing consistency, two-stage stochastic programming,
multiple scenario approach

1 Introduction

Urban areas are facing an increasing amount of parcel transportations. This is reinforced by various
factors, first and foremost the expanding e-commerce. In December 2021, Statista published a study
estimating the revenue of the e-commerce sector to be about EUR 3.44 trillion worldwide in 2022 (Statista,
2020). According to this study, an annual growth of 9.96%, and more than 4.87 million customers
purchasing online per year can be expected until 2025. In 2020, about 4.05 billion courier, express, and
parcel deliveries were made in Germany according to the German Federal Association of Parcel and
Express Logistics (Bundesverband Paket und Expresslogistik e.V. (BIEK)||2021)). To participate in the
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e-commerce boom, many local businesses start to offer fast same-day delivery. Goods of local shops can
be purchased via an online platform, and shipment is organised by the corresponding shop. Offering
such services is challenging as conventional delivery by motorised vans not only exacerbates congestion,
emissions and noise, but also causes high costs due to relatively small delivery volumes. Furthermore,
the use of large delivery vehicles is not always permitted; especially inner city areas and pedestrian
zones show rigid access restrictions. At the same time, customers expect to receive their products more
sustainable and faster than ever before. According to the Ecommerce Delivery Benchmark Report 2022,
37.5% of UK shoppers see the speed of delivery as the most important incentive to purchase online
(Metapack|[2022)). As a reaction to this, local shops start collaborating for joint delivery, improving low
vehicle fill rates, and driving down transportation costs (Datex|2021). Moreover, “retailers are thinking
outside the (big) box to reimagine their ‘slow-twitch’ supply chains, building for ‘fast-twitch’ models
that can serve customers directly and rapidly” (Burns et al.|[2022)). New instant delivery models arise,
focusing on a small market radius, using satellite stores near areas of high demand (Burns et al.||2022).
Such transshipment centres — from now on called micro-hubs — increase consolidation opportunities in
the joint delivery process even further.

These micro-hubs are used as dropoff and pickup points for online orders. Shops can bring their
goods to the closest micro-hub and customers can pick them up a short time later at a nearby micro-
hub. Between the micro-hubs, low-emission vehicles such as cargo-bikes perform consistent tours every
day to transport the orders within the network. Examples of similar services can be found in various
places, e.g., in several Dutch and Scandinavian cities (Cameron|[2022] [velove|2022). The vehicles follow
a predefined daily schedule visiting micro-hubs at predefined times and in a predefined order. While
such consistent tours bring many advantages for shops, customers in drivers, finding effective tours is
very challenging given the differences in day-to-day orders. Customers that cannot be served have to be
outsourced or served the next day, which is expensive or may lead to dissatisfaction, respectively. Thus,
the goal is to find a consistent tour between micro-hubs that maximises the expected amount of delivered
parcels per day. In order to provide effective schedules, it is important that they are robust to demand
variations in time, respect the pickup and delivery sequence of parcels, and capture the expected daily
demand pattern.

The problem can be formulated as a two-stage stochastic program. The first stage of the model
aims to find a consistent routing schedule for the delivery vehicle between micro-hubs without the exact
demand being known. Given this schedule, the second stage determines the flow of realised parcel orders
for a specific day. As solving the problem for realistic sizes is computationally intractable, we propose
a multiple scenario approach (MSA) as introduced by Bent and Van Hentenryck| (2004). This approach
makes use of several possible future demand scenarios and their scenario-dependent solutions. Among
those, the MSA chooses that solution showing the most similarity to others. For our problem, evaluating
similarity is difficult since individual solutions vary in their pickup and delivery requests, thus showing
different routing sequences and arrival times at micro-hubs. Due to this complexity, exact comparison
of individual arcs as in |[Bent and Van Hentenryck| (2004)) may be too restrictive. To this end, we develop
different problem-specific consensus functions designed to detect different structures in the solutions. In a
computational study we investigate the effectiveness of the MSA with our different consensus functions.
As benchmarks we use an upper bound solution without consistency constraints (i.e. a day-solution
where decisions about the routing of the vehicle and the flow of parcels are made simultaneously) and a
practically-inspired heuristic solution. For analysing the value of our consensus functions, we compare
them to the original one proposed in Bent and Van Hentenryck| (2004). In our computational study,
we observe that MSA performs better on structured demand and when much time is available to serve
parcel requests, than for unstructured demand with tight time limitations. We further show that same
day delivery on a full working day with a consistent tour barely looses service quality compared to a
daily re-optimised, inconsistent routing policy.

The contributions of this paper are as follows. We are among the first to investigate how micro-hubs
can be utilised for collaborative same-day delivery of local shops. We present a stochastic two-stage
integer program that finds a consistent tour between micro-hubs for pickup and delivery of parcels in a
collaborative local delivery system. We are the first to apply the MSA to a pickup and delivery problem
with micro-hubs. In order to uncover structural similarities among the individual solutions we design



four new consensus functions making use of problem-specific aspects. The different consensus functions
are evaluated in a computational study from which we derive the following insights. We find that MSA
with any of the proposed consensus functions outperforms a practically inspired benchmark, while in
the vast majority of cases leading to better results as the original consensus function from |[Bent and
Van Hentenryck| (2004). Overall, our method performs particularly well for pickup and delivery where
tight time limitations are given.

The remaining part of this paper is structured as follows. In Section[2] we present related literature.
In Section[3] we define the model for consistent pickup and delivery routing. In Section[d] we introduce the
multiple scenario approach. In Section[5] we present setup and results of the computational experiments.
We finish our paper with a conclusion and outlook in Section [6]

2 Literature Review

Several aspects have to be considered when planning consistent schedules in local delivery services:
pickup and delivery needs to be organised through a two-echelon transportation system with transship-
ment facilities, while consistency in vehicle’s routes is to be maintained. This problem of picking up
and delivering parcels during one route is denoted as the vehicle routing problem (VRP) with simulta-
neous pickup and delivery; a review on such problems can be found in [Kog et al.| (2020). Introducing
transshipment facilities to a pickup and delivery problem leads to a two-echelon logistic system which is
usually operated by two fleets of vehicles. In general, this is denoted as the two-echelon vehicle routing
problem (2E-VRP). A literature review on such problems is presented by |Cuda et al.| (2015]), and more
recently by [Jiang and Li (2021) and [Sluijk et al.| (2022). However, most papers focus on delivery only,
assume demand to be deterministic, and consequently route first and second fleet at the same time.
In contrast, our model aims to determine a routing schedule for the first fleet only in order to provide
consistent pickup and delivery service despite daily varying demand. We therefore refer to different con-
cepts of consistency in Section [2:I] After that, we provide some background on scenario-based solution
approaches in Section

2.1 Consistent Vehicle Routing

We hence seek to find consistent tours for the fleet serving micro-hubs. [Kovacs et al.| (2014) provide a
survey on consistency in VRPs. They distinguish arrival time, person-oriented and delivery quantity
consistency, and provide modelling concepts and solution methodology for each type. In our context,
we require the even stronger concept of routing consistency: vehicles should always conduct the very
same tour, i.e. visit the same micro-hubs at the same times each day. This captures the pickup and
delivery dimension of our problem and allows storekeepers to organise transportation of their orders
to corresponding micro-hubs in time for further shipment. Yet, in literature arrival time consistency
is the concept closest to this and common modelling approaches are imposing hard or soft constraints,
previously assigning time windows to customers or determining routes a-priori. Exemplary publications
and different approaches can be found in |[Kovacs et al.[ (2014)), and more recently in [Song et al.| (2020)).
Most relevant to our work are consistent VRPs including pickup and delivery. |Zhen et al.| (2020) propose a
consistent VRP for simultaneous distribution and collection in reverse logistics. [Emadikhiav et al.| (2020))
address the simultaneous pickup and delivery of orders of an instrument-calibration company. The goal
is to minimise transportation costs while limiting late deliveries and enforcing consistent arrival times.
However, in both papers orders are deterministic.

To deal with stochastic customers, different methods are needed. Two prominent advances are
assigning time windows to customers previously or determining tours a-priori which are possibly adapted
later to the realised demand. The latter can be applied for stochastic customers as well as stochastic
demand while the former is applicable only if customer locations are known in advance and only demand
volumes vary from day to day. Assigning time windows is often modelled by a two-stage stochastic
programming formulation. [Spliet and Gabor| (2015]) for example assign time windows to each customer
at the first stage. They formulate a MIP for this stage with the objective to minimise expected travel
costs. Once demand volumes are revealed, a VRP has to be solved meeting the previously determined



time windows. Dalmeijer and Spliet| (2018) can improve the computational performance of this problem
by strengthening the problem formulation by valid inequalities. A discrete variant of the above problem
is presented by |Spliet and Desaulniers| (2015). They further propose an exact branch-price-and-cut
algorithm. |Spliet et al.| (2018) extend the problem to time-dependent travel times and develop a branch-
price-and-cut algorithm to solve the problem to optimality. A similar problem of previously assigning
time windows to customers on first, and routing vehicles on second stage is proposed by
. They additionally consider stochastic travel times and propose a scenario decomposition
algorithm to solve the problem.

Precedently assigning time windows is not enough for our pickup and delivery routing problem as
we look for a schedule with exact time synchronisation. Since we are facing stochastic demand, we
need to determine routes before demand becomes known, e.g. based on stochastic information. This
concept of time consistency is called a priori routing or finding master tours. When demand is revealed,
these routes are commonly updated using recourse actions, such as skipping customers or restocking at
the depot for example. Some common recourse strategies are explained in [Kovacs et al| (2014). Often,
such problems are modelled as a two-stage stochastic program: at the first stage, an a-priori routing is
determined under uncertain demand. At the second stage, uncertainty is revealed and corresponding
recourse actions are selected. Reviews on a-priori routing problems and corresponding solution methods
can be found in [Bertsimas et al.| (1990), |Campbell and Thomas|and [Kovacs et al.| (2014)). We concentrate
on the most relevant work for our context in the following. |[Hvattum etal| (2006) use a multistage
stochastic programming formulation to model a VRP with both deterministic and stochastic customers.
Recourse strategies are applied repetitively based on a sample scenarios heuristic approach.
describe a courier delivery problem with stochastic customers and uncertain service times. They
offer a multi-objective two-stage program for a variant of the ConVRP with time windows to develop
a-priori master tours using a scenario-based solution approach. Uncertain travel times and stochastic
customers are also considered in [Sampaio etal.| (2019), who propose a VRP with roaming delivery
locations which they solve with a scenario-based sample average approximation. [Angelelli et al. (2017)
solve a probabilistic team orienteering problem through a two-stage stochastic program that maximises
the expected profit of visited customers. They solve their problem applying a branch-and-cut approach
as well as different heuristic methods. There is some recent work on two-stage stochastic programs for
VRPs with stochastic demands and recourse actions. [Lagos et al.| (2019)) suggest such a model minimising
the expected travel costs. The models proposed by [Bernardo and Pannek| (2018)), |[Salavati-Khoshghalb|
let al| (2019) and [Florio et al| (2022) additionally aim to minimise the expected costs of recourse actions.
Similar to our problem, |Crainic et al| (2016) suggest a two-stage stochastic programming formulation
for the 2E-VRP with stochastic demands. At the first stage, an urban-vehicle service network design
model routes the first fleet and determines the general load of micro-hubs, using an approximation of
the routing cost from micro-hubs to customers. The second stage concerns the routing of second fleet
vehicles and possible recourse actions for the first fleet. The authors evaluate different recourse strategies
through repetitively applying the adjusted plan for each planning period. Their work differs from ours
as determining loads of hubs is not part of our problem, further we do not apply recourse strategies since
we seek a consistent routing between micro-hubs. Consistent master routes are also determined in the
work of|Visser and Savelsbergh| (2019). They investigate a strategic time slot management problem where
master tours and time windows at customer locations are determined simultaneously on first stage, facing
uncertain demand. In difference to our problem, assigning time slots instead of precise arrival times is
sufficient. Further, recourse actions may be applied after demand realisation in the sense that customers
may be skipped if they cannot be served within their time window. A different approach for consistent
vehicle tours is used by |Orenstein and Raviv| (2022). The authors propose an urban parcel pickup and
delivery system including so called service points that can serve as consolidation, transshipment, and
pickup point for customers or drivers. Customers may be served from several service points, what further
increases flexibility in the delivery process. They develop a myopic policy to route stochastically arriving
parcels based on given vehicle routes. Vehicle routes are determined a-priori using a math heuristic.

We summarise related literature on two-stage stochastic routing problems in Table For each paper,
we classify the type of route consistency, the source of uncertainty, the decisions taken on first and second
stage, the objective, as well as the solution method. By master tours (with recourse) we refer to those
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£
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Hvattum et al. 1 (v) ) v (V) (v)
Sungur et al.[(2010) (V) (V) v () V) v
pliet and Gabor| (2015 v v v v v v
Spliet and Desaulniers 2015} v v v v v v
Crainic et al.| (2016 (V) v ) v v
Angelelli et al.|(2017 (v) (v) (V) (v) v v
Bernardo and Pannek| (2018 (V) v v) (v) v
Dalmeijer and Spliet| (2018 v v v v v v
1 v v v v v v
v v v v v v v
l ) v ) () v v
Salavati-Khoshghalb et al‘| (v) v (v) (v) v v
Sampaio et al.|(2019) (v) v () v) v
Visser and Savelsberghl (V) v v V) v (V)
Song et al.[(2020 (V) v v v
Florio etal.|(2022 (v) v (V) (v) v v
our paper v v v v v v

Table 1: Related literature on two-stage stochastic routing problems. Following abbreviations
are used: M = master tour (with recourse), TW = time window assignment.

papers that address routing consistency via finding master tours on first stage. However, recourse actions
on second stage lead to changes in these master tours. This is why we place brackets around the check
mark in columns “M” (Consistency / 1st stage) if recourse actions are applied. Brackets in the “routing”
column of the 2nd stage indicate that re-routing decisions are taken for recourse. No brackets here
mean solving an entire routing problem. Finally, some papers consider stochastic customers for pickup
and / or delivery. If only one of the two is addressed, this is also indicated by brackets in column
“pickup/delivery”.

In Table [I} we see that all revised papers finding master tours on first stage later apply recourse
strategies. This is fundamentally different from our problem where routing schedules between micro-hubs
need to be fixed for any demand realisation. Vehicles between micro-hubs stick to their routes regardless
of the daily varying customer orders. Different to any other publication, we determine the flow of realised
parcel orders on second stage. Further, none of the presented papers on two-stage stochastic routing
problems includes both pickup and delivery customers. We hence propose a novel two-stage stochastic
program for consistent pickup and delivery at micro-hubs with stochastic customer demand, but without
recourse actions. To the best of our knowledge, this problem has not been studied in literature yet.

2.2 Scenario-Based Solution Approaches

To solve this problem, we use a scenario-based solution approach since this is inherent to two-stage
stochastic programming. We apply a multiple scenario approach (MSA) as introduced by
|[Van Hentenryck| (2004). The MSA provides a general framework to solve dynamic stochastic multi-stage
programs by solving a sampled set of representative deterministic problems. Among those individual
solutions, MSA chooses the best one according to a consensus function in order to find a solution
that can be expected to perform well for different demand realisations. The original consensus function
proposed by Bent and Van Hentenryck| (2004)) compares the customers that vehicles are scheduled to visit
next. |Ghiani et al| (2012) use a similar consensus function in their sample scenario planning approach.
They solve an uncapacitated travelling salesman problem and compare the position of customers in




different routes as consensus function. [Song et al.| (2020) introduce a new consensus function for a two-
stage stochastic assignment and team-orienteering problem that measures the differences between two
assignment variables. Some further publications using the MSA are listed in [Ritzinger et al.[(2016)). Most
authors applying MSA use consensus functions particularly adapted to their problem structure. That
way, they often compare assignment or routing details, for example. Our problem involves both pickup
and delivery, and hence shows to be much more complex. For this reason, we design further consensus
functions in Section [d] comparing different space and time attributes of the individual solutions. In
Section [5] we show in which cases they are most effective.

There are several works considering further scenario-based solution approaches. |[Sungur et al.| (2010)
for example determine an a-priori routing with a scenario-based approach using historical data. They
base their master plan on representative customers most likely to appear, and worst case service times.
That is, the information available from the various scenarios is reduced. Instead, using the MSA we
consider full information from all scenarios. |Azi etal| (2012) use multiple scenario generation for a
dynamic VRP to decide about the acceptance of newly arising customer requests. A new request is
evaluated among all generated scenarios. If on average, serving this customer leads to a benefit, she is
accepted. Another sampling-based solution method is used by [Bernardo and Pannek| (2018). Different
from MSA, scenarios are only sampled at beginning of the planning stage. Then, a static scenario is
defined as a weighted linear combination of all sampled scenarios. This instance is then solved using
different heuristic approaches. Further scenario-based solution methods can be found in |Subramanyam
et al.| (2018), Sampaio et al.| (2019)) or |Visser and Savelsbergh| (2019)), for example. A review on different
solution methods for stochastic dynamic VRPs, incuding scenario-based approaches, is provided by
Soeftker et al.| (2021)).

3 Model

In this section, we give a detailed description of the consistent pickup and delivery problem with micro-
hubs and stochastic customer demand. To that end, we first state the problem in Section [3.I] and
highlight the two stages with an illustrative example in Section [3.2] In Section [3.3] we provide the
mathematical framework for the model.

3.1 Problem Statement

We propose a model to determine a consistent routing schedule for shared vehicles in collaborative urban
delivery. The use of shared vehicles increases consolidation opportunities since parcels from different
stores can be bundled for joint delivery to the same region.

To pickup and deliver parcels, a shared vehicle conducts service between micro-hubs that are placed
at fixed locations in the city. micro-hubs may either be located in selected stores, or close to customer’s
locations or shopping areas. The schedule at micro-hubs must be known previously so that stores can
organise transport to the micro-hub accordingly. In our system, we use a fixed number of vehicles with
a given, finite capacity each. While operating, vehicles are allowed to wait at micro-hubs in order to
include later parcels. Also, vehicles are allowed to perform pickup and delivery on the same route and
simultaneously during one stop. Moreover, we consider a limited planning horizon within which service is
operated. We call this the service time horizon. At the beginning of the service time horizon, all vehicles
are located at a depot at the outskirts of the city. We consider a transfer time at each micro-hub a vehicle
visits on its itinerary to load and unload parcels. For simplicity, the transfer times are incorporated in
the travel times.

We assume that each parcel order consists of a pickup location (store) with a release time, a delivery
location (customer), and a homogeneous parcel volume. Further, we assume that each storekeeper brings
a parcel to her closest micro-hub as soon as the order is placed. Similarly, when a parcel reaches its final
micro-hub, the customer picks it up there directly. To represent this in our model, pickup and delivery
locations are mapped to their closest micro-hubs such that each parcel has a pickup micro-hub and a
delivery micro-hub. The release time of a parcel indicates the earliest time it can be picked up. We set
a fixed delivery time promise to all orders, restricting the difference between release time and delivery



time at the parcel’s destination micro-hub. We do not have to serve all orders placed, but aim to pickup
and deliver as many parcels as possible. Each parcel that is picked up must also be delivered in time.

We model this problem as a two-stage program. The first stage develops the consistent routing
schedule for the vehicles, i.e. a sequence of stops at micro-hubs with corresponding departure times.
Once this routing is fixed, realised parcel orders are routed according to the given schedule at the second
stage. At this, parcels cannot move independently in the network, but must be transported by a vehicle.
The goal of the model is to find a routing schedule that maximises the expected amount of daily delivered
parcels.

3.2 Example

We illustrate our problem setting in a short example. Assume there are one shared vehicle, a depot and
two micro-hubs in the city, as displayed in Figure[I[] We further assume that the vehicle has the following
first-stage schedule. It leaves the depot at 12:30 and reaches micro-hub 1 at 13:30. After a transfer time
of ten minutes it continues to micro-hub 2 where it arrives at 13:50. Again, ten minutes are needed for
transfer such that the vehicle leaves micro-hub 2 at 14:00 and reaches the depot at 14:35. This routing
schedule is shown in Figure Now, suppose in scenario 1 there are two parcels which both have to
be transported from micro-hub 1 to micro-hub 2, indicated by the minus for pickup, and the plus for
delivery. The release times are 11:00 for parcel 1 and 13:00 for parcel 2. With the given schedule, both
parcels can be picked up and delivered in time.

micro-hub 2 micro-hub 2
i + @1 11:00 o -9 11:00
micro-hul // 13:00 micro-hul // _ 10:00
- 11:00 13:10 - 13:50 ' + g 11:00 13:10 - 13:50 ©.
-9, 13:00 + 92 10:00
14:00 — 14:35 14:00 — 14:35
12:30 — 13:00 12:30 — 13:00
depot depot
] ]
Figure 1: Scenario 1: all parcels can be trans- Figure 2: Scenario 2: no parcel can be trans-
ported. ported.
11:10 — 11:50 micro-hub 2

?
?

micro-hub 1
?
? 13:35 — 14:15

10:25 — 11:00
14:25 — 15:00,

depot

Figure 3: Combined routing schedule.

However, in a different demand scenario, this schedule might be inefficient. For instance, suppose
that in a second scenario 2 again two orders are placed, differing in release time, pickup and delivery
location: parcels 1 and 2 have to be picked up at micro-hub 2, and brought to micro-hub 1, having release
times 11:00 and 10:35, respectively. Note that in this scenario no order can be fulfilled using the given
routing schedule. This small example shows that the performance of our proposed pickup and delivery
service highly depends on the shared vehicle’s routing schedule. To transport as many orders as possible,



it thus is very important to create effective schedules that are flexible with respect to order uncertainty
in time and space. For the example at hand, a routing schedule allowing to meet the demand in both
scenario is presented in Figure The vehicle visits micro-hub 2 first, then continues to micro-hub 1.
Instead of returning to the depot directly, it waits there for further parcels to be picked up and then
goes back to micro-hub 2. This way, parcels can be transported from micro-hub 1 to micro-hub 2 and
vice versa.

3.3 Mathematical Formulation

In this section, we introduce the required notation in Section[3:3.1} and present the stochastic two-stage
model in Section The corresponding deterministic second-stage model is stated in Section |3.3.3
We note that while in our computational study, we focus on the single-vehicle case, in this section, we
present the more general model allowing for a fleet of vehicles.

3.3.1 Notation

In the following, we introduce the notation of our model, also summarised in Table[2] Parcel orders are
placed on a daily basis. We hence consider a set of several daily scenarios denoted by S. We assign a
certain probability of occurrence ps to each scenario s € S. The set of parcel orders placed on scenario
s € S is denoted by P;. We refer to an element p € Ps as parcel or order equivalently. For our model,
we consider a set of physical nodes V = Vy U Vi, where Vo = {vo} denotes the depot and Vi represents
the set of micro-hubs. The pickup hub (origin) of a parcel p € Ps is represented by node o, € Vi, the
delivery hub (destination) by node d, € Vi. The parcel’s release time is denoted by r;, for every p € P
and indicates the start of a time window of length T, within which a parcel p € Ps must be picked up at
micro-hub o, and delivered to micro-hub d,, in order to fulfil the order. Otherwise, we say that the parcel
is not served or that the order is not fulfilled by our system, but must be outsourced. For simplicity we
assume that each parcel has a homogeneous volume of 1. Service is operated by a homogeneous fleet of
vehicles K. Each vehicle has the same velocity vx and maximum capacity Ck. Also, micro-hubs have
a limited storage capacity Cs. In this section, we present the general model for several vehicles. In our
computational study in Section [5] we focus on one vehicle only.

We model our problem over a discrete time horizon T' = {0, 1, ..., Tinae } representing one working day.
Service time of the vehicle starts at time step 0 and ends at Tinqz. Inspired by the work of [Neumann-
Saavedra et al.| (2016)), we make use of a time extended network for the formulation of our problem. In
such, nodes are duplicated per time step and arcs are constructed correspondingly. To this end, let ¢; ;
denote the integer travel time between two nodes i, j € Vo U Vg, ¢ # j. Then, we extend the set of
physical nodes in the following way: For each node i € Vo U Vi we create one duplicate per time step
t € T and denote this node as (i,t), Vi € Vo UV, V¢ € T. With these duplicated nodes, we can define
the set of arcs on which any vehicle k € K is allowed to travel as:

Ag = {((i7t)7 (],E)) | t=t +ti5, Vi,5 € VoU Vg, vt,teT: t> t} .
Furthermore, we define the set of arcs on which parcels p € Ps for all s € S are allowed to travel as:
Ap == {((i,1),(4,1)) | t=t+tiy, Vi,j € Vu, Vt,t €T : T >t}.

That is, parcels can be transported between any micro-hubs but are not allowed to enter the depot.
Further note that parcels can only travel along arcs when loaded onto a vehicle. Finally, we define the
set of waiting arcs as those arcs linking the same micro-hub between two following time steps:

Aw = {((,¢), (i, t + 1)) | Vi € Vu, Vi, t +1 €T},
and the waiting arcs at the depot are defined by:
Av, = {((0,t),(0,t+1)) | Vt,t+1€T}.

Note that arcs only go forward in time by construction.



Notation Description

S set of scenarios

Ps probability of occurence of scenario s € .S
T ={0,1,..,Tnaz} time horizon in equidistant time steps

Vo = {wo} depot

Vy set of micro-hubs

P, set of parcels in scenario s € S

K set of vehicles

Ck maximum vehicle capacity

Cy maximum micro-hub capacity

Tp length of the time window for orders

Tp release time of parcel p € P;

0p pickup hub of parcel p € P

d, delivery hub of parcel p € P;

VK vehicle velocity

i j travel time between nodes 7 and j as an integer value, i,5 € Vo U Vg
Ay set of arcs allowed for vehicles

Ap set of arcs allowed for parcels

Aw set of waiting arcs between micro-hubs
Ay, set of waiting arcs at depot

Table 2: Parameters and sets for the model.

Decisions are made on two stages. The first stage concerns the long-term planning of vehicle routes.
Although demand varies from day to day, vehicles are to follow a fixed, consistent schedule. For this, we
introduce the first stage decision variables mﬁ-’t)’(j’u) for each k € K. It is defined as:

% 1, if vehicle k travels directly from node (i,¢) to node (j,u),
L(i,t),(jyu) *=

0, otherwise.

The second stage concerns the operational daily planning of which parcels to serve. Therefore, we use a
binary second stage decision variable a, s for all p € Ps to decide whether parcel p is served in scenario
s € S or not:
] 1, parcel p is served in scenario s € S,
ps 1= 0, otherwise.
We further consider binary second stage decision variables for parcels to decide which arcs they use on
their itineraries:

zf'. b Gare = {1, if parcel p € P; travels directly from node (¢,¢) to node (j,u) in scenario s € S,
2, \J,u),8

0, otherwise.

The objective of the model is to maximise the expected number of delivered parcels.

3.3.2 The Stochastic Two-Stage Model

With the notation above we now state the two-stage stochastic integer program for consistent routing
in collaborative urban delivery as follows. Let x, zs, and as be the vectors with entries defined as above.



Then we are looking for a solution of the form (13 (%s, GS)ses) to the two-stage stochastic program:

max 370 3 ape (2-SP)

seS pEPs
s.t. (z,2s,as) €Cs Vs €S,

where Cs represents the feasible set corresponding to scenario s defined by Constraints to
following below. The objective of maximises the expected amount of parcels that can be served,
according to the probability of occurence of each scenario. Note that the first-stage decision variable x is
invariant with regard to the resulting scenario. Thus, the following constraints ensure a feasible routing
for the vehicles for any demand realisation. Constraints and ensure that each vehicle starts and
ends its tour at the depot. That a vehicle can only start its tour there, and not at any micro-hub, is
guaranteed by Constraints . Through Constraints each vehicle leaves the depot at most once, i.e.
vehicles do not return to the tour during their route. Together with the flow conservation constraints in
Constraints , this prohibits vehicles to visit the depot during service.

k
Z Z(0,0),(j,u) = 1 Vk € K, (1)
((0,0),(u)€AK
> (i.0),(0. Tya) = | Vk € K, (2)
((4,t),(0,Trnax)) EAK
> .0y () = 0, Vi € Vu,Vk € K, (3)
((6,0),(Gu) EAK
0,0,y < 1 Vk € K, (4)
((0,6),(J,u) EAR \(Aw UAY,)
k k .
oG = D, Thw.o Vi€ VaUVe,VkEK,
((i,6),(Gw)) EAK ((Gru), (i) €A
Vu € T\{0, Trmaz}- (5)

The following Constraints @ to are concerned with the routing of parcels, that does depend on
the resulting scenario. For this reason, all following constraints must be kept for any demand realisation
s € S. Constraints @ ensure that each parcel has to start its itinerary at its pickup micro-hub. In
order to avoid unnecessary shipment, Constraints @ guarantee that each micro-hub is visited at most
once by a parcel. In the case where pickup and delivery customer are mapped to the same micro-hub,
no transportation by vehicle is needed. This is captured by Constraints . Constraints @D and
state that each parcel that is served must leave its pickup hub and enter its delivery hub. Note that
with this formulation parcels must leave their pickup hub at time ¢ = 0 and enter their delivery hub at
time ¢ = Tinae. However, this may be satisfied via waiting arcs such that physical leaving and entering
may happen later and earlier, respectively. Constraints state the flow conservation constraints of
parcels at micro hubs.

21,0), s = O Vp € P,Vs € S, (6)
((4,0),(j,u)) €A p,iFop
(it Guys S 1 Vj € Vu,Vp € P,Vs € S, (7)
((5,1),(J,u)EAP\Aw
Zg)i,t),(j,u),s =0 V(Z7t)3 (.77 ’LL) € AP\AWa
VpeP:op:dmvSeS’ (8)
Z Z0p,0),(ru),s = P8 Vp € PVs €S, (9)
((0p:0),(5w))€Ap
Z Z;(Divt%(dvamaz),s = Qps Vp € P,Vs €S, (10)

((i:t>v(dvamaw))€AP
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> i) Grus = > o). (irt).s VI € Vi, Vp € P,
((4,1),(4,u))EAP ((Jyu),(3i,t))EAP

Vu € T\{0, Tmaa},Vs € 5. (11)

Parcels can only travel along some arc if some vehicle travels along it, as they cannot move independently
but have to be transported by vehicles. To this end, Constraints (12) link the routes of parcels to those
of vehicles.

k . .
Zfi,t),(j,u),s < Z T(i,t),(5,u) V((’L,t), (]/LL)) € AP\AW7
keK

Vpe P,VseS. (12)

To not exceed vehicle capacity constraints, we have to control the maximum load capacity on vehicle
arcs, which is done with Constraints (13). Limited micro-hub capacity is controlled via restricting the
load on waiting arcs through Constraints (14)).

k . .
D> 2 e SOk Y TG V(1) (w) € Ap\Aw,

peP keK

Vs €S, (13)
D 2w < C ¥ (i), (,w) € Aw,
peEP

vVt € T\{0, Trnaz},Vs € S. (14)

Constraints and ensure that no parcel is transported between micro-hubs outside its delivery
time window, i.e. not before the parcel is placed nor later than delivery time promise.
20, Gas = 0 V((6,1), (4, 1)) € Ap\Aw,
VieT :t<rpVpeP,
Vs e S, (15)
Zf)i,t)’(j,u),s =0 V((’L, t)7 (]7 u)) € AP\AW7
VueT:u>r,+Tp,
Vp € P,Vs € S, (16)
Finally, Constraints to state the domain of the decision variables.

w](ci,t),(j,u) € {Oa 1} V((l,t), (]7 u)) € AKa

Vk € K, (17)

Zgji,t),(j,u),s € {07 1} V((Z, t)a (]v u)) € APa
Vp € P,Vs €S, (18)
ap,s €{0,1} Vpe P,Vse€ S. (19)

3.3.3 The Deterministic Second-Stage and Single-Stage Model

Although demand is not known at the first stage, the two-stage program allows us to find a vehicle
routing schedule that maximises the expected number of fulfilled orders. Based on this schedule Z, the
actual flow of parcels can be planned at the second stage once demand is revealed. For this, we define
the deterministic second-stage model for a given vehicle routing Z and a realised demand scenario s as
follows:

max Z ap,s (2nd-SP)

pEPs

st. (&, z2s,as) € Cs.

11



The feasible set C5 is defined as above, Constraints to , with the only difference that Z is treated
like a given value instead of a decision variable. The objective of Equation is to serve as many
parcel requests as possible.

In Section [] we present a scenario decomposition heuristic which requires solving the routing of
vehicles and the flow of parcels simultaneously for a given realised demand scenario. To that end, we
define the deterministic single-stage problem for a specific scenario s € S similar to Model as:

max Z ap,s (1-SP)

PEPs
s.t. (xs,2s,as) € Cs,

where now x5 constitutes a scenario-dependent decision variable.

4 Multiple Scenario Approach

Finding a consistent vehicle routing schedule between the micro-hubs is a difficult problem for many
reasons. First, it requires solving a combinatorial optimisation problem on the first stage. It includes
solving a VRP, and hence is a NP-hard problem. Second, the first stage solution must respond to
the uncertainty of the second stage. The extended two-stage model where all scenarios are considered
simultaneously cannot be solved directly within reasonable time, even for small instance sizes. We
hence require an heuristic approach to reduce the problem size. Scenario-decomposition techniques are
inherent to two-stage stochastic programs which naturally can be decomposed into scenario-dependent
problems. Thus, we decide to use a multiple scenario approach to derive a consistent first stage solution.
We introduce the general framework of the MSA in Section I} At its core, a consensus functions
assesses several scenario-dependent solutions to detect common patterns among individual solutions.
The consensus function thus represents the most important component of the algorithm. In Section 1.2}
we present different consensus functions analysing different aspects of the individual solutions.

4.1 General Framework

In this section we present the MSA which was introduced by Bent and Van Hentenryck (2004). In
Algorithm [T] we state the pseudo code of the algorithm, which we explain in the following. The MSA
makes use of a set of several sampled scenarios that represent potential realisations of the uncertain
demand, denoted by S. For each scneario s € S the scenario-dependent objective function and feasible
set are denoted by fs and Cs, respectively. In step 1, the deterministic single-stage model is
solved to optimality for each of the sampled scenarios (via Gurobi, see Section , resulting in an
objective value (zs, zs,as) for all s € S. Then, in step 2, each of these individual solutions is evaluated
with a consensus function g(+,-) that compares how similar this solution is to any other solution. The
choice of the consensus function plays a major role within MSA as it significantly influences the solution
the approach produces. For a pair of scenarios s and s, the consensus function g(xs,zs) compares the
solutions corresponding to the first stage, s and zs. The MSA assigns a score o(s) to each scenario
s € S which is determined as the sum of all values of the consensus function between s and any other
scenario § € S\ s. In step 3, the scenario with best score is chosen. The solution of this scenario shows
the highest similarity to other scenario-dependent solutions according to the consensus function g. This
is the reason why the choice of g mainly characterises the resulting solution. Note that depending on
the definition of g, the “best” score may either be the minimum or the maximum score. This will be
detailed below when introducing consensus functions. Finally, the solution of the scenario with best
score is selected as consistent first stage solution of the two-stage stochastic program .

4.2 Consensus Functions

In this section we elaborate several consensus functions that aim to detect problem-specific similarities in
the scenario-dependent solutions. According to the assessment by the consensus function, the MSA then
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Algorithm 1: Multiple Scenario Approach

Input: A set of possible scenarios S with an objective function fs and a feasible set Cy
Vs € S; and a consensus function g(-, -).

1. Vs € S (xs,2s,a5) := argmax{z ap,s 8.t. (x,2,a) € C’s} 1-S8P).

pEP;

2. Vs € 5:0(s) =D 5cq\s 9 (Ts,75).

3. Choose § € argmin {o(s)}.
sesS

Output: z; as solution to the first stage of (2-SP)).

derives a consistent first stage solution. Recall that in the example above (Section [3.2]) both micro-hubs
are visited, yet not all parcel orders can be fulfilled. In order to be flexible with respect to uncertain
pickup and delivery requests, first stage solutions need to balance various aspects. These are the order
of visited micro-hubs, direct connections between micro-hubs, the reachability among micro-hubs, and
the arrival time at micro-hubs.

micro-hubs should be visited in a meaningful order allowing to transport as many of the realised daily
parcel requests as possible. Many parcels have to be first picked up at different micro-hubs, and then
delivered to other micro-hubs. Hence, it makes a difference in which position of the tour a micro-hub
is visited, and which micro-hubs are scheduled before and next. Thus, the order of micro-hubs is an
important characteristic of a solution. Not only the entire sequence is of relevance, also direct connections
between micro-hubs play a role in how many parcel can be delivered. We thus compare direct connections
between micro-hubs to detect similarities among solutions. Further, a good first stage solution should be
able to transport parcels from any micro-hub to any other micro-hub. Thus, a high reachability between
micro-hubs is of importance. Moreover, vehicles should arrive at micro-hubs neither too early (to not
miss later arriving parcels), nor too late (to respect customer time windows). This is why we consider the
arrival time at micro-hubs as another comparison criterion. We design one consensus function for each
of the mentioned aspects (order, direct connections, reachability, arrival time), presented in Sectionm
to Section [4.2.51 We conclude this section with an illustration of the consensus functions in Section [4.2.61

4.2.1 Original Consensus Function: Comparing Arcs

The first consensus function makes a full comparison of solutions and is the canonical choice in the MSA
as it originates from |Bent and Van Hentenryck| (2004). It compares two solutions exactly arc per arc in
the time extended network. With this, it is straight forward, and neglects any problem specific properties,
To do so, the consensus function compares the first-stage decision variables of any two scenarios s and
S entry-wise. For ease of notation, we define:

i = {((0,1), (J,u), €) | (i,1), (j,u) € Ak, c € K}, (20)

and let a € @k represent the indices for vehicle ¢ € K and vehicle arc ((3,t), (j,u)) € Ax. Then, for
each arc in the time extended network, the consensus function considers the absolute difference between
the two solutions zs and xs:

g(zs,x5) 1= Z |Ta,s — Ta3] - (21)

a€ A

This is an exact comparisons of tours concerning space and time. The consensus function takes value 0
only if the routing in two scenarios is exactly the same. A small deviation in time for example already
leads to a high value of the consensus function. Using this consensus function, the scenario solution with
minimal score is rated best since this is the one most similar to other scenario solutions. We will refer
to this consensus function as BvH.
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4.2.2 Comparing the Order of Micro-Hubs

Motivated by the idea that two tours that are equal despite a time shift of a few minutes can still be seen
as quite similar to each other, we develop other consensus functions being less restrictive. An option to
compare similarity of routes in space and time in a softer variant is to use the Hamming distance. The
Hamming distance compares the position of micro-hubs in a tour between two solutions. This way, the
MSA has an eye on the order in which micro-hubs are visited, which can have a large impact on how
many parcels can be served. For this, we create an ordered list of the micro-hubs a vehicle visits on its
tour. For scenario s € S let

hs := (hs,1,hs,2,y ooy hsny ), (22)

with ns € N and hs; € Vg Vi € [0,n;] denote the order of visited micro-hubs. Note that ns might be
different for different s € S. Further, as some micro-hubs might be visited several times, it is possible
that hs; = hs; for 4,5 € [0,n],7 < j. With this, we define the consensus function based on the
Hamming distance as:
min(ng,ng)
g(ms, .Iig) = Z ]l{hs,i:hg,i}' (23)
i=0

By considering the order of visited micro-hubs, we still compare routes quite tightly in time and space.
However, we drop the strict comparison of arrival times at micro-hubs and call two scenario solutions
already “identical”; if the order of visited hubs coincides. With the Hamming-distance-based consensus
function, the scenario with highest score is most similar to all other ones and hence rated best. We will
refer to this consensus function as order.

4.2.3 Comparing Direct Connections

Next, we propose a consensus function that focuses on similarity in space. For this, we consider tuples of
micro-hubs that are directly connected, i.e. that are neighboured in hs meaning that are visited directly
after each other. This reflects that for a consistent first stage solution it is relevant “from where to where”
vehicles continue their route. To compare a scenario s to another scenario s, we check for each tupel
(hs,i, hs,it1) In hg with ¢ € [0,ns — 1] if it is also present in hs. Formally, we define the corresponding
consensus function as:

9(@s, 5) == Z ]l{(hs,ivhs,iJrl)ghé‘}' (24)
i=1

To assess a scenario we hence check whether each direct connection between two micro-hubs is also
present in the other scenarios. Thereby, it does not matter at what time the vehicle traverses between
the two micro-hubs. Thus, we concentrate on evaluating direct micro-hub connections (i.e. blocks of two
micro-hubs) regardless of the arrival times. Two scenarios are evaluated as more similar, the more direct
hub connections they share. Therefore, the scenario with highest score is rated best. We will refer to
this consensus function as direct.

4.2.4 Comparing Reachability

The next consensus function we suggest softens the similarity in space to allow even more flexibility
in schedules as Equation . Instead of comparing direct connections between micro-hubs, we are
now interested in the reachability among micro-hubs. For this, we check if there is a path between two
micro-hubs at all - possibly with intermediate stops at other micro-hubs. For two scenarios, we compare
if a micro-hub can be reached from a certain different micro-hub. As mentioned above, the existence of
a path from micro-hub A to another micro-hub B largly influences whether parcels can be transported
from A to B at all. To this end, we define the reachability matrix R, € {0,1}V#!*IVEl for scenario s
with entries:

1, if there is a path from hub i to hub j in solution x5, (25)
0, otherwise.

R(i,7)s := {
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This allows us to compare whether micro-hub j is visited at some time after micro-hub . It is possible,
that other micro-hubs are visited in between. In other words, if R(4,5)s = 1, then micro-hub j can be
reached from micro-hub 7 in scenario s. To formalise this, we define the consensus function comparing
paths between hubs as:

g(@s,s) = > > |R(i,5)s — R(i, )] - (26)

i€Vy jEVH

The consensus function thus checks for two scenarios if there is a path from one micro-hub to another for
all pairs of micro-hubs. That way, two solutions are still compared with respect to time and space, but
in a much softer variant as in Equations , and . As in Section [4.2.1] the scenario solution
with minimal score is most similar to the other ones with respect to the reachability matrix. We will
refer to this consensus function as reachability.

4.2.5 Comparing Arrival Times

Lastly, we propose another consensus function that is of different nature than the previous ones. While
Equations (23) and and also Equation focus more on the spacial structure of a solution by
relaxing the comparison of arrival times, we now consider the arrival time at micro-hubs only. This is
motivated by the fact, that micro-hubs should neither be visited too early nor too late to transport as
many parcels as possible despite their release times and delivery deadlines. More precisely, we compare
which micro-hubs are visited in the same hour of the service time window. To formalise this, we define

. (t) := {hs,; € hs | arrival time at micro-hub h,; lies in [t,¢ + 60]}, (27)

as the set of micro-hubs that is visited in hour [¢,t 4 60] in scenario s. Then, as consensus function
between two scenarios, we count the number of micro-hubs that are visited within the same hour using
the following definition:

g(ms,xg) = Z Z ]].{he‘;fg(t)}. (28)

t€{0,60,...,Tmax —60} h€ s (t)

This consensus function ignores any spacial patterns of the solution but aims to detect whether certain
micro-hubs are often visited early or late, respectively. Due to its definition, the scenario with highest
score is chosen to be the most similar one. We will refer to this consensus function as time.

4.2.6 Example

We conclude this section with a short example illustrating the different consensus functions. We consider
two scenarios, Table [3] shows the order of visited micro-hubs as well as corresponding arrival times at the
micro-hubs. As the arc-based consensus function compares each arc in the time-extended network, it is
too large to display. For the remaining consensus functions, Table E| illustrates the different concepts.

. visited micro-hubs (h;) 1 2 3 4
scenario 1

arrival time 20 40 65 85
scenario 2 visited micro-hubs (hy) 2 3 1 4
arrival time 30 55 &85 110

Table 3: Order of visited micro-hubs and corresponding arrival times in two exemplary scenarios.

The original consensus function BvH takes value 0 since no arc is used in common in the two scenarios.
Only micro-hub 4 is at the same position in the two scenarios. Thus, consensus function order takes
value 1. Consensus function direct takes value 1 since there is one common direct connection between
micro-hubs. In both scenarios, the vehicle visits micro-hub 3 after micro-hub 2. Consensus function
paths compares for which pair of micro-hubs there is a path in the solution, and takes value 4 in the
example. Here, four paths are shared: in both scenarios, the vehicle reaches micro-hub 4 from icro hubs
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Consensus Function Scenario Illustration g(z1,z2)

—

BvH 9 Hxl —332”1 0
1 1 2 3 4

order 9 9 3 1 1 1

direct 1 2 3 4 1
2 2 3 1 4
3 l

reachability 4

2 2 3 1 4
1 1% hour: 1,
i 2nd hour: 3, 4 9
e 9 1%t hour: 2, 3
274 hour: 1, 4

)

Table 4: Illustration of different consensus functions.

1, 2, and 3, and micro-hub 3 from micro-hub 2. Consesnus function time checks which micro-hubs are
visited within the first, and second hour. micro-hubs 2 and 4 are visited within the same interval, hence
the consensus function takes value 2.

4.3 Implementation

In this section we explain how the different consensus functions are evaluated in our computational
study. For each consensus function, we choose the best solution among ten trials. For this, we proceed
as follows. First, we generate a set of 20 training scenarios (see Section . Each of these scenarios is
solved using model implemented in Gurobi 9.1. (Gurobi Optimization|(2021)). For optimisation
in Gurobi, we set a time limit of 2 hours. All instances (but very large ones, see Section for details)
are solved to optimality within this time limit. We further provide a feasible starting solution in which
the van stays in the depot, and hence no parcels are transported. Then, the different consensus functions
are applied to determine the corresponding MSA solutions. This procedure is repeated ten times, we
thus derive ten MSA solutions for each consensus functions. They are evaluated on a new set of 20
test scenarios using the deterministic second-stage model , and average objective values are
computed. We then choose the best MSA solution as the one with highest average objective value. This
way, one “best* MSA solution is derived for each consensus function. For final evaluation, these best
MSA solutions are assessed on 100 new generated scenarios with the deterministic second-stage model
, and objective values are averaged per consensus function.

5 Computational Study

In this section we present the experimental setup and results of our computational study. In Section [5.1]
we explain how instances are generated. In Section [5.2] we introduce benchmark solutions to assess the
solutions obtained by our approach. In Section [5.3] present our computational results.

16



5.1 Instance Generation

The following explains how we generate different possible demand scenarios. We assume demand to be
distributed over a square city area with a radius of r = 10 (km). We motivate our instances by the city
structure of Braunschweig, Germany, see (Ulmer and Streng(|2019). Braunschweig shows the classical
European city structure with a city centre and several ring roads. Several parcel locker stations of the
German post service DHL are placed on the main ring road in Braunschweig. Inspired by this, we place
5 micro-hubs equidistantly on a circle with a radius of 5 (km), which is half of the city radius. Moreover,
with such a circular structure the micro-hubs are evenly spread over the city area. The depot is located
at the middle of the upper edge of town. Figure [4] gives an illustration of the circular location of five
micro-hubs and the depot in a square city. We assume that each micro-hub has a maximum capacity
of 20 parcels. One delivery vehicle conducts service between micro-hubs. In our computational study,
we assume the vehicle to be a large cargo bike with a speed of 25 (k¥m/n) and maximum capacity of 20
parcels.

For our experiments, we test different delivery promises and service time horizons. We investigate
three service designs: "instant" — instant delivery (60 min.) in a short horizon (240 min.); "fast" — fast
delivery (120 min.) in a medium horizon (360 min.), and "same-day" — delivery on the same day (480
min.) in a large horizon (480 min.). The latter is equivalent to not imposing customer time windows. We
use a discrete step size of 6 := 10 minutes in the time expanded network. The travel time ¢; ; between
two locations 7,7 € Vg NV is computed via the Euclidean distance between ¢ and j divided by the
vehicle’s velocity, and is then rounded up to the next multiple of §.

For each service design, we run our experiments with a varying number of parcels, |P| € {80,100,
120,140}. For each parcel request we sample a release time, a pickup store and a delivery customer
location within the city area. All parcels have a homogeneous volume of one. The release time of a
parcel is drawn uniformly over the time horizon T = {0, 10, ..., Tmee — 120}.

Pickup micro-hub (origin) and delivery micro-hub (destination) of a parcel are the micro-hub closest
to the corresponding pickup store and delivery customer, respectively. For spatial distribution of stores
and customers we consider two different demand patterns:

e uniform: Stores and customers are uniformly distributed over the entire city area. An example
of this customer distribution is shown on the right-hand side of Figure [d This is inspired by the
city structure of Gottingen, Germany, where stores can be found over the entire city area, and
inhabitants live both inside and outside he city centre.

e clustered: Stores and customers are clustered within the city. Inspired by the city structure of
Braunschweig, we designate the inner part of the city as city centre, the south-western part as
industrial area, and northern as well as eastern part as residential area. The exact layout is
shown on the left-hand side of Figure[d] Stores are located in the city centre and industrial area;
customers mostly in residential, but also in the industrial area. More details are presented in

Appendix

In Table [f] we summarise the parameter values used for scenario generation in the computational exper-
iments.

5.2 Benchmarks

We compare the solutions obtained by the MSA approach with the consensus function proposed in Sec-
tion [ to two benchmark solutions. First, we use a solution in which routing consistency constraints are
relaxed. To this end, we solve the deterministic single-stage model separately for each scenario.
As this is done scenario-dependent, we can determine vehicle routing and parcel flow simultaneously on
one stage. Given optimal solution for this "daily" problem, this constitutes an upper bound to the MSA.
Since this solution requires replanning on a daily basis, we refer to this as the daily solution.

Second, we implement a practically-inspired fixed solution that aims on a high flexibility and reach-
ability among micro-hubs. The solution should allow to reach all micro-hubs from any micro-hub, and
further should not loose too many time between any two visits. Therefore, we suggest a circular route.
The vehicle leaves the depot and visits each micro-hub, in ascending order. When the last micro-hub is
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Description Notation Instant Fast Same-Day

service time horizon Trax 240 360 480
delivery promise Tp 60 120 480
nr. parcels |P| 80, 100, 120, 140
demand pattern — uniform, clustered
nr. micro-hubs Vi | 5

nr. vehicles | K| 1

max. capacity micro-hub Cy 20

max. capacity vehicle Ck 20

vehicle velocity VK 25

parcel volume Up 1

length of discrete time step ) 10

Table 5: Parameter values used in computational experiments.

- )
¢ S ¢ | L city centre
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Figure 4: Example of demand structure uniform (Lh.s.) and clustered (r.h.s.) with 60 parcel
orders.

reached, the vehicle continues to micro-hub 1 to close the circle. Instead of traversing the same circle
again, the vehicle turns and takes the same route back to the depot, visiting all micro-hubs again, but
in descending order. This guarantees that not too much time is needed for delivery between two micro-
hubs. If the service time horizon is longer than the total tour length, the vehicle starts its tour such that
the tour finishes at Tyuq.. This is motivated by the idea to increase consolidation opportunities: visiting
micro-hubs at a later point in time may allow to transport more parcels, as more demand will arise
during the course of the day. In Figure@ we provide an illustration of the fixed solution for 17,4, = 360.

5.3 Computational Results

We present our computational results in the following. In Section [5.3.1] we conduct a method analysis,
investigating the effect of different service designs and demand patterns. We further assess the value of
micro-hubs as well as the cost of consistent routing, and analyse two exemplary first-stage schedules. In
Section [5-3.2] we analyse the solution method by looking at the different consensus functions in more
detail, and shedding a light on very large instances.
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Depot Location Arrival Departure
depot — 120
micro-hub 1 140 150
micro-hub 2 160 170
micro-hub 3 180 190
micro-hub 4 200 210
micro-hub 5 220 230
micro-hub 1 240 250
micro-hub 5 260 270
micro-hub 4 280 290
micro-hub 3 300 310
micro-hub 2 320 320
micro-hub 1 340 330
depot 360 —

Figure 5: Fixed solution for T;,,,; = 360, in minutes after the start of the service horizon.

5.3.1 Problem Analysis

We investigate the average service rates that are obtained by the MSA and benchmarks solutions, and
derive various insights from this. For each service design (instant, fast, same-day) we compare our best
performing consensus function to the original one from Bent and Van Hentenryck| (2004) (BvH), as well
as the two benchmark solutions. Figure |§| shows the results for uniform demand on the left-hand side,
and for clustered on the right-hand side. In the following, we look at the impact of the different delivery
time promises and the different (spatial) demand patterns. We further analyse the value of consolidation
at micro-hubs and evaluate the cost of routing consistency.

Service Designs. With an instant delivery service design, with our approach about 36.79% of all
parcel orders can be delivered on uniform instances and 36.74% on clustered instances. However, the
daily, upper bound, solution also permits to serve only 43.91% (on uniform) and 41.17% (clustered) of
all parcel orders on average, respectively.

In the service design of fast delivery, more time is available, resulting in approximately 74.20%
parcels being served with our approach on uniform demand, and 51.06% parcels on clustered demand.
This clearly outperforms both the fixed solution, but also the original consensus function for both demand
patterns. Because of the longer time horizon, the number of arcs in the time expanded network is much
higher than in the instant service design. Thus, it is less likely for the original consensus function to
detect common arcs. This is the reason why it performs significantly worse than our consensus functions
compared to instant delivery (in relative sense). The fixed solution is very restrictive and lacks flexibility.
Due to the limited delivery time promise of two hours, it hence does not allow to serve many parcel orders
in a fast service design.

In the service design of same-day delivery, all solutions perform well because of the relatively high
flexibility in time. We reach nearly day-optimal solutions with our approach: with our consensus func-
tions we are able to serve 83.90% of all parcel orders on uniform demand, and 56.18% of all parcel
orders on clustered demand. For both demand patterns, this is very close to the daily solution: with our
solution 0.31% parcels are delivered less on uniform demand, and 0.37% parcels less on clustered than
with the daily, upper bound solution.

To summarise, the average service rates obtained by our approach are higher than the ones from the
original consensus function and benchmark solutions for any service design. Average service rates are
generally higher for service designs with softer time constraints due to increased flexibility. From this,
we deduce that the more time is available, the better MSA performs. With same-day delivery the MSA
reaches objective values being nearly day-optimal.
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Figure 6: Average service rates on uniform (Lh.s.) and clustered (r.h.s.) demand.

Demand Patterns. While our approach outperforms benchmark solutions and the original consen-
sus function for any service design and both demand patterns, we observe difference for uniform and
clustered demand in Figure[6] The average amount of parcels that can be delivered on uniform instances
is much higher than on clustered instances, especially in a fast and same-day service design. In the
clustered demand setting, some micro-hubs show to have more pickup requests, while others mainly
serve as drop-off location. We hence observe a repeated sequence of picking up and dropping off parcels
(see Section for more details). This indicates, that the vehicle has a low fill rate when returning
from a drop-off micro-hub to pick up new parcels at a different micro-hub. Also, due to this structure,
more time is spent on the street. This explains the lower service rates for clustered compared to uniform
demand.

However, the average gap of our solution to the daily one is smaller for clustered demand. With
instant delivery, the MSA deviates by 18.03% from the daily solution for uniform demand, while the
gap is only 12.13% for clustered demand. With same-day delivery, the MSA deviates by 0.79% from
the daily solution on clustered demand, which is about a third less than on uniform demand. We hence
conclude that the MSA yields results closer to the daily upper bound if more structure of the underlying
demand scenario is known.

The Value of Micro-Hubs. We also analyse the value of micro-hubs, i.e. the value of consolidation
in a local transportation system. In Figure[6] we see that average service rates are quite low for an instant
delivery service, even for the upper bound solution. This indicates that it is difficult to use micro-hubs
for serving a high number of parcels within a short delivery time promise, even without consistent routes.
For such business models, the gain in consolidation is limited due to narrow delivery deadlines and direct
transportation may be the more suitable choice. This changes for fast and same-day delivery: due to
more temporal flexibility, high amounts of parcels can be delivered when using the MSA or the daily
solution. In contrast, the fixed solution leads to a very high loss in service quality. Using the right
strategy, consolidation at micro-hubs is hence worthwhile for service designs with longer delivery time
promises, especially on uniform demand.
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The Cost of Consistency. In this section we investigate the cost of consistency of our solution as
well as the original consensus function and the fixed benchmark. For this, we assess the average relative
gap of these solutions to the daily solution, where consistency constraints are omitted. To this end, we
compute the relative gap of the MSA solutions as well as the fixed solution to the daily solution. Let
Zdaity and z denote the objective value of the daily and the MSA /fixed solution, respectively. Then the
relative gap of the MSA /fixed solution to the daily solution is
Zdaily — %

o (29)
In Figure |Z| we display the relative gaps of our best consensus function, the consensus function BvH,
and the fixed solution, averaged over all instances. It is striking, that our approach clearly outperforms
both the original consensus function BvH and the fixed solution on all instances on average. With an
instant service design, the first-stage solution produced by our approach deviates by about 13.38% from
the daily solution. In contrast, consensus function BvH deviates by 14.95%, and the fixed solution by
19.05%. For fast delivery, the average relative gap of our approach can be reduced to 6.98%. With a
same-day delivery promise, the solution found by our approach allows to deliver only 0.44% parcels less
than with the daily solution. Thus, consistency in tours comes to some cost for instant and fast service
designs. For same-day delivery however, consistent routes can be implemented without loosing much
service quality compared to a non-consistent daily re-optimised routing. With the right strategy, it is
therefore possible to implement consistency at very low “cost”.

Routing Structure. To conclude our computational analysis, we examine two exemplary routes in
more detail. We consider instances with 120 parcels and the same-day service design, and investigate
those consensus functions performing best for these instance classes. This is order for uniform demand,
and BvH for clustered demand, for details see Appendix [A-2] Figure [I0] Note that BvH performs better
than other consensus functions for this instance as an exception, see Section The resulting routes
are displayed in Figure[§] micro-hubs are represented by two half circles. The left-hand side illustrates
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Figure 8: Routes produced by the MSA with consensus function order and BvH for large instances
with 120 parcels and uniform and clustered demand, respectively.

the relative amount of pickup requests that originates from that specific micro-hub on average over 200
instances. Analogously, the right-hand side illustrates the relative average amount of delivery requests
destined to this micro-hub.

The upper part of the figure shows the route produced by the MSA with consensus function order
for uniform demand. First, we see that — as demand is uniformly distributed — all micro-hubs have
approximately the same amount of parcels that have to be picked up there, and delivered to this desti-
nation. Second, we see that the vehicle waits at the depot at the beginning of the service time horizon
and visits the first micro-hub at minute 60. In the beginning of the service time horizon, not many
parcel requests are present, and additionally they are distributed uniformly over all micro-hubs. It hence
becomes meaningful to wait some time at the beginning until a sufficient amount of parcel requests has
been placed to make it worthwhile to visit a micro-hub. The vehicle first visits micro-hubs 2, 3, and 4.
Then, it goes back to micro-hub 2 and further conducts a circular route: it travels a clockwise circle
three times before going back to the depot. Since pickup and delivery locations are uniformly spread,
such a circular structure provides a time-efficient route visiting many micro-hubs, and thus allowing to
deliver many of the unknown parcel requests.

The lower part of Figure [§] shows the route produced by the MSA with consensus function BvH for
clustered demand. We clearly see the structured demand pattern: Most parcels originate from micro-hub
3, some from micro-hub 2 and even fewer from micro-hub 1. Those micro-hubs are located in the city
centre or industrial zone and hence are mainly used as pickup locations, cf. Figure @ micro-hubs 4 and
5 are located within or close to residential areas, and consequently barely have pickup requests (4.24%
and 2.28% of all parcel requests, respectively). Parcels’ destinations are spread more evenly among
micro-hubs. Most parcels are destined to micro-hubs 2, 3, or 5 respectively, serving the industrial zone,
the north-western and eastern residential areas. micro-hubs 1 and 4 have slightly less delivery requests,
serving the north- and south-eastern residential area. The route produced by the MSA with consensus
function BvH captures this demand pattern: the vehicle first visits micro-hubs with most pickup demand
(micro-hubs 2 and 3) and then delivers the collected parcels to their destinations. After that, it comes
back to micro-hubs 3 and 2, to collect more parcels, which are again delivered. This process of collection
and delivery of parcels is repeated until the service time horizon ends.

This example shows that the MSA is able to detect common patterns in the underlying demand
scenarios. It utilizes this to derive a consistent first stage solution that adapts to this structure. It thus
provides a powerful tool to develop a consistent route between micro-hubs. The method is even more
powerful if some underlying demand pattern is available since it then can make use of these structural
similarities.

5.3.2 Method Analysis

The Value of Our Consensus Functions. Next, we discuss the performance of the different
consensus functions proposed in Section [£.2] in more detail. To get a better understanding of the differ-
ent consensus functions, we calculate the average relative gap to the daily solution for each consensus
function. The results are depicted in Figure [)] We further count how often each consensus function
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Table 6: Count of how often which consensus function yields the best objective value.

yields the best objective value, depicted in Table [f] Note that on some instances several consensus
functions yield the same best objective value.

We see that the MSA clearly outperforms the fixed solution and the original consensus function,
regardless of the consensus function choice. The fixed solution has a gap of 16.72% to the daily solution
on average, the original consensus function a gap of 8.82%. Although the different consensus functions
uncover different structures in the solutions, they all yield similar objective values and gaps, which vary
between 7.68% and 8.02%. Thus, there is no unique best consensus function, each of them yields the best
solution between 6 to 9 times. Our consensus function outperform the original one BvH in 91.66% of the
investigated cases. On very few instances only, the original consensus function BvH performs better. We
derive the following insights from this. First, the MSA is an effective method to derive consistent master
tours in a stochastic environment compared to a fixed solution. Using MSA reduces the gap to the
daily-optimal solution by 9.04% compared to the fixed circular route. Second, making use of problem-
specific properties in the consensus function increases the effectiveness of the method. On average, the
novel consensus functions we propose perform up to 1.54% better than the original consensus function
suggested by Bent and Van Hentenryck| (2004).

Suboptimality on Large Instances. We observed that the model Equation can not be
solved to optimality by Gurobi within the given time limit of 2 hours for instances with uniform demand
and 140 parcels If Gurobi did not find the optimal solution, the current best (possibly sub-optimal)
solution was used for processing the MSA solutions. Out of 200 training scenarios, only 43 were solved
to optimality within the given time limit. For 157 of the 200 training scenarios, Gurobi returned a MIP
gap of infinity, implying that either no objective bound is available, or no other solution different from
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av. obj. val. reachability direct order time BvH fixed daily

absolute  99.06 99.06 99.06  98.92 98.72 98.76 96.79
relative  70.76% 70.76% 70.76% 70.66% 70.51% 70.54% 69.14%

Table 7: Average absolute and relative amount of delivered parcels for large uniform distributed
instances with 140 parcels.

the starting solution (which has an objective value of 0) has been found. The remaining 5 scenarios have
a relative MIP optimality gap of 3.14%.

Although the single-stage model cannot be solved to optimality, the MSA — which takes these
sub-optimally solved instances as basis — yields better results than the daily solution, as can be seen in
Table m With the consensus functions reachability, direct, and order, the MSA leads to solutions
that are 2.38% better than the daily one on average. Note that the daily solution solves the single-
stage model separately for each scenario, hence the same problem of potential sub-optimality occurs.
This observation is striking: the MSA does not necessarily need optimally solved scenario-dependent
solutions to produce a consistent first stage solution that performs well — and even better than the daily
one — under different demand scenarios. In contrary, optimal scenario-dependent solutions might be
“overfitted” to a specific scenario, aiming to maximise the amount of delivered parcels on that specific
scenario. A non-optimal solution might be more flexible: although suboptimal in the specific scenario,
it may allow the transportation of more (unknown) parcels in a distinct scenario instead.

6 Conclusion

In this paper, we have analysed the value and functionality of consistent collaborative delivery with
micro-hubs for a local market. We have proposed a novel model formulation, a two-stage stochastic
integer program where on the first stage tours are determined and on the second stage parcels flows are
optimised. We have solved the problem using a multiple scenario approach. We have proposed four new
consensus functions that are designed to detect problem-specific similarities among scenario-dependent
solutions. The performance of the different consensus functions, the traditional consensus function and
two benchmark heuristics have been evaluated in a computational study. Our results show when and
how consistent tours for local same-day delivery can be beneficial.

There are several avenues for future research. We have found that with any of the investigated
consensus functions the MSA outperforms the fixed benchmark heuristic as well as the original consensus
function. However, there is not a unique best candidate, rather different consensus functions perform best
for different instance types and sizes. Future work may merge this to an “aggregated” consensus function
that either combines the consensus values or adaptively uses the individual ones. We have seen that
micro-hubs can be very valuable for deliveries within 2 hours. Future work may further investigate what
deliveries are suitable for consolidated shipping and which should be shipped directly. In our research,
we have focused on the single-vehicle case for moderately sized cities to analyse the functionality of
the MSA and the impact of consistent routes. Future work may extend the computational study to
larger cities and fleets. While the proposed model is already designed to capture multiple vehicle, it
is very likely that the second stage problems cannot be solved with standard methodology. Instead,
metaheuristics might be developed. Another extension could be a combination of the consistent delivery
with courier bikes, e.g., for delivering from shops to micro-hubs or from micro-hubs to customers as well
as delivering orders that cannot be served within the micro-hub framework. This would lead to a third
decision dimension about the routing of the courier bikes. Further, in this research we have assumed
that all parcels become known at once during the day. Future work may model the arrival of parcels
dynamically every day. This would replace the second stage of our model with a stochastic dynamic
process. Determining the consistent tour from a dynamic routing policy of the vehicles would be another,
currently unexplored, research opportunity. Furthermore, we have shown that our MSA allows to derive
a consistent tour performing not much worse than a daily re-optimised one, and additionally shows the
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advantage of computing the master tour only once. With this, the daily operational planning can be
reduced to the flow of parcels, and the costly routing of the full system can be omitted. For larger scale
instances, the decomposition of first and second stage actually leads to better performance compared
to a joint optimization without consistency. Thus, determining consistent subparts of a solution may
be advantageous even in cases where no consistency is required. Future work may analyse related
stochastic problems and how predetermining parts of the solution may improve overall performance.
Another interesting observation is that even though some scenarios of the MSA were not solved to
optimality for the larger size instances, the MSA still provided superior results. Thus, future work may
analyse in general the value (and necessity) of optimal scenario solutions in MSAs.
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A  Appendix
A.1 Clustered Demand Pattern

In this section we explain in more detail the clustered demand pattern. As shown in Figure@7 the city is
divided into city centre, industrial area, and residential areas. Pickup and delivery customer locations are
sampled as follows. Half of the pickup customer locations are generated uniformly over the city centre,
the other half is generated uniformly over the industrial zone. This is motivated by shops and companies
being located in these areas usually. As companies also might order goods or people might order parcels
to their work place instead of their home, a fourth of the delivery customer locations is sampled uniformly
within the industrial zone. Still, the majority of parcels is ordered to private households. Therefore the
remaining four quarters of delivery customer locations are distributed uniformly in the residential areas.

A.2 Detailed Analysis of Different Consensus Functions

In this section, we investigate the different consensus functions in ore detail. We are interested in which
consensus function performs best for each service design and demand pattern. For this purpose, Figure[I0]
shows the average relative gap to the daily solution of the MSA with different consensus functions as
well as the fixed solution per service design and demand pattern.

For uniform instances with instant delivery, reachability yields the best results. On average, it has
a gap of 16.18% to the daily solution. Also for the clustered demand pattern reachability performs
best for instant delivery, showing an average gap of 10.58% to the daily solution. If time is short as in
the instant delivery design, it is both important to drive efficient routes (i.e. to not loose too much time
on the streets) and to drive along arcs connecting relevant micro-hubs. Due to the limited service time
horizon, there is not a path from every micro-hub to any other micro-hub — reachability thus offers a
good criterion to find a solution that shows high similarity in the reachability between micro-hubs. When
investigating the different consensus functions for instant delivery, we further find that the consistent
tour produced by reachability has less stops than the ones produced by other consensus functions or
the fixed solution. Since flexibility with respect to time is limited, fewer stops — and possibly waiting
at micro-hubs — features the spacial consolidation such that several parcels can be loaded during one
stop. Further, in the master tours produced by reachability, the vehicle waits up to three times at a
micro-hub. Using other consensus functions, the vehicle waits either never or at most once per route.

For fast and same-day delivery reachability is not a good comparison criterion any more since at
time 0 every micro-hub is connected to every other micro-hub. For uniform instances with fast delivery,
direct delivers the best average objective values, deviating by 6.98% from the daily solution on average.
On these instances, the fixed solution performs particularly bad, leading to average objective values
about 36.24% worse than in the daily solution. On clustered demand, consensus function time shows
the smallest deviation of 8.21% from the daily solution with direct and order following closely. Since
in the fast delivery design, service time horizon as well as delivery time promise for parcel requests are
longer, time is less restrictive in the delivery process as in instant delivery. Up to 79.66% of all parcel
requests can be fulfilled on these instances. Analysing the individual solutions on uniform instances
with fast delivery, we find that many show a circular route pattern (see Section . Since direct
compares direct neighbours within routes, this consensus function is likely to detect such a circular
structure well. In the clustered demand pattern, some micro-hubs show to have more pickup or delivery
requests, respectively. It hence makes a difference when and in which order micro-hubs are visited. This
explains the good performance of time, direct and order on these instances. While time controls at
which hour a micro-hub is visited, direct compares direct neighbourhoods, and order considers the full
sequence of micro-hubs in a tour. Since those three consensus functions yield similar average objective
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Figure 10: Average relative gap to daily solution per consensus function and instance size.

values, this indicates that all three characteristics are important to find a robust consistent tour for fast
delivery on clustered demand.

For same-day delivery, order performs best for uniform, and BvH for clustered demand, yielding
solutions that deviate by 0.20%, and 0.58% from the daily solution on average. From Figure we
see that MSA performs much better on these large delivery time promises than on the smaller ones.
This can be explained by the fact that the more time is available, the easier it becomes to transport
the same amount of parcels. For uniform demand, the solutions produced by order are at most 1.26
parcels behind the daily solution; on average it differs by only 0.11 parcels. On average, the consistent
tour produced by MSA deviates by just 0.35% from a non-consistent scenario-dependent route. Further,
on instances with uniform demand and 80 parcels, we are able to fulfil more than 95.48% of all parcel
requests with any consensus function. For clustered demand we obtain results that are even closer to
the daily solution: on average of all consensus functions, the solutions produced by the MSA differ by
only 0.51 parcels from the daily solution on average. In this case, the MSA thus creates a consistent
master tour that reduces solution quality by only 0.46% on average compared to a daily re-optimised
inconsistent routing strategy.
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