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In this paper, we present the problem of assigning consistent time windows for the collection of multiple

fresh products from local farmers and delivering them to distribution centers for consolidation and further

distribution in a short agri-food supply chain with stochastic demand. We formulate the problem as a

two-stage stochastic program. In the first stage, the time windows are assigned from a set of discrete time

windows to farmers and in the second stage, after the demand is realized, the collection routes are planned

by solving yet a newly introduced multi-depot multi-commodity team orienteering problem with soft time

windows. The objective is to minimize the overall travel time and the time window violations. To solve our

problem, we design a (heuristic) progressive hedging algorithm to decompose the deterministic equivalent

problem into subproblems for a sampled set of demand scenarios and guide the scenarios toward consensus

time windows. Through numerical experiments, we show the value of considering demand uncertainty over

solving the deterministic expected value problem and the superiority of our approach over benchmarks when

it comes to reducing the routing cost as well as the inconvenience for farmers.

Key words : Agri-food supply chains, Time window assignment, Consistency, Two-stage stochastic

programming, Progressive hedging algorithm

1. Introduction

There is an increasing trend worldwide for schools, hospitals, and company canteens to source their

groceries locally, if possible. Products are picked up at farmers and transported to local distribution

centers or food hubs where the shipment to the local canteens takes place (Schmidt-Forth 2022,

USDA 2022). The reasons for this new local development are diverse (Palacios-Argüello et al. 2020).

First, buying locally can reduce the emissions and cost for transportation significantly. Second, the

quality standards of the products can be controlled more easily, as can the working conditions for

the farmers. Third, with a shorter supply chain, the food is usually fresher, and therefore, healthier.

Fourth, it improves public perception and trust, as it supports individual local farmers instead of

the big global players.
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With this new trend new challenges occur. The supply chain becomes shorter, but at the same

time more fragmented, as individual farmers may offer only a subset of groceries and in limited

quantities. Thus, the regular collection and transportation process of products from farmers to the

local distribution centers is not trivial and becomes an important cost factor, also given the rela-

tively high salaries for truck drivers. Furthermore, the smaller local suppliers are often responsible

for the entire process of farming and handling the shipping. Therefore, a seamless and reliable

operation is vital, to ensure that the farmers can work effectively. Here, timing is of particular

importance. Ideally, the time of the day when groceries are picked up does not vary because the

farmers need to ensure that the products are ready for pickup and at the same time, they need to

follow their already stressful daily routines without many additional interruptions (Truchot and

Andela 2018). The importance of this time consistency is amplified when considering that farmers

may provide products for several distribution centers, all operating their own vehicles, resulting

in multiple pickups per day. The goal of a company operating the food hubs is therefore to deter-

mine a consistent time window (TW) for each farmer that will allow efficient transportation while

keeping TW-violations at a minimum.

Setting TWs is challenging for a variety of reasons. Vehicles often visit several farmers per trip

to collect different products. Furthermore, vehicles from different distribution centers may visit

the same farmer on the same day. Thus, when setting TWs for farmers, the routing of the fleet

for all distribution centers has to be considered. While this is already a challenging optimization

problem, the difficulty is increased by demand uncertainty at distribution centers. There might be

days with low demand while on other days the demand might be higher than expected. Therefore,

the TW-decisions have to account for varying demand scenarios and consequently, for different

daily routing solutions. The resulting decision process is a combination of decisions made at the

tactical and the operational level of the planning.

We model the problem as a two-stage stochastic program where in the first stage, TW-decisions

are made. In the second stage, once the demand is realized, the daily collection and routing decisions

are made with the goal of minimizing the routing costs and TW-violations simultaneously. The

second stage can therefore be seen as a multi-depot multi-commodity orienteering problem with

soft TWs. As solving the full deterministic equivalent problem for several scenarios of realistic

sizes is computationally intractable, we design a heuristic solution approach based on a scenario

decomposition technique; namely the progressive hedging algorithm (PHA) of Rockafellar and

Wets (1991). Over a number of iterations, our (heuristic) PHA solves the individual scenarios and

derives a consensus first-stage solution that is fed in the next iteration of PHA. Over time, the

weight of the current consensus solution is increased, likely leading to convergence to a common

solution for all scenarios. As the second-stage decisions are by themselves very challenging, we rely
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on a matheuristic. Our approach solves a route-based formulation of the second-stage multi-depot

multi-commodity orienteering problem with soft TWs via a commercial solver by heuristically

generating a pool of routes based on demand scenarios.

We test our method for a variety of instance settings to analyze both methodology and problem.

We derive the following main insights:

• For small instances, our PHA provides solutions very close to optimality. For instances of

real-world size, it outperforms other scenario-based methods and heuristic policies for all instances.

• Compared to optimizing on expected demands, our policy reduces both travel time and supplier

inconvenience at the same time.

• “Soft” TW-consistency with rare and minor violations can be achieved at a cost increase of

about 3%. Guaranteed TW-consistency increases overall routing cost by about 7% in our setting.

• Wider TWs can keep the cost of consistency reasonable while narrower TWs can become

relatively costly.

The paper is organized as follows. In Section 2, we present the relevant literature. The problem

is defined in Section 3. Our heuristic PHA is introduced in Section 4. In Section 5, we present

the design of the experiments followed by the results in Section 6. The paper concludes with a

summary and outlook in Section 7.

2. Literature Review

In the following, we discuss the related literature. Our work considers the consistent provision of

TWs for farmers in an agri-food supply chain. First, we discuss the most relevant works and then

provide details on the two individual domains.

2.1. Most Relevant Studies

Our problem shows similarities with the TW-assignment vehicle routing problem (TWAVRP).

This problem was first introduced by Spliet and Gabor (2015) for a distribution network in which

deliveries of stochastic demands from a single depot occur during prearranged TWs on a regular

basis. TWs are selected with fixed lengths, before the customers’ demands become known, in

the first stage. Then, the routes are planned associated with a finite set of demand scenarios,

respecting the assigned TWs in the second stage, while minimizing the expected transportation

costs. Spliet and Gabor (2015) formulate the problem as a two-stage stochastic mixed integer

linear program and design an exact branch-price-cut algorithm to solve it. Following this work,

Spliet and Desaulniers (2015) present a discrete version of TWAVRP in which, associated with

each customer, there is a finite set of predetermined TWs to select and assign one TW to the

customer in the first stage. Similar to the original paper, Spliet and Desaulniers (2015) solve a

deterministic set-covering formulation of the discrete TWAVRP with an exact method. In another
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follow-up study, Dalmeijer and Spliet (2018) solve a new formulation of TWAVRP with a faster

branch-and-cut algorithm than the exact method in Spliet and Desaulniers (2015). TWAVPR with

time-dependent travel times is introduced by Spliet, Dabia, and Van Woensel (2018) who then

present a branch-price-cut algorithm for solving the instances from Spliet and Gabor (2015) with

the addition of time-dependent travel times. As an improvement over the exact methods by Spliet

and Gabor (2015) and Dalmeijer and Spliet (2018), Dalmeijer and Desaulniers (2021) design a

new branch-price-cut algorithm for solving TWAVRP. Subramanyam, Wang, and Gounaris (2018)

develop a branch-and-bound tree based scenario decomposition algorithm to solve TWAVRP and

discrete TWAVRP benchmark instances from Spliet and Gabor (2015), Spliet and Desaulniers

(2015), Dalmeijer and Spliet (2018), plus their own additional benchmark instances with a larger

number of scenarios. Martins et al. (2019) also consider a similar problem to TWAVRP in which

TWs are assigned to each product segment in the context of a multi-compartment vehicle routing

problem. However, instead of considering demand scenarios for finding consistent TWs, they assume

a multi-period planning horizon. Another extension to TWAVRP is the paper by Jalilvand, Bashiri,

and Nikzad (2021) in which the authors solve the smallest instances from Spliet and Gabor (2015)

with added stochastic service times by using a PHA.

Unlike all these studies, our problem at hand is assigning TWs for the collection of multiple

products from farmers in the context of agri-food supply chains where the stochastic demand is

at the distribution centers, meaning at the end of the routes. Thus, while the first stage decision

is similar, the second stage differs significantly. Instead of a vehicle routing problem with TWs,

a multi-commodity multi-depot orienteering problem with soft TWs has to be solved. Especially

having multiple depots is a characteristic known for making routing problems more challenging to

deal with (see the survey paper Montoya-Torres et al. (2015)).

Another related work is presented by Neves-Moreira et al. (2018). In the context of food retail,

Neves-Moreira et al. (2018) present a problem with stochastic demand and product-segment depen-

dent TWs for a distribution network in which products are delivered from a warehouse to retail

sites within the assigned TWs. Neves-Moreira et al. (2018) solve their problem with a matheuristic

which consists of a three-phase process of generating routes, solving a set-partitioning formu-

lation of the problem, and improving the routes. Unlike our approach, the routes generated in

Neves-Moreira et al. (2018) are restricted to direct trips with only one product, multi-location

routes that deliver the same product to all locations, or multi-product direct trips. Our underlying

problem also deals with multiple products. However, the TWs are assigned independently of the

products/commodities.
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2.2. Vehicle Routing for Agri-food Supply Chains

It is known that planning of the transportation of fresh products and agri-food grains from farmers

to end customers via local intermediary distribution centers or food hubs is an important aspect of

short agri-food supply chains (AFSCs). Transporting agri-food products has also attracted more

attention from both academia and industry as well as public authorities in recent years (Prajapati

et al. 2022). Food hubs are a special type of food distribution infrastructures where the collected

supplies (food products) from local/regional farmers are consolidated (or sometimes processed)

and then distributed to businesses such as grocery retailers and supermarkets, food and catering

services, or to institutional kitchens, e.g. school canteens (Palacios-Argüello et al. 2020). In spite of

all the attention given and changes applied to the local AFSCs, due to the ever-increasing demand

for (locally and sustainably grown) agricultural products (Yadav et al. 2022), there are still issues

that need to be addressed, such as how to manage the collection and distribution of the food,

trucks, and TWs (Prajapati et al. 2022). In their systematic literature review of AFSCs, Yadav

et al. (2022) list inefficient transportation as one of the main contributors to food waste/loss.

Moreover, they mention the presence of uncertainty in upstream and downstream stages of ASFCs

as a significant challenge in practical operations and in decision making processes. By looking into

the literature, one can see that the vehicle routing problem (VRP) has been one of the less explored

aspects of (short) AFSCs in academia (Yadav et al. 2022, Gu et al. 2021).

One of the few studies with the focus on VRP for AFSCs, which also provides an overview of

the recent literature on e-commerce AFSCs, is the work by Prajapati et al. (2022). The authors

investigate the problem of designing first-mile pickup of multiple products (food grains) from

farmers in the rural areas, transporting them to local distribution centers, and last-mile delivery

of those products from the centers to urban businesses. Their underlying framework is a two-

echelon distribution problem in which a central e-commerce platform makes the decisions regarding

the collection and delivery routes and trucks with the goal of minimizing transportation, product

damage, and carbon emission costs as well as penalizing the late pickups from distribution centers

and delays on deliveries to end customers. Gu et al. (2021) solve a multi-commodity two-echelon

distribution problem in the context of a short and local fresh product supply chain in which farmers

transport their supply to intermediary distribution centers with their own trucks. The centers

consolidate the products and deliver them to end users (school canteens and supermarkets) with

a fleet of homogeneous vehicles stationed at the centers. A central decision maker manages the

distribution centers and designs collection and delivery routes with the goal of minimizing the

total transportation cost of the network. In a smaller scale and only one echelon, Palomo-Mart́ınez,

Salazar-Aguilar, and Laporte (2017) study the problem of daily distribution of fresh fruits from a

single supplier to local customers via an in-house heterogeneous fleet of vehicles. In their underlying
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framework, it is possible to have more demand than supply (and consequently not satisfying all

customers’ demands fully), plus to split the demand for a product among the vehicles. The authors

model their problem as a multi-product split delivery capacitated team orienteering problem with

the objective of maximizing the profit from satisfying the demand. In the context of short AFSC,

our problem also considers split pickup and delivery (surveyed in Archetti and Speranza (2012),

Mor and Speranza (2022)) of multiple commodities (see the survey paper by Archetti, Campbell,

and Speranza (2016)). These characteristics are known to make the routing problems harder to

solve (Archetti, Campbell, and Speranza 2016). Besides the discussed differences in the routing

models, none of the aforementioned work considers uncertain demand as well as time consistency.

One important aspect of designing the distribution system of an AFSC is the policies for col-

lecting products from farmers. One policy is to let farmers (suppliers) bring their products to food

hubs. The work by Gu et al. (2021) is an example that uses this approach for collecting the com-

modities from suppliers in their two-echelon distribution framework. Another collection policy is

to have coordinated pickups of products from farmers and delivering them to food hubs via routes

(Palacios-Argüello et al. 2020). In route analysis for a network of local food supply chains, Bosona

and Gebresenbet (2011) compare the two policies and show that using the second policy reduces

the number of routes and the driving distance and total time of the routes. In our underlying

problem, we use the latter policy.

2.3. Consistency in Vehicle Routing

In our work, we search for consistent TWs to allow efficient routing in the presence of uncertain

demand. Consistency plays an increasingly important role in a variety of routing problems, as

consistency not only gains the trust of customers in the service but also allows for drivers to

perform less error-prone and better service with regular schedules (see Kovacs et al. (2014) for

an overview). Besides transportation and delivery routing, consistency plays an important role in

healthcare services where patients benefit from a regular schedule of visits, ideally from the same

nurse. In general, consistency can assume several forms and can concern customers and drivers.

From a customer’s perspective, consistency may be in the time a service takes place or in the driver

performing the service (see, e.g., Haughton (2007), Spliet and Dekker (2016), Song et al. (2020)).

In this paper, we focus on the former aspect. Respectively, for drivers, consistency might be in the

customers to visit, the areas to perform service (Zhong, Hall, and Dessouky 2007, Haugland, Ho,

and Laporte 2007, Carlsson and Delage 2013), or the daily routes they travel (Sungur et al. 2010,

Ackva and Ulmer 2022).

Ensuring consistency can be challenging for a variety of reasons. One of the most common causes

is uncertainty in the service process, as we discuss in the following. However, even if everything is
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deterministic, finding consistent solutions might be challenging, for example, not every customer

needs to be visited every day (see, e.g., Subramanyam and Gounaris (2018), Campelo et al. (2019),

Stavropoulou, Repoussis, and Tarantilis (2019)). Uncertainty usually manifests in the demand

(Haughton 2007, Crainic et al. 2011, Spliet and Desaulniers 2015, Spliet and Gabor 2015, Spliet,

Dabia, and Van Woensel 2018, Dalmeijer and Spliet 2018, Dalmeijer and Desaulniers 2021), in the

requesting customers (Zhong, Hall, and Dessouky 2007, Haugland, Ho, and Laporte 2007, Carlsson

and Delage 2013, Song et al. 2020, Ackva and Ulmer 2022), or in the travel times (Crainic et al.

2012, Jabali et al. 2015, Vareias, Repoussis, and Tarantilis 2019). In our work, we also consider

uncertain demand, however different than in other problems. The demand uncertainty does not

occur at the suppliers who need to have their commodities collected, but at the set of distribution

centers. Therefore, not every supplier has to be visited in every scenario (and some might be

visited more than once). The corresponding problem is therefore not a vehicle routing problem,

but a team orienteering problem. Another difference is that we consider explicitly a set of multiple

commodities which is not studied yet in the consistency literature.

From a modeling and methodology perspective, much of the consistency work under uncer-

tainty considers two-stage stochastic models. In the first stage, the consistent part of the decision

(TW-assignment or routing) is determined. In the second stage, the planning is done once the

stochasticity realizes. Very few papers solve the problems exactly. Some works propose the use of

heuristics while others rely on scenario approximation methods, as we propose in this paper. For

example, Song et al. (2020) propose a multiple-scenario approach (MSA, Bent and Van Henten-

ryck 2004) to determine driver-customer assignments under uncertain customer requests. The idea

of an MSA is to solve a set of scenarios individually and find the most similar solution amongst

them via a consensus function. For a service network design problem with uncertain travel times,

Crainic et al. (2011) propose a heuristic PHA (Rockafellar and Wets 1991) that iteratively solves

the individual scenarios, but enforces convergence to a common solution via penalty terms. We

adapt both MSA and PHA to the needs of our problem and compare their performance.

3. Problem Definition

In this section, we present our problem. We describe the problem, formulate it mathematically,

and finally give an example.

3.1. Problem Description

We consider a problem where a company provides regional groceries (now called “commodities”)

to local businesses and municipalities (now called “customers”) via a set of distribution centers. In

regular time steps (e.g., days or weeks), the customers demand a set of commodities to be provided

in the next time step. The demand volumes are uncertain until the time of the order. The company
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satisfies the demand by providing the requested commodities at the distribution center closest

to the customers. Thus, customer demand can be aggregated as the demand at the distribution

centers and individual customers can be neglected from here on.

The commodities are collected from a set of regional farmers (now called “suppliers”). The sup-

pliers have a contract with the company that ensures availability of a specific amount of each

commodity in each time step, even though the company may decide to collect less (or even noth-

ing). The suppliers are distributed within the service region and collection can take place for every

distribution center. Thus, multiple vehicles might visit a supplier in a time period. For collection,

the company can draw on capacitated vehicles with fixed activation cost and variable routing cost,

at every distribution center. As the collection of the commodities at a supplier requires significant

work, it is necessary for the supplier to be present at the time of the collection. However, the sup-

pliers have substantial daily working responsibilities, often far away from the delivery point. Thus,

time consistency in the pickup of the commodities is of utmost importance for them, especially,

since several vehicles might visit the suppliers from different distribution centers on the same day.

That means that regardless the demand in a period and the collection routes by the vehicles, (soft)

TW during which vehicles usually arrive during their daily shifts for collection stays the same for

a supplier. Therefore, the company aims at assigning TWs to suppliers that can be satisfied well

without any substantial violation while at the same time allowing for cost-efficient collection routes

regardless of the daily demand realization.

In summary, the problem can be seen as a two-stage stochastic program. In the first stage, TWs

are assigned to the suppliers. In the second stage, demand realizes and collection routes for each

distribution center are determined. The overall objective is to minimize the expected routing cost

plus the cost of violating the assigned TWs.

3.2. Model

Let G = (V,E) be a complete graph. V = S ∪ D is the set of vertices, where S = {1, . . . , |S|} is

the set of suppliers and D = {|S| + 1, . . . , |S| + |D|} represents the set of distribution centers.

E = {(j, j′)|j, j′ ∈ S ∪D} is the set of edges between suppliers and distribution centers. Let tjj′ be

the travel time on edge (j, j′). Time tjj′ includes the service time at location j, if j ∈ S. Transfers

between distribution centers are prohibited, i.e. tjj′ =∞ for j, j′ ∈ D. In the rest of the paper,

we refer to vertices as locations and edges as links. The specifications associated with the two

stakeholders involved in this problem are as follows.

Suppliers provide a set of commodities M. The commodities are picked up and transported

to the distribution centers. Each supplier s ∈ S offers a maximum available quantity Osm ≥ 0 of

commodity m∈M. LetMs = {m∈M|Osm > 0} be the set of commodities that a supplier offers.
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Associated with each supplier s, there is a set of potential TWs, denoted by Ws, for the collection

of their commodities. Let w = [w,w] ∈Ws be a candidate TW with w the earliest time and w

the latest time that a supplier can be visited. From Ws, a TW is assigned to each supplier in the

first stage. The penalty for arriving early at a supplier, i.e. earliness penalty, is ce per time unit.

Similarly, the penalty for arriving late at a supplier, i.e. lateness penalty, is cl per time unit.

Let Ω̄ be the set of all random events that may be realized in the second stage. Consider

the random vector D = [Ddm]d∈D,m∈M that defines the spread of demands for commodities at

distribution centers with the assumption that each Ddm has a known probabilistic distribution.

For a given realization ω ∈ Ω̄, Dω = [Dω
dm]d∈D,m∈M is the vector of demands with Dω

dm ≥ 0 as the

demand of distribution center d for commodity m. A sufficient number of homogeneous trucks with

capacity Q are available for hire at each distribution center to perform the collection of commodities

from the suppliers and transporting them to the distribution centers.

We assume that the commodities are packed in standardized containers, therefore the supply

and demand are integer. The collection of commodities from suppliers to each distribution center is

performed via routes that start from the distribution center, visit a set of suppliers (ideally, in their

designated TWs) and end at the same distribution center. Therefore, a route in our underlying

problem is a sequence of locations. The supply of a supplier can be transported by more than one

route. Let R be the set of routes. Associated with each route r ∈ R there is a parameter γ(r),

which represents the distribution center from which the route starts and ends at. σsr is a binary

parameter indicating whether supplier s ∈ S is on route r ∈R. Let δijr be an indicator showing if

location j ∈ S ∪D is a successor of location i∈ S ∪D on route r ∈R.

In order to formulate the problem as a two-stage stochastic programming problem with recourse

(Birge and Louveaux 2011), let xsw ∈ {0,1} be the first-stage decision variables denoting whether

a TW w ∈Ws is assigned to supplier s, for s∈ S. Our first-stage problem can be formulated as in

(1)–(3).

minED[Q(x,Dω)] (1)

s.t.
∑

w∈Ws

xsw = 1, s∈ S (2)

xsw ∈ {0,1}. w ∈Ws, s∈ S (3)

Objective function (1) minimizes the expected second-stage cost only, as there is no cost asso-

ciated with the first stage. Constraints (2) guarantee that each supplier is assigned one TW.

Constraints (3) make sure that the first-stage variables are binary. Given the first-stage decision
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x= [xsw]s∈S,w∈Ws , the second-stage subproblem ((4)–(16)) chooses the collection routes and evalu-

ates the cost Q(x,Dω) for the demand scenario Dω associated with realization ω ∈ Ω̄.

Q(x,Dω) = min
∑
s∈S

∑
r∈R

σsr

[
ceesr + cllsr

]
+
∑
r∈R

∑
d∈D:
γ(r)=d

adr (4)

s.t.
∑
r∈R:

γ(r)=d

∑
s∈S:

m∈Ms

σsrqmsr ≥Dω
dm, d∈D,m∈M (5)

∑
s∈S

∑
m∈Ms

σsrqmsr ≤Qθr, r ∈R (6)∑
r∈R

σsrqmsr ≤Osm, s∈ S,m∈Ms (7)

σsresr ≥wxsw−σsrasr−M(1−xsw), s∈ S,w= [w,w]∈Ws, r ∈R (8)

σsrlsr ≥ σsrasr−wxsw−M(1−xsw), s∈ S,w= [w,w]∈Ws, r ∈R (9)

δss′r[asr + tss′ − as′r]≤M(1− θr), s, s′ ∈ S, s ̸= s′, r ∈R (10)

δsdr[asr + tsd− adr + τ ]≤M(1− θr), s∈ S, d∈D, r ∈R : γ(r) = d (11)

δdsr[tds− asr]≤M(1− θr), s∈ S, d∈D, r ∈R : γ(r) = d (12)

θr ∈ {0,1}, r ∈R (13)

qmsr ∈N≥0, m∈Ms, s∈ S, r ∈R (14)

ajr ∈N≥0, j ∈ S ∪D, r ∈R (15)

esr, lsr ∈N≥0. s∈ S, r ∈R (16)

Variables θr, qmsr, ajr, esr, and lsr are the second-stage (or recourse) decision variables. Variable

θr decides on whether route r should be selected or not. Variable qmsr decides on the quantity

of commodity m picked up from supplier s on route r. Variable asr is the start-service time at

supplier s on route r and adr is the arrival time of route r to distribution center d. Given the

assigned TWs in the first stage, variables esr and lsr decide on how much a route can be early or

late at supplier s. Objective function (4) aims at minimizing the total penalty of the violation of

the suppliers’ assigned TWs on the selected routes as well as the arrival times of the routes at the

distribution centers. Constraints (5) make sure that enough quantity of each commodity required

by a distribution center is collected from suppliers and transported on routes to satisfy the realized

demand of the distribution center. Constraints (6) impose that the total quantity of commodities

transported on each route does not violate the truck capacity. Constraints (7) require that the

total quantity of each commodity collected from every supplier on routes respects the maximum

available quantity of the commodity at the supplier. Constraints (8)–(9) are soft TW-constraints.
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Table 1 Notations-Parameters

Parameters

S The set of suppliers, index s
D The set of distribution centers, index d
V = S ∪D The set of locations, i.e. stakeholders
E The set of links between locations in V, index (j, j′)
ce, cl Earliness and lateness penalties
tjj′ The travel time on link (j, j′)∈ E , including service time at location j, if j ∈ S
M The set of commodities, index m
Q The capacity of trucks transporting commodities from suppliers to distribution

centers
Osm ≥ 0 The maximum available quantity of commodity m ∈ M offered by supplier

s∈ S
Ms The set of commodities with Osm > 0 for supplier s∈ S
Ws The set of potential TWs for supplier s∈ S, index w
w= [w,w]∈Ws A candidate TW with w the earliest time and w the latest time to visit supplier

s∈ S
D= [Ddm]d∈D,m∈M The random vector of demands of distribution centers for commodities
Ω̄ The set of all random events that may be realized in the second stage, index ω
Dω = [Dω

dm]d∈D,m∈M The vector of demands with Dω
dm ≥ 0, for a given realization ω ∈ Ω̄

R The set of routes, index r
γ(r)∈D The distribution center from which route r ∈R starts and ends at
σsr A binary parameter indicating whether supplier s∈ S is on route r ∈R
δjj′r A binary parameter indicating whether location j′ is a successor of location j,

for j, j′ ∈ V, on route r ∈R
τ ∈R≥0 The activation cost of a truck, in time units
M ∈R>0 A large positive number associated with big-M constraints, e.g. greater than or

equal to the travel time of the longest route plus τ

These two sets of constraints link the second stage to the first stage. Constraints (10) make sure

that the start-service time at a supplier succeeding another supplier on a route is planned no

sooner than the time in which the previous supplier is served plus the travel time between the

two. Constraints (11) enforce that the arrival time of a route at its distribution center to be after

the last supplier on the route is served plus the travel time between the supplier and distribution

center, and the activation cost of the truck in time units. Constraints (12) emphasize that the

start-service time of the first supplier on a route is no sooner than the travel time between the

distribution center and the supplier. Constraints (13)-(16) describe the second-stage variables. All

notations and definitions are summarized in Tables 1 and 2.

3.3. An Illustrative Example

In the following, we give a small example to illustrate the two stages of the problem. An example

of a graph is depicted in Figure 1. There are three suppliers, i.e. S = {1,2,3}, who can provide two

commodities. Supplier 1 can only provide maximum 15 units of commodity 1, supplier 2 has only

a supply of maximum 10 units of commodity 2, and supplier 3 can offer maximum five units of
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Table 2 Notations-Variables

Variables

xsw ∈ {0,1} If TW w ∈Ws is assigned to supplier s∈ S: 1; otherwise: 0
θr ∈ {0,1} If route r ∈R is chosen: 1; otherwise: 0
qmsr ∈N≥0 Quantity of commodity m∈Ms picked up at supplier s∈ S on route r ∈R
asr ∈N≥0 Start-service time at supplier s∈ S on route r ∈R
adr ∈N≥0 Arrival time at distribution center d∈D on route r ∈R (including truck activation cost)
esr ∈N≥0 Earliness at supplier s∈ S on route r ∈R
lsr ∈N≥0 Lateness at supplier s∈ S on route r ∈R

commodity 1 and 10 units of commodity 2. Suppliers in the figure are denoted by triangles with

their supplies, i.e. Osm, for each commodity are listed inside the triangles.

There are two distribution centers, i.e. D = {4,5}, with stochastic demands Ddm for the two

commodities. Two scenarios, ω1 and ω2, are considered with demand realizations for the distribution

centers. In scenario ω1, the demand of distribution center 4 is composed of 15 units of commodity

1 and seven units of commodity 2. The demand of distribution 5 consists of 10 units of commodity

2. Therefore, the vector of demands associated with scenario ω1 is

Dω1 =

[
Dω1

41 = 15 Dω1
42 = 7

Dω1
51 = 0 Dω1

52 = 10

]
.

On the other hand, in scenario ω2, the demand of distribution center 4 is only for 12 units of

commodity 1. The demand of distribution center 5 is composed of five units of commodity 1 and

12 units of commodity 2. The vector of demands associated with scenario ω2 is

Dω2 =

[
Dω2

41 = 12 Dω2
42 = 0

Dω2
51 = 5 Dω2

52 = 12

]
.

The distribution centers are depicted by rectangles in the figure. The travel time matrix of all links

is as follows:

[tjj′ ]|S|×|D| =



1 2 3 4 5

1 0 50 90 110 150

2 50 0 70 130 150

3 90 70 0 150 110

4 80 100 120 0 ∞

5 120 120 80 ∞ 0


.

The travel time between two nodes includes 30 minutes service time, if the origin is a supplier. The

activation cost of a truck, i.e. τ , is assumed zero and the earliness and lateness penalties ce and cl,

are set to 100.

In the example, there is a set of two potential two-hour TWs given per supplier: Ws =

{[1:00,3:00], [3:00,5:00]}, for s ∈ S. From these sets, one TW is assigned to each supplier in the
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Figure 1 Illustrative example of a network of suppliers and distribution centers with their specifications, plus the

routes associated with two scenarios and the quantities of commodities transported on the links of the

routes.

first stage. The designated TW is denoted below each supplier triangle in Figure 1. Suppliers 1

and 2 are assigned the first TW, [1:00,3:00]. Supplier 3 is assigned the second TW, [3:00,5:00].

In the second-stage, 4 routes are selected from the pool of routes. Routes 1 and 2 are associated

with scenario 1 and depicted in plain solid line and solid line with a plus sign, respectively. Routes

3 and 4 correspond to scenario 2 and are presented in plain dashed line and dashed line with a

multiplication sign. There are two numbers reported above each link. The first number is the travel

time (in minutes) between each two nodes and includes the service time, if the origin node is a

supplier. The second number is either the star-service time at the destination node, if the destina-

tion is a supplier, or the arrival time to the destination node, if the destination is a distribution

center. Below a link, on the other hand, the quantities of the commodities collected from suppliers

are reported with the commodity IDs in parentheses. Note that the first link of a route departing

from a distribution center does not carry any commodity and the final link of a route going back

to the distribution center carries all the collected quantities from the suppliers. The capacity of
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the truck performing a route, meaning Q, is 25 units. Note that these routes are selected only for

illustration purposes and the pool of routes is larger.

Truck routes visit the suppliers in their assigned TWs. From Figure 1, we see that depending on

the earliness and lateness penalties, a decision maker might face a trade-off between assigning the

first or second TW to supplier 3. This supplier is visited in both scenarios, on route 2 (in solid line

with a plus sign) from scenario 1 and on route 3 (in dashed lines) from scenario 2. In the current

solution, the second TW is assigned. As the TW-violation penalties are relatively high, the truck

starts serving supplier 3 on route 2 (in solid line with a plus sign) at 3:00, which results in later

arrival to distribution center 5. If the first TW, i.e. [1:00,3:00], was assigned to supplier 3, the

start-service time at this supplier and the arrival time of the truck to distribution center 5 would

have been (100 minutes) earlier on route 2. However, this TW-assignment would have also resulted

in 10 minutes lateness in the start-service time of supplier 3 and consequently, an expensive penalty

(100×10 = 1000) on route 3 (in dashed lines), as the start-service time at supplier 3 on that route

is 3:10.

4. The Scenario Decomposition-Based Heuristic

In this section, we present our scenario decomposition-based heuristic, namely PHA. We first give

a general overview and then describe the individual components in detail.

4.1. Overview

Setting TWs is challenging for a variety of reasons. First, demand may vary significantly. On some

days, demand may be limited and only a few suppliers have to be visited. In this case, early

TWs may be an advantage. On other days with higher demand, longer routes for visiting several

suppliers need to be planned. Therefore, later TWs might be the right choice. Second, there is an

interplay between the TW-decisions. Setting a TW for one supplier may change the sequence in

which other suppliers are visited on a route. Thus, a TW-assignment decision has to consider the

TWs of individual suppliers and the corresponding routing solutions holistically. Third, suppliers

may be visited by vehicles from multiple distribution centers. Consequently, a supplier may be

visited by vehicles from a close distribution center, which favors an early TW, but may also be

visited from another center, which favors a later TW. Fourth, even if the demand was deterministic,

the resulting multi-depot multi-commodity team orienteering problem with soft TWs would by

itself be very challenging to solve.

To capture all these aspects, we apply a set of concerted steps. First, we consider a finite set

of demand scenarios in which each scenario is one realization of the demand at the distribution

centers. We then construct the deterministic equivalent problem (DEP), which is a multi-scenario

approximation of the problem at hand. For the resulting DEP, we present a PHA-based solution
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approach that relies on a thorough consideration of possible routing solutions. PHA originates from

linear programming (Rockafellar and Wets 1991). The idea of PHA is to first decompose (a relax-

ation of) DEP into subproblems associated with scenarios and then solve individual subproblems

iteratively and force convergence by penalizing the deviation from the current consensus solution.

We adapt the concept to our approach as follows. After decomposing DEP, our PHA-based heuris-

tic iteratively solves deterministic scenario subproblems and determines a global TW-assignment

per supplier, which might be infeasible for some scenarios. These global TW-assignments are used

in the next iteration to guide the individual scenarios, and eventually, they will (hopefully) all

provide the same solution. This solution is then implemented. While convergence is guaranteed

for linear, and more generally convex, problems, it is not for mixed-integer problems. Here, right

tuning and some enhancements are essential for successful application of PHA. For our problem,

an additional challenge arises. That is solving the individual scenarios. Each individual scenario

is a multi-depot multi-commodity team orienteering problem with soft TWs. To allow effective

solutions for instances of realistic sizes, we model the problem as a route-based mixed-integer pro-

gram and propose a matheuristic with a set of routing candidates capturing the variety of different

demand scenarios for solving the subproblems. If after our PHA-based heuristic has run its course,

there is no convergence and there are still some suppliers with no globally agreed TWs in the

solution, similar to Crainic et al. (2011), we apply a repair phase to enforce consensus by selecting

TWs that have been chosen the most among scenarios for those suppliers.

In the following, we first introduce the formulation of DEP in Section 4.2 for a finite number

of scenarios and demonstrate the decomposition of DEP. We then present our PHA enhancements

such as the construction of global TW-assignment based on the solutions of scenario subproblems

in Section 4.3, the adjustments of PHA penalties in Section 4.4, and the termination of PHA and

potential repairing of the final solution in Section 4.5. Section 4.6 illustrates our matheuristic for

solving the individual subproblems. The section ends with an overview of the interplay of the

individual steps in Section 4.7.

4.2. The Deterministic Equivalent Problem

If Ω ⊆ Ω̄ is a finite set of scenarios for the random event, DEP is a multi-scenario deterministic

approximation of our problem in which the second-stage objective function as well as constraints

and variables ((4)–(16)) are defined for all scenarios, while the first-stage constraints and variables

((2)–(3)) stay unchanged. Note that in our underlying problem, there is no first-stage objective

function. The probability of scenario ω ∈Ω is denoted by pω. The formulation of DEP is as follows:

min
∑
ω∈Ω

pω
{∑

s∈S

∑
r∈R

σsr

[
cee

ω
sr + cll

ω
sr

]
+
∑
r∈R

∑
d∈D:
γ(r)=d

aω
dr

}
(17)
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s.t. Constraints (2)− (3).

Constraints (5)− (16), for everyω ∈Ω.

Next, we decompose DEP into individual scenarios. We first modify DEP by creating copies of the

first-stage variables as xω
sw ∈ {0,1}, s∈ S,w ∈Ws, per scenario ω ∈Ω. This modification results in

a formulation in which the objective function and all constraints and variables used in DEP are

inherited unchanged, except constraints (2)–(3), (8), and (9). These constraints are transformed

into: ∑
w∈Ws

xω
sw = 1, s∈ S, ω ∈ ω (18)

σsre
ω
sr ≥wxω

sw−σsra
ω
sr−M(1−xω

sw), s∈ S,w= [w,w]∈Ws, r ∈R, ω ∈Ω (19)

σsrl
ω
sr ≥ σsra

ω
sr−wxω

sw−M(1−xω
sw), s∈ S,w= [w,w]∈Ws, r ∈R, ω ∈Ω (20)

xω
sw ∈ {0,1}, w ∈Ws, s∈ S, ω ∈Ω (21)

respectively, plus a new set of constraints, i.e. “nonanticipativity constraints”;

xω
sw = xω′

sw, w ∈Ws, s∈ S, ω,ω′ ∈Ω, ω ̸= ω′ (22)

are added. The goal of constraints (22) is to guarantee that TWs assigned to suppliers are scenario-

independent. Then, in order to decompose the new formulation by scenarios, we replace con-

straints (22) with constraints

xω
sw = x̂sw, w ∈Ws, s∈ S, ω ∈Ω (23)

in which

x̂sw :=
∑
ω′∈Ω

pω
′
xω′

sw, w ∈Ws, s∈ S (24)

are global TWs assigned to suppliers and scenario-independent, but not necessarily feasible for

every scenario (Rockafellar and Wets 1991). With this change, constraints (23) are then relaxed

and added to the objective function via linear and quadratic penalty terms as followings:

min
∑
ω∈Ω

pω
{∑

s∈S

∑
r∈R

σsr

[
cee

ω
sr + cll

ω
sr

]
+
∑
r∈R

∑
d∈D:
γ(r)=d

aω
dr+

∑
s∈S

∑
w∈Ws

λω
sw(x

ω
sw− x̂sw)+

1

2

∑
s∈S

∑
w∈Ws

ρ(xω
sw− x̂sw)

2
} (25)

In (25), λω
sw are penalty multipliers and ρ is a quadratic penalty parameter associated with relaxed

constraints (23), w ∈Ws, s ∈ S, ω ∈ Ω. Since TW-assignment variables xω
sw, w ∈Ws, s ∈ S, ω ∈ Ω,
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are binary, similar to Crainic et al. (2011), we can reformulate objective function (25) in a linear

format
min

∑
ω∈Ω

pω
{∑

s∈S

∑
r∈R

σsr

[
cee

ω
sr + cll

ω
sr

]
+
∑
r∈R

∑
d∈D:
γ(r)=d

aω
dr+

∑
s∈S

∑
w∈Ws

[
λω
sw− ρx̂sw +

ρ

2

]
xω
sw−

∑
s∈S

∑
w∈Ws

λω
swx̂sw +

∑
s∈S

∑
w∈Ws

ρ

2
x̂2
sw

}
,

(26)

where the last two terms are constants. We apply the linearization, as quadratic mixed-integer

problems are known to be more difficult to solve than linear mixed-integer ones (Veliz et al. 2015).

Therefore, for a given global assignment of TWs of x̂sw, w ∈Ws, s ∈ S, the (linearized) relaxed

formulation of the DEP can be decomposed by scenarios, which results in deterministic scenario

subproblem SUB(ω), per scenario ω ∈Ω, formulated as follows.

min
∑
s∈S

∑
r∈R

σsr

[
cee

ω
sr + cll

ω
sr

]
+
∑
r∈R

∑
d∈D:
γ(r)=d

aω
dr +

∑
s∈S

∑
w∈Ws

[
λω
sw− ρx̂sw +

ρ

2

]
xω
sw (27)

s.t. Constraints (5)− (7), (10)− (16), (18)− (21).

The penalty multipliers λω
sw and penalty parameter ρ serve the purpose of penalizing the devia-

tion between the local TW-assignments in each SUB(ω) and the global TW-assignments x̂sw for

suppliers.

4.3. Constructing The Global Time Window Assignments

Since the first-stage variables, i.e. xω
sw, in our underlying problem are binary variables, defining the

global TW-assignments x̂sw as in (24) will produce a {0,1} value, if all scenarios agree on one TW

per supplier. However, it might not always be the case and therefore, it can occur that 0< x̂sw < 1

for some suppliers s ∈ S and some TWs w ∈Ws. Consequently, x̂sw becomes an infeasible global

TW-assignment for some suppliers. This phenomenon is quite probable in early iterations of PHA

when the penalty multipliers and penalty parameter are not large. Over iterations, PHA plays

with a trade-off between the penalty on deviating from the global TW-assignments, i.e. the current

consensus TWs, and the cost of deviating from the locally TWs assigned in subproblems through

earliness and lateness penalties in the objective function. Therefore, even though the values of x̂sw

might be infeasible in early iterations of PHA, they can still guide the search toward a consensus

assignment of TWs for suppliers in the long run.

On the one hand, since our underlying problem is a team-orienteering problem, it is possible that

some suppliers will not be visited in some (or all) individual subproblems. On the other hand, in

every SUB(ω) a TW is assigned to each supplier in the first-stage via constraints (18), regardless

of whether the supplier is visited on one of the routes chosen in the second-stage associated with

scenario ω. We believe that scenarios in which a supplier s ∈ S is not visited, i.e. no commodity
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is delivered, should not affect the search for consensus TWs. Therefore, in the calculation of x̂sw

in each iteration of PHA, we only take into account the values of first-stage variables from the

scenarios where a supplier is visited and delivered a commodity on at least one route. To do so, we

first define parameter χ(s,ω) as the following:

χ(s,ω) =

{
1, if∃r ∈R,∃m∈Ms : σsr = 1, qωmsr > 0

0, otherwise
(28)

to check whether supplier s∈ S is delivered something in scenario ω ∈Ω. Then, we modify (24) to

x̂sw :=

∑
ω∈Ω:

χ(s,ω)=1
pωxω

sw

1−
∑

ω∈Ω:
χ(s,ω)=0

pω
. w ∈Ws, s∈ S (29)

In a special case where a supplier s is not visited in any scenario, i.e. χ(s,ω) = 0,∀ω ∈ Ω, we

evaluate (29) by treating χ(s,ω) as equal to one for each scenario. Another phenomenon that can

happen over the iterations of PHA is that some values in x̂sw can be very close for some TWs,

for s ∈ S. This means that there is no clear trend toward a single TW and there is a split among

scenarios and the TWs they assign to suppliers locally. Such situations can result in no consensus

achieved even after many iterations of PHA. Therefore, we apply a tie-breaking step on x̂s, s∈ S.

We first start by checking

|max
w∈Ws

{x̂sw}− min
w∈Ws

{x̂sw}| ≤ η, (30)

for tie-breaking threshold η, which is a small enough positive value. If (30) is true, for s ∈ S, we

will then enforce consensus as{
x̂sw∗ = 1, forw∗ = argminw∈Ws{w}
x̂sw = 0, forw ∈Ws :w ̸=w∗ (31)

over the iterations of PHA. In other words, we choose the earliest TW as the tie-breaker for such

suppliers.

4.4. Updating the Penalty Multipliers and Penalty Parameter

Rockafellar and Wets (1991)’s design of the original PHA is based on the augmented Lagrangean

method for convex problems where the penalty multipliers associated with the nonanticipativity

constraints are updated in each iteration. Assume λω,k
sw is the penalty multiplier associated with

nonanticipativity constraint (23) for supplier s and TW w in scenario ω from previous iteration k.

The multiplier is then updated in the new iteration k+1 via:

λω,k+1
sw = λω,k

sw + ρk(xω,k+1
sw − x̂k+1

sw ), (32)
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with xω,k+1
sw being the solution of scenario subproblem SUB(ω) and x̂k+1

sw being the global TW-

assignment calculated by (29) in the new iteration, for s∈ S,w ∈Ws, ω ∈Ω. Moreover, Rockafellar

and Wets (1991) suggest to update the penalty parameter iteratively as well. In the literature of

PHA, the choice of the penalty parameter ρ has been an important question, as the performance

of the algorithm is highly sensitive to this value. Zehtabian and Bastin (2016) review different

existing techniques and design an adaptive strategy based on the progress of PHA for updating ρ.

Since our underlying problem is a mixed-integer linear programming problem, inspired by Crainic

et al. (2011), we increase the value of ρ dynamically and slowly. In addition, we impose a limit on

the increase of the penalty parameter by introducing ρmax > 0. Let ρk be the quadratic penalty

parameter from previous iteration k. The penalty parameter is updated in the new iteration k+1

as:

ρk+1 =min(µρk, ρmax), (33)

where ρ0 is an initial positive value for the penalty parameter and µ > 1 is a constant step-size.

Both values are chosen large enough to encourage convergence toward global TW-assignments but

not too large such that the convergence is forced aggressively and prematurely.

4.5. Calculation of Consensus Deviation and Repairing the Time Windows

To verify how far the scenarios are from reaching consensus on global TW-assignments, we adapt

the criterion
√∑

ω∈Ω p
ω||xω,k+1− x̂k||22 ≤ ε, xω,k+1 being the solution associated with scenario ω in

the new iteration, x̂k being the consensus vector calculated in the previous iteration of PHA, and

ε being the consensus threshold and a small enough value, from Zehtabian and Bastin (2016) to

our underlying problem. Since we are in a team-orienteering context, similar to the calculation of

x̂sw in (29), we calculate the deviation from consensus TWs only for suppliers who are delivered

a commodity at least on one route in a subproblem. In other words, we modify the criterion from

Zehtabian and Bastin (2016) to√√√√∑
ω∈Ω

∑
s∈S:

χ(s,ω)=1

∑
w∈Ws

pω|xω,k+1
sw − x̂k

sw|2 ≤ ε, (34)

with χ(s,ω) defined in (28).

Convergence of PHA to a consensus solution is guaranteed, if the problem is convex (Rockafellar

and Wets 1991). However, that is not the case, if the problem is non-convex (e.g. our underlying

mixed-integer programming problem). So, it is possible that our PHA will run its course over

iterations and not converge to a global assignment of TWs for all suppliers. If this happens, we

apply a repair phase on the TW-assignments, as a an extra step. To that end, after final iteration
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of PHA, we verify whether there exists any supplier s∈ S that still has non-binary values for some

of the TWs, i.e. there is no consensus on TWs. If so, we repair the global TW-assignment for that

supplier by applying the following rule:{
x̂sw∗∗ = 1, forw∗∗ = argmaxw∈Ws{x̂sw}
x̂sw = 0, forw ∈Ws :w ̸=w∗∗ (35)

In (35), we choose the TW with the biggest value x̂sw among all w ∈Ws, per supplier s ∈ S. In

case of multiple TWs with the same value, the earliest is chosen.

4.6. Solving the Individual Scenario Subproblems

In each iteration k of our heuristic PHA, we solve a multi-depot multi-commodity team-orienteering

problem SUB(ω,k) corresponding to scenario ω ∈ Ω over a set of routes via a commercial solver.

Route generation can be done by enumerating all routes, which becomes computationally expensive

very fast even for small size instances (as shown in Section 6.1), or heuristically. Therefore, we

design a heuristic that generate routes for each scenario demand and add them to the pool of routes,

while making sure to avoid duplicates. To keep the size of the pool manageable for the model,

we impose a maximum number of routes generated on our heuristic. Note that in our heuristic,

a route is a sequence of suppliers to be visited and it starts and ends at the same distribution

center. In order to satisfy the demand of a distribution center as much as possible when visiting a

supplier and avoid generating suboptimal routes, we assume that there is an “imaginary load” per

commodity on a route. For the purpose of the heuristic, we consider the three following conditions

when inserting a supplier into a route: (a) a supplier is not put on a route from a distribution

center, if it does not offer any of the commodities required by the distribution center; (b) a supplier

is not inserted into a route from a distribution center, if the center has no unsatisfied demand left

for the commodities that the supplier offers; and (c) the imaginary load on the route cannot exceed

the truck capacity.

These conditions can be formulated as follows. Let Icurr(r) = [Icurr(r,m)]m∈M be the vector of

the current imaginary loads of commodities on route r from distribution center d with scenario

demands Dω
dm, m ∈M. Icurr(r,m) is the current imaginary load of commodity m on route r and

initially set to 0. Note that Dω
dm − Icurr(r,m) is the unsatisfied demand of distribution center d

for commodity m. Moreover, assume Q
curr

(r) is the current remaining capacity on route r and

initially set to Q. To verify whether supplier s can be put on route r, we calculate the potential

new imaginary load for m∈M and the remaining capacity on route r as

Inew(r,m) = Icurr(r,m)+min
(
Dω

dm− Icurr(r,m),Osm,Qcurr
(r)

)
,

Q
new

(r) =Q
curr

(r)−min
(
Dω

dm− Icurr(r,m),Osm,Qcurr
(r)

)
.
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If Q
new

(r) ̸= Q
curr

(r), supplier s can be put on route r and we update Icurr(r,m)← Inew(r,m),

m ∈M, and Q
curr

(r)←Q
new

(r). Our route generation scheme consists of two main independent

phases. In phase 1, we first generate a set of routes through a restricted enumeration to ensure

the feasibility of the MIP model. In phase 2, we expand the pool of routes in three steps by

using a constructive heuristic and destroy and repair operators. The two phases are described as

follows. The first phase contains a restricted enumeration of single-supplier and two-supplier routes

from each distribution center. In both cases, we make sure that condition (a) mentioned above is

enforced. In case of two-supplier routes, we put two suppliers on a route, if the distribution center

is the closest center of both suppliers and conditions (b) and (c) are respected. These routes will

then be added to the pool of routes, which is initially empty.

The second phase consists of three steps of generating a base set of routes via a constructive

heuristic, post-processing those routes, and then constructing more routes by applying destroy and

repair operators on the post-processed routes iteratively. For more details of these steps, we refer

to Appendix A. To avoid having multiple copies of the same route added to the pool, we check

whether a route generated in phase 1 or phase 2 already exists in the pool. If not, we then add the

route to the pool. Moreover, in both phases we check the size of the pool before adding a route, to

make sure not to violate the maximum number of routes generated.

4.7. All Steps Together

All steps of the procedure are put together in Algorithm 1. Since there is no guarantee that the

scenarios will reach to a consensus on TWs assigned to suppliers, in addition to checking for

consensus via equation (34), we consider a limit on the number of iterations in which PHA runs,

set to 20, as another stopping criterion. If no consensus has been reached, we repair the global

TW-assignments, as the last step.

Algorithm 1 starts by initializing the penalties of PHA λω,0
sw , s ∈ S, w ∈ Ws, ω ∈ Ω, and ρ0,

computing global TW-assignments, i.e. x̂0
sw per supplier s and TW w ∈Ws, based on the solutions

of individual scenario subproblems with no penalty in the objective function (line 1). After the

initialization step (k = 0), as long as the stopping criteria are not met (lines 2-5), we compute

a new local TW-assignment solution for each scenario by solving the corresponding subproblem

with the penalty term back in the objective function (line 2). We then calculate a new global TW-

assignment solution based on the local solutions of scenario subproblems and apply tie-breaking

on x̂k+1
s , if necessary (line 3). The next step is to update the penalties λω,k+1

sw and ρk+1 (line 4). If

the limit on number of iterations is reached, but there are still some suppliers with no consensus

over the global TWs, we repair the TW-assignments for suppliers with no consensus by choosing

the TW with the biggest value among x̂k+1
sw .
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Algorithm 1: The (heuristic) PHA

1 Initialization: Set k← 0 and λω,0
sw ← 0, s∈ S,w ∈Ws, ω ∈Ω. Compute

x̂0
sw =

∑
ω∈Ω:

χ(s,ω)=1
pωxω,0

sw /1−
∑

ω∈Ω:
χ(s,ω)=0

pω, where xω,0
sw is the solution of scenario subproblem

SUB(ω,0) without the penalty term in the objective function, for ω ∈Ω. Choose ρ0 > 1;

repeat
2 Compute xω,k+1

sw , for s∈ S,w ∈Ws, by solving SUB(ω,k+1), for ω ∈Ω

min
∑
s∈S

∑
r∈R

σsr

[
cee

ω
sr + cll

ω
sr

]
+
∑
r∈R

∑
d∈D:

γ(r)=d

aω
dr +

∑
s∈S

∑
w∈Ws

[
λω,k
sw − ρkx̂k

sw +
ρk

2

]
xω
sw

s.t. Constraints (5)− (7), (10)− (16), (18)− (21);

3 Calculate new global TW-assignments x̂k+1
sw by using equation (29) with xω,k+1

sw being the

solution of SUB(ω,k+1), ω ∈Ω. Apply tie-breaking (31) on x̂k+1
s , if (30) satisfies;

4 Update penalties λω,k+1
sw , for s∈ S,w ∈Ws, ω ∈Ω, and ρk+1 via equations (32) and (33),

respectively;

5 Set k← k+1;
until The stopping criteria are met ;

6 If there are still suppliers with no consensus on TWs, repair the global TWs by using rule (35);

5. Design of Experiments

In this section, we describe the parameters of our heuristic PHA and the design of our numerical

experiments. We further present the benchmark methods.

5.1. Parameters

Regarding the parameters for PHA, unless otherwise specified, we set the tie-breaking threshold η

to 10−1, the step-size µ for updating the penalty parameter to 1.25, the initial penalty parameter

ρ0 to 1+ log(1+N 0) (similar to Crainic et al. (2011)), where N 0 is the number of suppliers with

no consensus TWs amongst the initial scenario solutions in the initialization step of PHA, and

the consensus threshold ε to 10−5. All numerical tests are implemented in C# and conducted on

a machine with a 1.8 Gigahertz ADM Ryzen 7 5700U CPU and 16 GB of RAM. Unless other-

wise stated, the scenario subproblems are solved heuristically by using a commercial solver, more

specifically CPLEX 20.1. The solver stops if either the time limit of 30 minutes is reached or the

CPLEX MIP gap is below 10%.

5.2. Instance Generation

We generate 10 instances each for small and large sizes, i.e., 20 instances overall. Both groups of

instances are derived from the instances used in the study by Gu et al. (2021) in the context of

a multi-commodity two-echelon distribution problem. Gu et al. (2021) have two main categories

of instances: randomly generated instances and case study-based instances from a local fresh food
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supply chain. To generate our own instances, we select instances from their (reduced) base set of

generated instances, denoted as S by Gu et al. (2021), and school canteens instances of the case

study. The selected generated instances are used to construct our small instances and the selected

school canteens instances are used to build our large instances. Although, we only have suppliers

and distribution centers as stakeholders in our underlying problem, we use the customers from

the selected instances per category from Gu et al. (2021) to generate demands for the distribution

centers by projecting the customers’ demands onto their closest distribution centers. In our small

instances, we have five suppliers, two distribution centers, and supply and stochastic demand for

three commodities, while in the large instances, we have 20 suppliers, five distribution centers, and

supply and stochastic demand for eight commodities.

We generate three in-sample scenarios, as preliminary experiments showed that more scenarios

increase complexity without a significant increase in the objective value. For the scenarios, we derive

a base (average) demand per customer and commodity from the selected instances of Gu et al.

(2021) and then generate a sample of three scenarios by perturbing these base demands with a ran-

dom perturbation factor drawn from [−0.25,0.25] and multiplying the result by scenario-dependent

factors drawn randomly from intervals [0.60,0.80], [0.85,1.05], and [1.10,1.30], per customer and

commodity. We aggregate the demand of customers by their closest distribution centers, per com-

modity and use the aggregated demand as the demand of the distribution centers for the commodity.

We also compute the available supply of commodities at the suppliers from the selected instances

of Gu et al. (2021). In order to avoid demand-supply imbalance and infeasibility issues, we adjust

the calculated supply according to the highest demand scenario plus 10% extra supply per supplier

and commodity. Unless otherwise stated, the set of possible TWs consists of three one-hour TWs

[0,60], [60,120], and [120,180] per supplier. The time windows capture the first half of the day, since

in that time the collections from suppliers need to be done to ensure the deliveries to distribution

centers in the second half. Each truck driver is assumed to work at most for six hours. Unless other-

wise specified, the penalty on earliness, i.e. ce, and on lateness, i.e. cl, are both set to 10. For further

details of our instance generation, we refer to Appendix B. Our generated instances are publicly

available on GitHub (https://github.com/szehtab/Consistent-Time-Window-Assignments).

5.3. Benchmark Policies

In order to analyze the performance of our PHA, we propose five benchmark policies for assigning

TWs: an optimal policy, an expected value policy, a multiple-scenario approach, our own multiple-

scenario technique, and a priority rule.

1. We begin with solving DEP constructed based on the low, medium, and high demand scenarios

to optimality. We do this only for our small instances due to computational intractability.

https://github.com/szehtab/Consistent-Time-Window-Assignments
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2. We then solve the expected value problem (EVP) for both small and large instances. EVP is

a deterministic formulation of the two-stage stochastic programming formulation (1)-(16) in which

the stochastic demands of the distribution centers are replaced by their expectations over the three

scenarios for the centers.

3. We use a multiple-scenario approach (MSA, Bent and Van Hentenryck 2004) in which scenario

subproblems are solved individually, without the penalty term in the objective. Then the scenario

solutions are considered and the “most similar” one is selected. Thus, while PHA operates with

average decision variables, MSA operates with “average” solutions. We determine similarity by the

Hamming-distance metric on the TW-solution matrices following Song et al. (2020).

4. We also test a compromise between PHA and MSA. This technique, denoted by PHA(0),

first solves the scenario subproblems without the penalty term in the objective, similar to the

initialization step of PHA. Then, it constructs global TW-assignments via (29) based on scenarios’

solutions and apply the repair mechanism (35), if there are suppliers with no consensus TWs.

5. Finally, we create a practically-inspired priority rule (P-Rule) which assigns TWs to suppliers

based on the distance to their closest distribution centers. Closer suppliers get earlier TWs and

more distant suppliers get later TWs. To this end, the suppliers are sorted in a list in an ascending

order based on their distance to their closest distribution centers from the shortest distance to the

longest distance. The first TW is then assigned to the first 33% of suppliers, the second TW to the

next 33% of suppliers, and the third TW is assigned to the last portion of suppliers in that list. In

its essence, P-Rule does not solve any form of the stochastic problem. However, since it is a simple

and intuitively good enough policy to be implemented in practice, we design it for our numerical

studies.

6. Numerical Experiments

In this section, we present the results of our numerical experiments. We first evaluate the solution

quality of our PHA along with the benchmark policies. Moreover, we analyze the impact of offering

more and smaller TWs to suppliers in the first stage on routing cost and TW-violations in the

second stage. We finish by answering questions like what happens if the violations from TWs

become cheaper or more expensive and whether there is a trade-off between the travel time and

the penalty on TW-violation.

The results discussed in the first part of Section 6.1 from small instances are in-sample validation

values over the set of the 3 base scenarios to assess the TW-assignments that are optimized on

the same set of scenarios. The rest of the results reported in Section 6.1 and all other sections are

out-of-sample values over a set of 25 additional scenarios that are sampled for the random event

independently, per instance. For the details of out-of-sample validations, we refer to Appendix C.
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Table 3 Results of different policies–Small instances

Instance DEP MSA P-Rule PHA(0) PHA

zin CPU(h) zin Gap zin Gap zin Gap zin Gap

1 626.1 3.3 741.9 18.5% 644.6 3.0% 673.4 7.5% 651.8 4.1%
2 580.4 1.7 604.9 4.2% 640.6 10.4% 604.9 4.2% 585.6 0.9%
3 652.6 0.3 817.8 25.3% 692.4 6.1% 652.6 0.0% 720.4 10.4%
4 630.1 7.6 677.1 7.5% 634.1 0.6% 677.1 7.5% 648.1 2.9%
5 524.1 0.1 577.8 10.3% 533.6 1.8% 524.1 0.0% 540.3 3.1%
6 693.4 5.3 791.7 14.2% 835.4 20.5% 791.7 14.2% 694.3 0.1%
7 729.8 0.5 796.1 9.1% 729.8 0.0% 729.8 0.0% 729.8 0.0%
8 586.8 3.5 622.7 6.1% 627.1 6.9% 622.7 6.1% 586.8 0.0%
9 617.2 11.3 663.8 7.6% 626.0 1.4% 624.9 1.3% 622.3 0.8%
10 611.2 3.0 662.2 8.3% 614.6 0.6% 611.2 0.0% 611.2 0.0%

Average - - - 11.1% - 5.1% - 4.1% - 2.2%

6.1. Solution Quality

In the following, we discuss the solution quality for the small and large instances.

Small Instances. We solve DEP to optimality for small instances over the base set of scenarios

by enumerating all possible routes per instance. Next, we compare the objective values achieved

from in-sample validation of the first-stage solutions (meaning the TW-assignments) from the

PHA, PHA(0), MSA, and P-Rule policies to the true optimal from the DEP over the base demand

scenarios. In order to find the optimality gap, we provide the fully enumerated set of routes to

DEP as well as to PHA, PHA(0), MSA, and P-Rule for in-sample validation. Moreover, we turn off

CPLEX solver settings for the time limit and MIP gap for in-sample validation of small instances.

The results are presented in Table 3. There are two columns associated with every method. Columns

zin and Gap (%) refer to the expected objective function value of in-sample validation with the

first-stage solution of the corresponding policy and its optimality gap with the expected objective

function value of DEP, respectively. CPU (in hours) points to the time it took DEP to return

a solution. MSA (P-Rule) took (substantially) less than a second to get a first-stage solution.

PHA(0) and PHA took no more than 4.5 seconds and six minutes to return a first-stage solution,

respectively. The results in Table 3 show that PHA has the least gap, 2.2%, with DEP, on average.

In six out of 10 instances, the PHA’s gap is below 1% and there is only one outlier with a 10.4%

gap. MSA followed by P-Rule and PHA(0) have the largest, second, and third largest gaps with

DEP, on average. Notably is the poor performance of MSA which is outperformed even by the

simple P-Rule policy. We conclude that PHA finds a first-stage solution that is almost equivalent

to the one from DEP, with full set of routes on average, in much shorter time than DEP.

Large Instances. Solving DEP with a full enumeration of routes is not a viable benchmarking

strategy for assessing the solution quality of the policies in large instances. Therefore, in order

to analyze the first-stage solutions of the policies, i.e. TW-assignments, in large instances, we use
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the expected objective values obtained from out-of-sample validation and calculate the value of

stochastic solution (VSS) per policy. VSS is generally used to show the advantage of solving a

two-stage stochastic problem, in terms of expected cost saving, over solving EVP. For solving the

two-stage stochastic problem, it is assumed that the stochastic information has a known probability

distribution. Let zoutEV P and zoutPHA be the expected objective function values of the out-of-sample

validations with the first-stage solutions of EVP and PHA, respectively. VSS is computed as VSS=

zoutEV P − zoutPHA and the relative VSS (R-VSS) is calculated

R-VSS= 100× zoutEV P − zoutPHA

zoutEV P

.

As our underlying problem is a minimization problem, the expected objective values of the EVP

is considered as an upper bound for the objective value of the stochastic problem. Therefore, the

expected objective values of out-of-sample validations with the first-stage solutions from different

policies are expected to be smaller than the ones from the solution of EVP. Consequently, a positive

R-VSS means that there is a value in solving the stochastic problem by a policy compared to a

deterministic formulation of the problem, which makes decisions ignoring the uncertainty in the

problem.

We summarize the results of out-of-sample validations with the first-stage solutions from PHA,

PHA(0), MSA, P-Rule, and EVP policies in Table 4. There are three columns per policy, except

for EVP and P-Rule. The numbers in column zout denote the expected objective function value of

the validation of the corresponding policy. The second column provides the R-VSS per algorithm.

Similar to Table 3, column CPU is the time (in hours) a policy took to return a solution. The

solution of EVP is used for assessing the quality of the first-stage solutions of other policies by

calculating the R-VSS. Hence, there are only zout and CPU columns associated with EVP in the

table. P-Rule policy took maximum one second on average to get the first-stage solution, and so

there are only zout and R-VSS columns presented for this algorithm in the table. From Table 4,

we observe that the solution of PHA performs better than the deterministic solution of EVP, on

average 2.5% in terms of the expected objective value for large instances. The solution of PHA

outperforms the one from EVP per instance, ranging from 0% to 4% in terms of the expected

objective value, as well. Although, the solution returned by PHA(0) also outperforms the solution

of EVP, on average 1.7% in terms of expected objective value, its performance is volatile amongst

the instances. Thus, while PHA may already produce some good (repaired) solutions after the

initialization step, applying PHA over several iterations ensures better solutions throughout. The

solution of the MSA performs on average 0.5% worse than the solution of EVP in terms of the

expected objective value by having negative R-VSS values. Thus, for this setting, using MSA does
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Table 4 Results of different policies–Large instances

Instance EVP P-Rule MSA PHA(0) PHA

zout CPU(h) zout R-VSS zout R-VSS CPU(h) zout R-VSS CPU(h) zout R-VSS CPU(h)

1 1625.7 0.1 1667.6 -2.5% 1653.6 -1.7% 0.6 1612.4 0.8% 0.6 1578.2 2.9% 8.3
2 1542.3 0.4 1646.9 -6.4% 1550.3 -0.5% 1.0 1511.2 2.0% 1.0 1494.8 3.1% 13.5
3 1564.3 0.3 1634.5 -4.3% 1557.0 0.5% 1.0 1510.8 3.4% 0.9 1527.3 2.4% 18.1
4 1589.2 0.1 1673.6 -5.0% 1651.8 -3.8% 0.6 1575.2 0.9% 0.6 1525.3 4.0% 7.9
5 1661.2 0.5 1759.1 -5.6% 1645.6 1.0% 0.6 1620.8 2.4% 0.6 1627.5 2.0% 15.6
6 1820.4 0.3 1853.3 -1.8% 1919.1 -5.1% 0.8 1792.3 1.5% 0.8 1791.1 1.6% 13.4
7 1719.0 0.5 1728.2 -0.5% 1662.8 3.4% 0.9 1649.8 4.0% 0.9 1649.8 4.0% 13.4
8 1667.7 0.1 1651.9 1.0% 1629.2 2.4% 0.6 1638.3 1.8% 0.6 1627.6 2.4% 15.4
9 1702.0 0.1 1781.8 -4.5% 1737.6 -2.0% 0.8 1739.7 -2.2% 0.8 1702.8 0.0% 9.9
10 1666.8 0.2 1776.5 -6.2% 1654.9 0.7% 0.1 1629.5 2.2% 0.1 1628.4 2.3% 4.5

Average - - - -3.6% - -0.5% - - 1.7% - - 2.5% -

not lead to any improvement. Similarly, P-Rule not only underperforms on average 3.6%, but also

in all instances but one falls behind EVP with regard to the expected objective value, as R-VSS is

negative in nine out 10 instances.

To translate the value of the first-stage solution of each method, we present the expected arrival

times of the routes (i.e., travel cost) to the distribution centers and the expected violation penalties

averaged over 10 large instances per policy versus the first-stage solution of EVP in Figures 2a and

2b. The positive (negative) numbers in Figure 2a show the expected number of minutes routes

in a policy’s solution arrive earlier (later) to the distribution centers compared to the solution

of EVP, on average. In other words, the positive (negative) values are the expected numbers of

minutes saved (lost) by using the first-stage solution of any method compared to the one from

EVP. All algorithms improve the arrival times to the distribution centers, i.e. save minutes, as to

EVP, except P-Rule, on average. By comparing PHA and P-Rule, we also note that the trucks will

not be busy for at least 100 minutes with the solution of PHA compared to the one from P-Rule

on average. Therefore, by using PHA, a logistics company may expect on average more than 1.5

hours of paid labor by the drivers saved every day.

Figure 2b depicts the expected violation penalty of TWs in the solution of each policy compared

to the solution of EVP. The positive (negative) numbers in the figure denote how much less (more)

penalty the assigned TWs of a policy occur as to the ones by EVP, on average. P-Rule is the policy

with the best record with regard to the expected violation penalty, i.e. with the least expected

violation penalty on average. However, regarding the expected arrival times, P-Rule has the worst

performance, meaning it loses the most expected number of minutes. This shows that even though

assigning TWs to the suppliers in a naive way and only based on the proximity might cause the

least TW-violations, it results in the longest arrival times to the distribution centers (or biggest

loss of minutes), as it completely ignores the presence of stochasticity in the problem and the

routing part of the planning. Unlike P-Rule, MSA, in spite of having a negative R-VSS, performs
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Figure 2 Quality assessment of four policies via the expected objective terms–Large instances.

(a) Expected number of minutes the solution of a policy saves (positive values) or loses (negative

values) in the arrival times of routes to the distribution centers compared to the solution of

EVP.

(b) Expected violation penalty on the routes that the solution of a policy causes less (positive

values) or more (negative values) than the solution of EVP.

better than EVP regarding the expected arrival times on average. However, the expected violation

penalty caused by the first-stage solution of MSA is the largest violation among the four policies

compared to the one from EVP, hence R-VSS becomes negative. The underperformance of MSA is

to the contrary of the prior knowledge of the performance of this policy in the literature (e.g. Song

et al. 2020). Although, the first-stage solution of PHA(0) saves minutes in the expected arrival

times to the distribution centers, compared to the solution of EVP, it results in more expected

violation penalty on average. Overall, PHA has the best performance regarding both the expected

arrival times and TW-violations compared to EVP among the four policies, on average.
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In conclusion, PHA and PHA(0), with 1.7% and 2.5% R-VSS respectively, have similarly good

performance compared to EVP, among the four policies. While, PHA takes longer to find a first-

stage solution than PHA(0), its solution provides more value than the one from PHA(0). Moreover,

the arrival times of the routes from the solutions of these two policies are the earliest among the four

policies compared to EVP. However, TWs assigned in the solution of PHA result in less violation

penalty than the ones from EVP, while the TW-assignments from PHA(0) cause more violation

penalty than TWs of EVP. Therefore, a decision maker has to deal with a trade-off regarding which

first-stage solution to use.

6.2. Time Windows

There is a managerial trade-off between the design of TWs and the difficulty level of routing.

Suppliers will probably like fine-grained and shorter TWs. However, this increases the complexity

for the logistics provider in finding efficient routes that meet these narrow TWs. In order to analyze

the consequences of offering more TWs on the routing cost, i.e. arrival times of routes to the

distribution centers, and cost of violating the assigned TWs, we test the idea of offering four TWs

in the large instances. These four TWs cover the same time duration as the initial three TWs,

i.e. three hours time span, but they are shorter, meaning each is a 45 minutes interval, instead

of 60 minutes. We use the PHA policy to find a first-stage solution for our underlying problem

with this new change and as previously mentioned, we validate the solution on the set of the 25

validation scenarios, per instance. We then compare the expected arrival times of the routes to the

distribution centers (in minutes) and the expected earliness and lateness penalties averaged over

the 10 large instances with four TWs versus the similarly calculated numbers with the four TWs.

The results are presented in Figure 3. We observe that by offering one extra TW, i.e. offering

more flexibility, all terms of the objective function increase on average. Compared to the case of

having three TWs to choose from, the expected arrival times of routes to the distribution centers

in case of four TWs rise by 3%, which can be translated into trucks losing more time by 3% on

average. The expected violations from the assigned TWs also increase in case of offering four TWs,

with a 136% and 188% jump in the earliness and lateness costs respectively, on average. Note that

the earliness and lateness penalties are set to the same value in the objective function for both three

and four TWs options. From these numbers, we can conclude that although offering one extra TW

can provide more flexibility for the suppliers, it will add more complexity to the routing decisions

in the second stage and possibly create more inconvenience for the suppliers, as the earliness and

lateness costs suggest.
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Figure 3 Comparison between three vs. four TWs through the expected arrival times to distribution centers (in

minutes), earliness, and lateness penalties–Large instances.

6.3. Severity of Time Window Violation

From the managerial insight perspective, if the TW-violation penalty is low, it will be easier to

plan the routes and the logistics cost will drop, but the suppliers will not be served on a consistent

schedule. On the other hand, if the violation penalty is high, it will be more difficult to plan the

routes and the logistics cost will rise. However, the suppliers will be more likely to be visited

according to the schedule and hence, they will be happy. To study the effect of the penalty of

violating TWs on routing cost, which manifests itself in the arrival times of the routes to the

distribution centers and TW-violations, we vary the value of the violation penalty from its initial

value of 10 to the values of zero, one, and 100 for the large instances and use the PHA policy

to find a first-stage solution. We then validate the solutions of these tests on the 25 validation

scenarios for each instance. Finally, we compare the expected arrival times of the routes to the

distribution centers (in minutes) and the expected number of minutes violating TWs, i.e. earliness

and lateness, averaged over the 10 large instances for the four penalty values. The results are

presented in Figure 4.

The upper chart in Figure 4 displays the expected arrival times of the routes to the distribution

centers. We see that they increase (decrease), the more (less) critical TWs become. When the

penalty on violating TWs is zero, technically the assigned TWs become ineffective and the only

mechanism that affects planning of the routes is to have the arrival times of the trucks to distribu-

tion centers as early as possible. Therefore, no penalty case has the smallest expected arrival times

(in minutes) to the centers, meaning the trucks save the most number of minutes, on average. When
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the penalty on violating TWs is set to 100, TWs become hard and the routes must be planned

in such a way that there is no earliness or lateness in visiting the suppliers. This will result in

delaying the expected arrival times of routes to the distribution centers, meaning the trucks will

lose more minutes, by 6.8% on average. For the intermediate penalties of one and 10, the expected

arrival times increase by 3.2% and 2.1%, compared to the case with penalty of zero and the case

with penalty of one respectively, on average. The lower chart in Figure 4, on the other hand, shows

the expected number of minutes violating the assigned TWs on average. Violation penalty value of

zero has the biggest violation from TWs, as technically TWs are deactivated. The stronger TWs

are enforced, i.e. violation penalties increase, the less TW-violations happen. When the violation

penalty is at its maximum value of 100, TWs are strict and hence, no TW-violation occurs. Vio-

lation penalty value of one activates TWs, but since the violation cost is not high, there are both

earliness and lateness. Overall, we conclude that having strict TWs can increase the busy time

of the trucks by almost 6.8%, and at the same it makes the service of suppliers more consistent.

Therefore, a decision maker should keep this price in mind when promising TWs to the suppliers.

7. Outlook

In this paper, we have introduced the problem of assigning consistent TWs for the collection of

regional groceries from local farmers and delivering them to distribution centers for consolidation

and further distribution in a short agri-food supply chain with stochastic demand. We have shown

how considering demand uncertainty via the progressive hedging algorithm can reduce the routing

cost as well as inconvenience for the suppliers. There are a variety of avenues for future research

in problem and methodology.

In our problem, we assumed consistency was achieved when visits took place within TW. How-

ever, given the multi-depot setting of our problem, this means that a supplier might be visited by

several vehicles at any point within TWs. Future research may investigate the cost of synchroniza-

tion among the depots to ensure even less inconvenience for the suppliers. We have also shown that

narrow TWs increase cost and violations significantly. Future research may consider heterogeneous

TW-sizes for different suppliers, e.g., based on their usual position in a route. Another interesting

problem extension could be the consideration of uncertain service times dependent on the com-

modity or even the supplier. Thus, the second stage problem would turn into a stochastic problem

itself. From a methodology perspective, we have shown that our progressive hedging approach pro-

vides superior solutions compared to a multiple-scenario approach. As both approaches focus on

different aspects of the scenario solutions, future research may have a more detailed comparison

of the two types of methodology. Furthermore, future research may investigate combinations, for

example, by integrating the multi-scenario approach in the determination of the global solution
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Figure 4 Evolution of the expected arrival times of routes to distribution centers and earliness and lateness

minutes for varying violation penalty–Large instances.

within each iteration. Finally, in this work, we have focused on agri-food supply chains. However,

the challenge of TW-consistency with multiple vehicles and goods can also be observed in other

domains, e.g., in the delivery to stores and supermarkets. Future research may adapt model and

methodology to these related settings.
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Sungur I, Ren Y, Ordóñez F, Dessouky M, Zhong H, 2010 A model and algorithm for the courier delivery

problem with uncertainty. Transportation Science 44(2):193–205.

Truchot D, Andela M, 2018 Burnout and hopelessness among farmers: The farmers stressors inventory.

Social Psychiatry and Psychiatric Epidemiology 53(8):859–867.

USDA, 2022 USDA expands local foods in school meals through cooperative agree-

ment with minnesota. https://www.usda.gov/media/press-releases/2022/08/23/

usda-expands-local-foods-school-meals-through-cooperative-agreement, accessed: 31-01-

2023.

Vareias A, Repoussis P, Tarantilis C, 2019 Assessing customer service reliability in route planning with

self-imposed time windows and stochastic travel times. Transportation Science 53(1):256–281.

Veliz FB, Watson JP, Weintraub A, Wets RJB, Woodruff DL, 2015 Stochastic optimization models in forest

planning: A progressive hedging solution approach. Annals of Operations Research 232:259–274.

Yadav VS, Singh AR, Gunasekaran A, Raut RD, Narkhede BE, 2022 A systematic literature review of

the agro-food supply chain: Challenges, network design, and performance measurement perspectives.

Sustainable Production and Consumption 29:685–704.

Zehtabian S, Bastin F, 2016 Penalty parameter strategies in progressive hedging algorithm. Technical Report

2016–12, CIRRELT, Montreal, Qc, Canada.

Zhong H, Hall RW, Dessouky M, 2007 Territory planning and vehicle dispatching with driver learning.

Transportation Science 41(1):74–89.

https://www.usda.gov/media/press-releases/2022/08/23/usda-expands-local-foods-school-meals-through-cooperative-agreement
https://www.usda.gov/media/press-releases/2022/08/23/usda-expands-local-foods-school-meals-through-cooperative-agreement


36

Appendix A: Steps of the Second Phase of Route Generation

Step1. Generating a base set of routes via a constructive heuristic: from each distribution center, we

construct an initial set of routes by using the Savings algorithm from Clarke and Wright (1964), while

making sure that conditions (a), (b), and (c) mentioned above are respected. We then improve these routes

by applying a local search, namely a series of intra-route 2-opt moves, on them. The routes are then added

to the pool of routes which already contains routes from the first phase.

Step2. Post-processing the base set of routes: the routes in Step1 are constructed from every distribution

center and therefore, suppliers can appear on multiple routes. To avoid operating on copies of the same

supplier, we deduplicate the suppliers. In other words, we keep a supplier on the route from a randomly

chosen distribution center and remove it from the routes of other distribution centers.

Step3. Constructing more routes by applying destroy and repair operators iteratively: borrowed from

the Large Neighborhood Search algorithm, we apply destroy and repair moves on the deduplicated routes

iteratively to produce more routes that are diverse as well. In each iteration, we use two operators presented

in Ropke and Pisinger (2006): the random removal and basic greedy insertion with a random noise on the

insertion cost. We randomly remove a certain number of suppliers (a random number between 20% and

50% of the suppliers) and then insert back the removed suppliers into the routes by applying the basic

greedy insertion with a random noise, while making sure that conditions (a), (b), and (c) mentioned above

are respected by the insertion. Similar to Ropke and Pisinger (2006), we calculate the noise by drawing a

number from interval [−maxN,maxN ] randomly, where maxN = ηmaxj,j′∈V{tjj′} and η = 0.025. At each

iteration, we calculate the noise and add it to the insertion cost for deciding on which route to insert a

supplier. Note that there is a possibility that one or more suppliers cannot be inserted back into any route

due to conditions (a), (b), and (c). If this happens, i.e. there are some suppliers unserved on any existing

route, we create empty routes from the distribution centers and start inserting the unserved suppliers into

those routes via the basic greedy insertion operator with random noise. For this second insertion, we again

ensure that conditions (a), (b), and (c) are respected. At the end of each iteration of destroy and repair, we

apply a series of intra-route 2-opt moves on the routes before adding them to the pool. We apply destroy

and repair operators for 100 iterations.

Appendix B: Details of Instance Generation

Let C be the set of customers. These customers have the same locations but different demands in the

selected instances of Gu et al. (2021). We compute the mean demand per (i,m) pair, for customer i∈ C and

commodity m ∈M, and use it as the base demand, denoted by D̃im, for each pair. These base demands

are then used to generate demand scenarios in our small and large instances. For each instance in their

corresponding instance group, we generate a sample of three demand scenarios; low, medium, and high

demand, with (almost) equal probabilities. This way, we can replicate the customers’ demand behaviour,

specially in case of school canteens. If the demand for fresh products increases or decreases over a planning

horizon, it is quite possible that the demand for those products in other school canteens will follow the

same trend. The demand per scenario ω is calculated as Dω
im = ⌈ṽω

im(1+ ν̃im)D̃im⌉ in which D̃im is the base

demand, ν̃im is a uniformly distributed perturbation factor on [−0.25,0.25], and ṽω
im is a scenario-dependent
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uniformly distributed multiplier on intervals [0.60,0.80], [0.85,1.05], and [1.10,1.30] for ω ∈ {1,2,3}, i.e. for

low, medium, and high demands, respectively for i∈ C,m∈M. We then project the customers’ demand on

their closest distribution centers to create demand scenarios for the distribution centers in each instance. In

other words, we compute Dω
dm =

∑
i∈C:

γ(i)=d
Dω

im, for d∈D and ω ∈ {1,2,3}, where γ(i) is defined as the closest

distribution center to customer i ∈ C. This sample of three scenarios is then used to obtain a solution per

instance. As the available supply at suppliers is the deterministic part of our problem, next we describe a

procedure for generating a base supply in each instance set which will then be used to generate supplies for

small and large instances, accordingly.

The suppliers in the selected instances of Gu et al. (2021) have the same locations but different supply.

To have a base supply of commodities for our instance generation, we set each supplier’s available quantity

of a commodity to its maximum among the selected instances. These base supplies are then adjusted with

respect to the high demand scenario plus a 10% supply flexibility to make sure that no matter the demand

scenario, there is enough supply available per commodity. Mathematically speaking, for each of our generated

instances Osm is computed as Osm← ⌈1.10
∑

d∈D Dω
dm∑

s∈S Õsm
Õsm⌉, where Õsm is the base supply derived from the

selected instances of Gu et al. (2021) and ω= 3, i.e. the high demand scenario, for m∈M and s∈ S.

The travel time between each two locations is computed as the travel distance between the two locations

multiplied by an instance-dependent factor such that the travel time between the two farthest locations in

the instance is 90 minutes, plus 30 minutes service time if the first location of the two is a supplier. The

activation cost of a truck (in minutes), i.e. τ, is set to 60. We set the truck capacity to four times of the

maximum capacity among the selected instances. The reason behind multiplying the maximum capacity by

four is that we tested different values and four was the value that allowed the collection of commodities from

more than two suppliers to satisfy the demand of the distribution centers in our numerical studies.

To generate our small instances, we take instances from the (reduced) base set of generated instances in

Gu et al. (2021), denoted as S by the authors. We choose three with the largest demand. They are composed

of six suppliers, two distribution centers, and 25 customers with locations produced based on the coordinates

in the class C101 of the well-known Solomon (1987) set of instances. The number of commodities is either

two or three. The travel distance between two locations is the Euclidean distance between the two nodes.

The capacity of a truck collecting the supply is either 150, 180, or 209 units. We diversify the locations of

suppliers by randomly choosing two suppliers out of 6 and exchanging their coordinates with the coordinates

of the distribution centers for each of our generated instances. We reduce the number of suppliers to five by

randomly removing one of the suppliers for each of our generated instances. We then generate customers’

demand scenarios and project them on distribution centers following the procedure explained above. We set

the number of commodities to three. The truck capacity is 4× 209 = 836 units.

To build our large instances, we use the school canteens instances from the case study described in Gu

et al. (2021). The case study was conducted by the local authorities of the French department of Isère.

We choose the first six instances which all have 103 customers, five distribution centers, and 61 suppliers.

The number of commodities, i.e. fresh products, varies from five to eight. The distance matrix between the

locations are provided by the local authorities. The capacity of truck collecting the supply at the farmers is
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600 units in all of these instances. We reduce the number of suppliers to 20 by deleting 21 suppliers randomly

and projecting half of the remaining suppliers onto their closest neighboring supplier for each of our large

instances. We then create customers’ demand scenarios and project them on distribution centers following

the steps mentioned above. We set the number of commodities to eight. The capacity of the trucks are set

to 4× 600 = 2400.

Appendix C: Details of Out-of-sample Validation

The out-of-sample scenarios are used to validate the TWs optimized for the three base, i.e. low, medium,

and high, demand scenarios generated according to the procedure described in Section 5.2. We refer to

the set of these three scenarios used for optimization as the base set and the set of 25 scenarios used

for out-of-sample validation as the validation set. The calculation of available supplies Osm, s ∈ S and

m ∈M, are the same as explained in Section 5.2. We then build 25 demand scenarios for customers by

first calculating D̄ω′

im = ⌈v̄ω′
(1 + ν̄ω′

im)(1 + ν̃im)D̃im⌉ for i ∈ C,m ∈M, in which D̃im is the base demand, ν̃im

and ν̄ω′

im are uniformly distributed perturbation factors on [−0.25,0.25], and vω′
is a scenario-dependent

uniformly distributed multiplier on interval [0.40,1.50], for ω′ ∈ {1,2, . . . ,25}. To make sure that these 25

validation scenarios are different than the three base scenarios, we use two different seeds for the two sets of

scenarios. To avoid infeasibility due to imbalance supply and demand, if
∑

i∈C D̄
ω′

im >
∑

s∈S Osm for m∈M,

we then adjust the generated demand per customer i∈ C and commodity m∈M via Dω′

im←⌊
∑

s∈S Osm∑
i∈C D̄ω′

im

D̄ω′

im⌋,

ω′ ∈ {1,2, . . . ,25}. Finally, similar to Section 5.2, we aggregate the demand of customers based on a shared

closest distribution center and project the result as the demand of the center, i.e. Dω′

dm =
∑

i∈C:
γ(i)=d

D̄ω′

im, for

d ∈D and ω′ ∈ {1,2, . . . ,25}. The heuristic pool of routes contains routes that are generated by taking into

account both the base and validation sets of scenarios.
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