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We present a problem motivated by discussions with Colombian e-commerce platforms for agri-food

products. In regular time intervals (periods), the platforms collect groceries from local farmers and stores

them at a warehouse to distribute them to local customers. The supply quantities and prices per farmer

and the cumulated customer demand can change from period to period. Thus, there is value in purchasing

more than needed in one period to exploit cheap prices and consolidation opportunities, to hedge against

future uncertainty, and to save routing cost in future periods. A careful balance between too much and not

enough inventory needs to be found, especially, since inventory perishes over time. The resulting optimization

problem is a stochastic dynamic multi-period routing problem with inventory and purchasing decisions. The

decision space of the problem is vast as it combines purchasing, inventory, and routing decisions. Further,

the value of a decisions is unknown since it depends on future developments and decisions. We propose

solving the problem with a stochastic lookahead method. In every state, the method samples a set of future

realizations and solves the resulting two-stage stochastic program. To cope with the complex decision space

in first and second stage, we propose a “soft” decomposition where the inventory and purchasing decision are

fully considered, but the routing decisions are simplified and their cost is approximated via a cost function

approximation. As the routing cost also depends on future decisions, the approximated cost are learned

iteratively via repeated simulation and adaption of the lookahead. We show that our method outperforms

a large number of benchmark policies for a variety of instances. We further analyze the functionality of our

method and investigate variation in the problem dimensions in a comprehensive analysis.
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1. Introduction

In recent years, there has been a growing demand for fresh, locally sourced, and high-quality

food products worldwide (Fukase and Martin 2020), as consumers are becoming more conscious

of the origin and quality of their food. In addition, locally sourced food products require less

transportation, refrigeration, and packing, which can significantly reduce the food system’s carbon

footprint. This trend has created new business models in which local suppliers are connected to

the local consumer through e-commerce platforms. These platforms allow small producers to sell

their products and reach new markets, enabling easy access to fresh and locally sourced products

(Gu et al. 2022).

In countries worldwide, from Denmark to Colombia, initiatives have been developed to distribute

local agricultural products through e-commerce platforms (Halkier and James 2022). These initia-

tives have created new supply chain structures composed of multiple small producers that require

coordination of the replenishment process with a network of participants rather than relying on

a single supplier. This process involves purchasing products, collecting them from suppliers, and

managing stocks in distribution centers (first mile, which is the focus of this work), followed by

distribution to end customers (last mile, which is out of the scope of this work). These structures

with high horizontal integration reduce the number of intermediaries, increase the participation of

small producers, and improve the efficiency and transparency of the supply chain, in addition to

reducing the gap between small and large producers in terms of competitiveness (Prajapati et al.

2022).

These new structures, despite being advantageous, pose new challenges for the supply chain

management. Local customers have high expectations, whereas smaller, regionally dispersed sup-

pliers can make ensuring consistent supply and quality challenging. In addition, the volatility of the

demand, supply, and pricing creates additional complexities in the management of the agri-food

supply chains. To address these challenges, it is necessary to develop methodologies that account

for uncertainty and manage the complexity of joint decisions in replenishment, routing, and inven-

tory operations in a dynamic environment (Majluf-Manzur et al. 2021). Failing to consider these

factors can result in poor planning and inefficiencies.

In this paper, we consider a problem based on discussions with online agri-food platforms in

Colombia; over a time horizon, a company aims at satisfying periodically occurring, uncertain

customer demand for different products with fixed sale revenue. We focus on the first mile, the col-

lection of products from a known set of suppliers to the warehouse per period assuming aggregated

customer demand directly at the warehouse. Customer demand, supply volumes, and purchase

prices of the products for each supplier over the periods are uncertain. This information is revealed

at the beginning of each period. In every period, the company purchases and collects products
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from the suppliers and store the collected products at a warehouse. For collection, the company has

access to a fleet of homogeneous vehicles. Collected products can either be used to satisfy current

demand or stored to cover potential demand in later periods. However, stored quantities decline

over time due to perishability. The company’s goal is to maximize the expected overall profit (i.e.,

sales revenue minus purchasing and routing cost) over the time horizon.

This problem is complex because it involves interconnected decisions of inventory, purchasing,

and routing. Approaching these decisions individually can lead to cost overruns. For example,

purchasing products from the cheapest suppliers may lead to expensive routing, whereas routing

over nearby suppliers may lead to high purchasing cost. Additionally, the value of a decision in one

period depends on stochastic demand, supply, and purchase prices, as well as decisions in future

periods. Building an inventory stock may reduce expected future purchasing and routing cost, but

buying too much may lead to additional cost due to perished goods. Therefore, it is necessary to

strike a careful balance between purchasing, routing, and inventory decisions every period, saving

costs in the current period and staying flexible for future periods.

We propose a stochastic lookahead method that takes all aspects into consideration when making

decisions. The method determines purchasing and inventory decisions in each period based on

future demand, supply, and price scenarios. To reduce complexity in exploring the decision space,

we approximate individual routing cost for each visited supplier rather than integrating explicit

routing decisions. This approximation considers the direct shipping cost and the consolidation

potential of each supplier. The approximation is adaptively learned by iterative simulations of

the stochastic lookahead, ultimately resulting in our STAR-policy (STochastic lookahead with

Adaptive Routing approximation).

We analyze the performance and functionality of our policy in a comprehensive computational

study, comparing it to a set of benchmark policies tailored for our case study, as well as to poli-

cies from the literature. Our policy outperforms all benchmarks for a large set of instances. Our

adaptively learned, approximated routing cost leads to an approximation error of only 5% and

is essential for the success of our STAR-policy. Our computational study reveals the following

managerial insights:

• Our STAR-policy suggests building an inventory initially and then using this inventory to

flexibly decide about the products to purchase based on the realized volumes and prices.

• Compared to a MYOPIC-policy that does not build up inventory, the purchasing cost do

not change significantly, however, the routing cost decreases.

• It is not necessarily a problem if supply volumes and purchase prices are volatile. In contrast,

this volatility provides opportunities for buying larger quantities at cheap prices.
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• While geographical adjacency to other suppliers is a decent indicator for a supplier’s consoli-

dation potential, other factors such as supply volume or prices play an important role, too.

• The cost of the fleet and the profit margin are the main drivers of the business model’s success

in our experiments.

• The perishability of products is an important factor for the platform’s revenue. Significant

improvements can be seen, even if only a subset of products last longer.

Our contributions are as follows. We present a comprehensive dynamic decision process model

for a new practical problem based on our collaboration with e-commerce platforms in the agri-

food supply chain in Colombia. We develop an anticipatory method that solves the problem and

obtains significant improvements compared to a large set of benchmark policies. We analyze the

components of the problem in a comprehensive sensitivity analysis and derive a set of valuable man-

agerial insights. Methodologically, we propose embedding a cost function approximation (CFA) in a

stochastic lookahead method and adaptively tuning the CFA parameters. This methodology allows

us to find the purchasing, routing, and inventory management decisions and reduce complexity by

having supplier-dependent estimates. The general concept might prove valuable for dynamic deci-

sion problems with complex routing decisions; an increasingly important problem field especially

in transportation (Hildebrandt, Thomas, and Ulmer 2023).

The remainder of this paper is structured as follows. We present the related literature in Sec-

tion 2. The problem is defined in Section 3. In Section 4, we present our approach. The design of

experiments is described in Section 5. Computational studies and the detailed analysis of the results

are presented in Section 6. The paper concludes with Section 7. We further present a comprehensive

Appendix with more details on literature, methodology, and results.

2. Related work

The work on the individual components of our problem is vast. In this section, we focus on the

most relevant literature. For a detailed overview on other related work with respect to inventory,

purchasing, or multi-period routing, we refer to Appendix A.1.

To the best of our knowledge, the presented problem has not been studied in the literature as

it combines dynamic multi-period inventory management of multiple, perishable products with

procurement routing under uncertain demand, purchase price, and supply. There is work on the

deterministic variant of the problem by Çabuk and Erol (2019). They propose a Mixed Integer

Nonlinear model (MINLP) to solve a multi-period problem that integrates purchasing, routing

and inventory decisions and considers price discounting as a function of quantity purchased. The

authors perform a scenario analysis to evaluate the model results under varying conditions for a

small instance size. Using an adaption of their approach operating on expected values (EV) as a
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benchmark, we show that the explicit consideration of uncertainties is key for successful decision

making.

In Keskin et al. (2023), over multiple periods, waste is collected from a set of facilities. To save

cost, the provider can call “convenient” facilities and suggest preemptively picking up waste to

avoid visits in later periods. The authors propose rules to identify promising facilities to call based

on the expected waste volumes and on how they could be integrated in the routes. The problem

shares the challenge of multi-period routing under uncertainty. Further, decisions are required that

extend routing and inventory collection in one period to avoid cost in the next. Our proposed

methodology explicitly considers future uncertainties and routing. To analyze the value of our

method, we also implement a rule-based approach (policy function approximation (PFA), compare

Powell 2021). Related to Keskin et al. (2023), this approach builds up inventory by adding supply

and suppliers to visit in a period based on prices and the routing cost. We show that while such

a method performs comparably well, there is significant value in explicitly incorporating future

developments.

Other related work is presented by Brinkmann, Ulmer, and Mattfeld (2019, 2020), both problem-

and method-wise. In the papers, the authors dynamically transport bikes to ensure sufficient inven-

tories at bike-sharing stations. The authors propose a lookahead approach for evaluating inventory

decisions. To this end, future demand is sampled and the inventory that minimizes failed demand

is selected. The length of the lookahead horizon is time-dependent and learned via value function

approximation. Future routing decisions are not considered in the lookahead. Our work shows

similarities that we also use samples of the future to determine inventory decisions. However, we

explicitly incorporate the routing and its cost in our lookahead model. Our preliminary tests showed

that ignoring future routing in the lookahead leads to very poor results.

The idea of integrating approximated cost in a lookahead is also proposed by Ulmer et al. (2019)

and Liu and Luo (2023). In Ulmer et al. (2019), a decomposition of the decision space is performed

to allow enumeration of potential decisions. Each decision is then evaluated based on a set of

scenarios where within the scenarios, decisions are made by a pre-trained policy. Our method is

different as it allows for an integrated optimization considering all potential decisions with respect

to all scenarios and as the training is done in an integrated manner by using the policy. In Liu

and Luo (2023), for a dynamic multi-period dispatching problem, solving a stochastic program to

search the decision space of the current stage is proposed. In later stages of the program, costs

are approximated by using a myopic strategy. Thus, there is no iterative learning involved. In our

computational study, we show that this iterative learning adds significant improvements compared

to the stochastic lookahead with approximation of a myopic policy (ST-MY). Baty et al. (2023)

address a similar problem. They do not solve a stochastic program, but approximate future cost
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based on perfect information solutions. The cost is then used in a metaheuristic to search the

decision space. Thus, there is no adaptive learning based on the realized cost. Our problem is too

complex to determine such ex-post solutions and test the idea proposed in Baty et al. (2023) as a

benchmark. However, the insights of Heinold, Meisel, and Ulmer (2023) suggest that approximation

via perfect information alone often leads to too optimistic evaluations, especially if the actual cost

realizations are not considered. Finally, as in our work, Haferkamp, Ulmer, and Ehmke (2023)

suggest adaptively learning of cost. These costs are not used in optimization, but in a PFA for

heatmap design guiding crowdsourced drivers to lucrative spots in the city.

In summary, to the best of our knowledge, we are the first to address the proposed problem

and the first suggesting a dynamic policy that embeds an adaptively learned CFA in a two-stage

stochastic program.

3. Problem definition

In this section, we present the problem statement. We first describe the problem. Then, we model

the problem as a sequential decision process and provide an illustrative example.

3.1. Problem description

We consider the problem of an e-commerce platform purchasing and collecting agricultural products

from a set of regional farmers to satisfy customer demand over a time horizon.

We assume a harvesting season with a limited number of periods (e.g., days). At the beginning of

each period, customer demand quantities of the products reveal. This demand needs to be satisfied

at a warehouse at the end of the period. The selling price the customers pay for a product is known

and constant over the periods. The products are offered by regional suppliers. The suppliers are

distributed around the warehouse. Each supplier offers a subset of products. The quantities and

purchase price of the products per supplier vary from period to period and become known in the

beginning of each period. For the (very unlikely) case that the realized demand is higher than all

the available supply, there is also a “backorder” supplier (e.g., a wholesaler) located directly at the

warehouse, offering unlimited quantities of all products at fixed high prices.

To collect products from the suppliers, the provider can hire vehicles. The vehicles have a max-

imum capacity and maximum working duration per period. The cost of the vehicles depends on

their working time. The vehicles start and end their tours at the warehouse. We assume that split

collections are prohibited. Thus, each supplier is visited by at most one vehicle. There is a service

time to load the products on the vehicles. Vehicles may not only collect products demanded in the

current period, but can also collect more. These additional product quantities are stored at the

warehouse with unlimited capacity. A known percentage of stored inventory perishes between the

periods. Additional inventory holding cost are not considered.
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Every period, the e-commerce platform planner decides the product quantities to buy from each

supplier (including the backorder supplier) and how to create routes for collecting them. Buying

more than needed to satisfy the demand of the period is possible. A decision is feasible if the

period’s customer demand can be satisfied and the collection routes do not violate capacity or time

constraints. The reward of a decision is the difference between the revenue of selling the products at

the warehouse and the cost of purchasing and routing. The objective of the provider is to maximize

the expected reward over all periods.

3.2. Sequential decision process

The problem at hand is a stochastic and dynamic decision problem. It is stochastic because the

products’ demand, purchase prices, and supply are only known at the beginning of each period.

It is dynamic because a sequence of decisions must be made, one decision per period. In addition,

current decisions change inventory volumes for future periods, thus influencing future decisions.

A stochastic dynamic decision problem can be modeled as a sequential decision process (Powell

2021), modeling the problem as a sequence of states. In each state, a decision is made and a reward

is observed. Then, stochastic information is revealed and a transition leads to the next state. In the

following, we define the states, decisions, reward, stochastic information, and transition function

of our problem. First, we introduce the global notation.

Global Notation. The periods are denoted as t ∈ T with T = {1,2, . . . , |T |}. We assume a set

of products k ∈K and a set of suppliers m∈M (including the backorder supplier, |M |).

We define the collection network as a complete, undirected graph G= (V,E). Let V :=M ∪{0}

be the set of vertices, where 0 represents the warehouse. Let E be the set of arcs where E = {(i, j) :

i, j ∈ V }. Each arc (i, j) ∈E is associated with a non-negative travel time τij. The travel time to

and from the backorder supplier is 0, (τ0|M |, τ|M |0 = 0). There is a service time at each supplier to

load the products on the vehicles. We include them in the travel times τij, leading to asymmetric

travel times from/to the warehouse. For every time unit traveled there is a cost of c. Vehicles have

a maximum load capacity Q. The maximum working time per vehicle and day is denoted by lmax.

Each supplier m ∈M provides a subset of the products Km ⊆K (K|M | =K). Moreover, each

product k is provided by a subset of suppliers Mk. Product k ∈K has a unit revenue rk and a

perishability percentage of ϕk ∈ [0,1].

State. A decision is made every period. The state comprises all information available to make

a decision. We denote the state in period t∈ T as St. For our problem, the state St consists of four

components, two related to the warehouse and two related to the suppliers:

• the current inventory level of product k in the warehouse at period t; denoted by Îkt,

• the demand for product k at period t, denoted as dkt,
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• the purchase price at supplier m for product k at period t, denoted by pmkt,

• and the available quantity of product k at supplier m at period t, denoted by qmkt (q|M |kt =∞).

State St can be summarized as St = (Ît, dt, pt, qt) with Ît and dt being |K|-dimensional vectors

and pt and qt being |M | × |K|-matrices. In the initial state S1, the inventory at the warehouse is

empty, Î1 = 0.

Decision. We denote a decision at period t ∈ T as at. A decision at = (zt, It, et, xt, ft) has five

components that reflect purchasing and routing parts. The purchasing part is modeled via zt

and It. It determines the quantity of products to buy from each supplier, represented by matrix

zt = (zmkt)m∈M,k∈K . The purchasing decision induces the inventory level at the end of the period

as the difference between the demand and the sum of the initial inventory and the quantities

purchased. The inventory at the end of the period of product k is represented by variable Ikt

(compare Equation (1)).

The second part of the decision is the definition of collection routes, modeled via et, xt, and

ft. We assume a sufficiently large available set of vehicles F (e.g., |F |= |M |). The routing is then

modeled as follows. First, variable emt takes the value of one if supplier m∈M is visited at period

t, 0 otherwise. Second, variable f0t is the number of vehicles dispatched from the warehouse at

period t. Variable xijt ∈ {0,1} is the routing variable, indicating whether the arc from supplier i

to supplier j is activated at period t. In the following, we summarize the decision space using a

mixed-integer formulation.

A decision at = (zt, It, et, xt, ft) at period t∈ T is feasible, if the following constraints hold:

Ikt = Îkt +
∑

m∈Mk

zmkt− dkt, ∀k ∈K (1)

zmkt ≤ qmktemt, ∀k ∈K,∀m∈Mk (2)∑
i∈V

ximt = emt, ∀m∈M (3)∑
k∈K

zmkt ≤Qemt, ∀m∈M (4)∑
(j,j

′
)∈δ({m})

xjj
′
t = 2emt, ∀m∈M (5)

∑
(j,j

′
)∈δ({0})

xjj
′
t = 2f0t, (6)

Q
∑

(i,j)∈E(M ′)

xijt ≤
∑

m∈M ′

(
Qeit−

∑
k∈Km

zmkt

)
,∀M ′ ⊆M, |M ′| ≥ 2 (7)

uit−ujt + lmaxxijt ≤ lmax− τij, ∀i, j ∈M |i ̸= j (8)

f0t ∈Z, (9)
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emt ∈ {0,1}, ∀m∈M (10)

zmkt ≥ 0, ∀k ∈K,∀m∈Mk (11)

zmkt ≤ qmkt, ∀k ∈K,∀m∈Mk (12)

Ikt,≥ 0, ∀k ∈K (13)

xijt ∈ {0,1}, ∀(i, j)∈E, (14)

uit ≤ lmax, ∀i∈M (15)

uit ≥min
j

τij, ∀i∈M (16)

Equation (1) accounts for the inventory at the end of the period and guarantees the satisfaction

of the demand. Equation (2) ensures that the purchase should not exceed the available capacity

of the suppliers and that a vehicle can only collect quantities if it visits the supplier. Equation (3)

and Equation (4) are non-split visit constraints that ensure that each supplier is visited by at

most one vehicle and that no more than the vehicle’s capacity is purchased. Equation (5) and

Equation (6) are the degree constraints that maintain the flow in and out to the nodes. Equation (7)

and Equation (8) are the sub-tour elimination constraints based on vehicle capacity and maximum

travel time (Iori, Salazar-González, and Vigo (2007), Toth and Vigo (2002), Miller, Tucker, and

Zemlin (1960)). Finally, Equations (9)-(16) define the domain of the variables.

The reward of decision at in state St is the sum of revenue minus the cost for purchasing and

routing:

R(St, at) =
∑
k∈K

(
rkdkt−

∑
m∈Mk

pmktzmkt

)
− c

∑
(i,j)∈E

τijxijt (17)

The combination of state St and decision at leads to a post-decision state Sa
t = (It) representing

the inventory at the end of period t.

Stochastic information and transition function. After a decision at is taken in state St,

stochastic information

ωt+1 = (dωt+1, p
ω
t+1, q

ω
t+1)

is revealed about the demand of the next period dωt+1 as well as the purchase prices pωt+1 and

available quantities qωt+1 per supplier. The transition function T (Sa
t , ωt+1) leads to a new state

St+1 = (Ît+1, d
ω
t+1, p

ω
t+1, q

ω
t+1). The inventory Ît+1 depends on the inventory of the post-decision state

Sa
t , the realization of ω and the perishability percentages ϕ as follows:

Îkt+1 = Ikt(1−ϕk), ∀k ∈K. (18)
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a) b)

c)

t = 1

Figure 1 Example of state, two potential decisions, and their consequence at next period

Policy. A solution for a sequential decision process is a policy π. A policy assigns a decision

at =Aπ(St) to every state St. The overall set of policies is defined as Π. An optimal solution π∗ ∈Π

maximizes the expected reward:

π∗ = argmax
π∈Π

E

[∑
t∈T

(R(St,A
π(St)), |S0)

]
, (19)

starting from state S0.

3.3. Example

In Figure 1, we give an small example to illustrate the components of the sequential decision process

and to motivate our solution methodology. Figure 1.a presents the state S1 at period t = 1. We

assume a network with three distributed suppliers (circles). For the purpose of presentation, we

omit the backorder supplier and the routing network details. We further assume a system with two

different products, eggplants and grapes. Each supplier provides information about the products

offered, together with the available capacity and purchase price of each of them. In this example,

supplier 1 offers at most 10 units of grapes for a price of $4 per unit. Supplier 2 offers at most 20

units of eggplants for a price $7 per unit. Supplier 3 offers both products with a maximum capacity

of 10 units of grapes, and 20 units of eggplants. The prices per unit are $5 and $2, respectively.

The square represents the warehouse, which presents the demand information for each product
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and the respective initial inventory. The first entry of the vector is demand, and inventory is the

second. In this example, 10 units of grapes and 20 units of eggplants are required and none are

in the warehouse at the beginning of t= 1. In this example, the vehicle capacity is Q= 30, and a

perishability loss rate ϕ= 10% is assumed for each product.

Figures 1.b and 1.c present potential decisions for period t= 1 and their consequence at period

t= 2 after exogenous information ω2 is revealed and another decision has been taken. In Figure 1.b,

the potential decision is to buy what is needed to satisfy the demand of period t= 1 at the lowest

price without keeping units in inventory at the end of period, (e.i., I1 = 0 for all products). This

decision is the most cost-efficient at t= 1 and leads to an initial inventory Î2 = 0 at t= 2 for each

product. Note that even though supplier 1 has the lowest price for grapes, the routing cost of

visiting reduces the overall reward, hence, in the decision, the grapes are purchased from supplier

3. In period t= 2, after new demand occurred and supply and prices were revealed, the subsequent

decision is to send two vehicles due to capacity constraints, one to supplier 2 and one to suppliers

1 and 3. Thus, while cost-efficient in t= 1, this decision leads to inflexibility and potentially high

costs in t= 2.

Another potential decision for period t= 1 is presented in Figure 1.c. In this decision, demand

is satisfied by purchasing from supplier 3, and units are kept in inventory by purchasing from

suppliers 1 and 2. At the end of the period t= 1, 20 units of grapes and 10 units of eggplants are

in inventory, leading to an initial inventory of 18 and 9 at t= 2 after applying the perishability loss

rate, respectively. In contrast to the decision in Figure 1.b, the decision presented in Figure 1.c

leads to inventory at the beginning of period t= 2, which allow to satisfying the realized demand

by only visiting supplier 3.

The example illustrates the challenge of balancing routing and purchasing cost in every state

while determining effective inventories for the future. A visit to suppliers 1 and 2 at t = 1 as

proposed in Figure 1.c generates savings in operation by anticipating changes in demand, purchase

prices, and quantities available from suppliers. The purchase cost decreases because realized prices

at t = 1 are lower compared to t = 2. The routing cost decreases for two reasons: the movement

from 1 to 2 in t= 1 is made instead of going through the arc from 3 to 1 in t= 2; in t= 2, a direct

shipment is made to supplier 3 instead of from supplier 2, which is farther away.

4. Method

In the following, we present the proposed method for our problem. We first give a motivation and

overview of the general procedure, and then we define the individual components of our method

in detail.
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4.1. Motivation and overview

Solving the problem is challenging for two reasons: searching the vast decision space and evalu-

ating the decisions with respect to future uncertainty realizations and their consequent potential

decisions. We will discuss the two challenges in the following and motivate our solution approach

addressing both in an integrated fashion.

• Search: Decisions comprise three interdependent components: the inventory level of each

product, the purchasing decisions for each product across the set of suppliers to achieve the desired

inventory, and an efficient routing of the vehicles to collect the purchased products. Even though

routes for the problem at hand usually only have a few stops due to capacity constraints (about

1 to 3 in practice and in our experiments), the latter is an NP-hard optimization problem by

itself. Furthermore, the three decisions are intertwined. Inventory decisions balance current cost

and future savings but should also be made having both purchasing and routing cost in mind.

• Evaluate: Decisions are made under uncertainty in future realizations of demand, supply, and

purchase prices. Thus, the value of a decision can only be determined at the end of the process.

There is also a cost trade-off over the periods. For example, having available inventory at the

beginning of the next period may require additional purchasing and routing, but likely reduces

the corresponding purchasing and routing cost of that period. In contrast, high inventory levels

require more purchasing and routing cost now plus a potential loss due to perishability, however,

they allow more flexible decision making in the next period(s).

In summary, a methodology is required that allows an integrated consideration of the decision

space while anticipating future realizations in demand, supply and purchase prices as well as

potential future decisions. To this end, we present our STAR-approach (STochastic lookahead

with Adaptive Routing approximation). In every state, the STAR-approach samples a set of

scenarios reflecting future uncertainty in demand, supply, and purchase prices over a limited set

of future periods. STAR then solves the corresponding two-stage stochastic program, finding an

integrated solution with respect to all scenarios. This solution then induces the purchasing and

inventory decision for the current state. We note that this is a significant difference compared to

scenario-decomposition lookahead methods like the multiple-scenario-approach (MSA, Bent and

Van Hentenryck 2004) where the scenarios are solved individually and then the “average” solution

is implemented.

Solving the two-stage stochastic program consists in finding an integrated inventory, purchasing

and routing decision in all periods and scenarios, as well as a consideration of all individual solutions

in the first stage. Even for only one scenario as required for methods such as the MSA, this is

computationally challenging due to the large decision space (Zehtabian and Ulmer 2023). This

challenge amplifies when routing needs to be considered in a two-stage stochastic program (Spliet
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and Gabor 2015, Spliet, Dabia, and Van Woensel 2018). Thus, our STAR-policy considers a

simplified decision space, maintaining inventory and purchasing decisions but only considering

an approximation of the routing. While inventory and purchase decisions are fully considered in

the optimization via variables I and z, the routing decisions in every sample path is reduced.

Instead of determining the full routing via variables x, we assume direct trip costs (c · τ̂m) from

the warehouse to every supplier m if goods are purchased, with τ̂m := τ0m + τm0,∀m ∈M . Based

on this approximation, we determine the inventory and purchasing decisions for a given state and

solve the corresponding detailed routing part afterwards. This procedure reduces the decision space

significantly and allows solving the two-stage stochastic program with commercial solvers.

Direct trips overestimate the actual routing cost as they ignore consolidation of potential close-by

suppliers. Thus, we capture this consolidation potential by assigning each supplier m a weight γm.

A weight close to zero indicates high consolidation potential while a weight close to one indicates

that the supplier is usually visited via direct trip. The routing cost of a supplier m is then the cost

of the direct trip multiplied by the weight (γm · c · τ̂m).

Determining the weights analytically is challenging as we show in our computational study.

Recalling the example from the previous section, it is likely that γ1 < γ3, as the central position

of supplier 1 might increase consolidation potential. However, the consolidation potential does not

only depend on the location of a supplier, but also on their subset of products and quantities offered

as well as the purchase prices. Even though a supplier might be very close to another supplier, there

might be only limited consolidation, e.g., because the other supplier is very expensive or because

the first supplier offers so much supply that the vehicle’s capacity is already reached. Furthermore,

the actual consolidation potential depends on the policy applied. For example, a policy aiming for

high inventory values may lead to more direct trips compared to a policy that only purchases the

bare minimum every day. Thus, we propose adaptively learning the γ-values via simulation. We

start with initial γ-values prescribing a STAR-policy πγ . Then, over a number of iterations, we

repeatedly apply policy πγ and observe the actual routing decisions. We use the observations to

update the routing approximation γ-values and consequently the policy πγ for the next iteration.

We repeat this procedure several times until convergence in routing approximation and decision

making is achieved. The procedure is summarized in Figure 2. In step (1), the approximated routing

cost defines the STAR-policy πγ . In step (2), the policy is applied in simulations. In step (3), the

simulations outcome is used to update the γ-values and the cycle begins again.

Given the framework by Powell (2021), we propose embedding a parametric cost function approx-

imation (CFA) in a stochastic lookahead method and adaptively tuning the CFA-parameters.

Ensuring linearity via the γ-values allows us to search the complex decision space in every state
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STAR-Policy 𝜋𝛾

Simulation

Approximated 
Routing 𝛾

(1) Define

(2) Apply(3) Update

Figure 2 The iterative procedure to tune the γ-values of the STAR-approach

while also considering long-term impact of our decisions in detail. To the best of our knowledge,

our method is the first to propose this general concept to the transportation literature.

In the following, we present the details of our algorithm. We first present the STAR-policy

assuming γ-values are given and discuss how we determine the detailed routing decision given a

purchasing decision z in a state. We then describe how we adaptively learn the γ-values.

4.2. Stochastic lookahead model

In every state St in period t, the STAR-policy solves a stochastic lookahead model. The model

integrates a set of scenarios, i.e., sample paths ω ∈ Ω and the current γ-values within a forward

period horizon T ′. Each sample path determines realized demand and supply volumes as well as

prices for every period t′ ∈ T ′. The stochastic lookahead model is a two-stage stochastic program,

and it is presented in Eqs. (20)-(30). The structure of the stochastic program is similar to the

decision space defined in Section 3.2. However, it models several scenarios and time periods. Fur-

thermore, the routing variables x are replaced with supplier selection variables e. The objective

function, presented in Eq. (20), maximizes the expected reward over all scenarios. Eq. (21) guar-

antees the balance of inventory and demand satisfaction. Eqs. (22) and (23) guarantee that the

purchase does not exceed the quantity of product on hand and the vehicle capacity. Eqs. (24), (25)

and (26) are the non-anticipativity constraints, which ensure that the first-period decisions on the

horizon T ′, corresponding to state St, are the same for all scenarios. Finally, Eqs. (27)-(30) define

the variables domain.

max
∑
ω∈Ω

1

|Ω|

(∑
t′∈T ′

(∑
k∈K

(
rkd

′
kt′ω −

∑
m∈Mk

p′mkt′ωzmkt′ω

)
− c

∑
m∈M

γmτ̂memt′ω

))
(20)
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s.t. Ikt′ω = Ikt′−1ω(1−ϕk)+
∑

m∈Mk

zmkt′ω − d′kt′ω,∀k ∈K,∀t′ ∈ T ′,∀ω ∈Ω (21)

zmkt′ω ≤ q′mkt′ωemt′ω, ∀k ∈K,∀m∈Mk,∀t′ ∈ T ′,∀ω ∈Ω (22)∑
k∈K

zmkt′ω ≤Qemt′ω, ∀m∈M,∀t′ ∈ T ′,∀ω ∈Ω (23)

zmktω =
∑
ω′∈Ω

zmktω′

|Ω|
, ∀k ∈K,∀m∈Mk,∀ω ∈Ω (24)

Iktω =
∑
ω′∈Ω

Iktω′

|Ω|
, ∀k ∈K,∀ω ∈Ω (25)

emtω =
∑
ω′∈Ω

emtω′

|Ω|
, ∀m∈M,∀ω ∈Ω (26)

emt′ω ∈ {0,1}, ∀m∈M,∀t′ ∈ T ′,∀ω ∈Ω (27)

zmkt′ω ≥ 0, ∀k ∈K,∀m∈Mk,∀t′ ∈ T ′,∀ω ∈Ω (28)

zmkt′ω ≤ q′mkt′ω, ∀k ∈K,∀m∈Mk,∀t′ ∈ T ′,∀ω ∈Ω (29)

Ikt′ω ≥ 0, ∀k ∈K,∀t′ ∈ T ′,∀ω ∈Ω (30)

4.3. Routing algorithm

The stochastic program obtains the value of purchasing decisions zt, inventories It, and suppli-

ers selection et given a state St. Based on the variables, the STAR-policy determines routing

decisions xt and ft. In the following, we describe the process conceptually. For details, we refer

to Appendix A.2.1. First, a complete tour with the selected suppliers is created through a near-

est neighbour algorithm. The creation of the complete tour follows Cuellar-Usaquén, Gomez, and

Álvarez-Mart́ınez (2021). An augmented graph is constructed with this complete tour and the pur-

chased quantities (zt). Then, the pool of routes that follow the complete tour order are extracted

using the split procedure from Prins (2004) respecting the vehicle capacities and the maximum

travel time. After the construction of the augmented graph that follows an acyclic-directed graph

(ADG) structure, we solve the shortest path problem using the BellmanFord algorithm for ADG

to find the best set of routes that minimize the travel time (Goldberg and Radzik 1993). These

routes are then implemented in the decision xt. The number of routes selected is equivalent to the

number of vehicles used in decision ft.

4.4. Adaptive routing cost approximation

Finally, we describe how we adaptively approximate the routing cost parameters γ over the itera-

tions. We refer to Appendix A.2.2 for the algorithmic details. In the first iteration, initial values

γ0
m are set, e.g., γ0

m = 1.0 for all suppliers m. These values induce an initial STAR0-policy. This

policy is evaluated for a set of n simulations of the process (n= 20 in our computational study).

In each simulation j, for each supplier m, the corresponding routing decisions are tracked and
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for each observed routing in a period t, the corresponding γ̂j,t,m is calculated based on the routes

travel duration, the number of suppliers visited and the direct trip duration for the corresponding

supplier. More specifically, γ̂j,t,m is determined by the overall route duration containing supplier

m in period t divided by the number of suppliers in that route, and then, normalized by dividing

by the direct trip duration for supplier m. We note that such γ̂j,t,m-values are only calculated in

periods t where supplier m was visited.

After all γ̂j,t,m-values of simulation j are collected, an average value γ̄j,m is calculated. Based on

preliminary tests, we also integrate γi−1
m in this calculation to avoid outlier values in case of only

very few observations in simulation j. After all n simulations, the overall average γ̄m is calculated

based on the γ̄j,m-values of the individual simulation. Next, we set the new value γi
m as the weighted

combination of old value γi−1
m and average value γ̄m:

γi
m = (1−αm) · γi−1

m +αm · γ̄m

Value αm determines the step size of the updates. In our computations, we set αm = 1/
√
om

with om being the times supplier m was updated before. This allows us to focus more on later

observations.

We illustrate the procedure via an example in Figure 3. In the example, we approximate the

value for supplier 5 after iteration 4, i.e., γ4
5 . For the purpose of presentation, we only consider

one simulation per iteration and a problem horizon of six periods. We recall that we integrate the

service times in travel time values τ . We assume the travel time between supplier 5 and warehouse

0 is 95 minutes, and the service time for loading the products on the truck is 10 minutes. Thus,

the direct trip travel time for supplier 5 is 200 minutes. Within the periods, supplier 5 was visited

three times, in periods 1, 3, and 6. Each time, supplier 5 was part of a different route. In period 1,

the supplier was visited with two other suppliers (1 and 4) and the overall tour duration was 300

minutes. In period 3, supplier 5 was visited together with supplier 9 and a tour duration of 280

minutes. In period 6, supplier 5 was visited in a direct-trip tour with duration of 200 minutes. For

each of the three observations, we now calculate the relative γ-values as the ratio between partial

routing time and direct trip duration. The partial routing time is the overall routing duration

divided by the number of suppliers in the tour. In the first period, the relative γ̂1,1,5-value for

supplier 5 is 100
200

= 0.5, the partial route duration 300/3 = 100 divided by 200 minutes direct trip

time. In period 3, the γ̂1,3,5-value is 140
200

= 0.7 and in period 6, γ̂1,6,5 is 200
200

= 1.0. If we assume a

previous value of γ3
5 = 1.0, we calculate

γ̄1,5 =
1.0+0.5+0.7+1.0

4
= 0.8.
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Figure 3 Example for estimation γ for supplier 5

Because the number of simulations is one for this example, γ̄5 = γ̄1,5. The new value γ4
5 is then

calculated as

γ4
5 = (1− 1/

√
4) · γ3

5 +(1/
√
4) · γ̄5 = 0.5 · 1.0+0.5 · 0.8 = 0.9

We note that this procedure may produce values γm > 1.0 for some suppliers, mainly with small

direct trip duration. For such suppliers, being consolidated with other suppliers the relative routing

cost is higher than the direct trip cost. However, since the γ-values are considered jointly in the

optimization, restricting values by 1.0 yields inferior results.

4.5. Implementation details

The parameters related to the STAR-approach were tuned based on preliminary experiments.

The following parameter values were set. We set h = 3, the lookahead horizon to three periods,

i.e., the stochastic program considers four periods total; the gap for the optimization solver to 5%;

and the number of scenarios to |Ω| = 10. This setting strikes the right balance between runtime

and system performance, as shown in Appendix A.2.3. In the adaptive learning process, we use a

number of n= 20 simulations per iteration and 60 iterations overall. Unless stated differently, the

initial γ-values are fixed to 1 for all suppliers. For all the experiments, a computer with an Intel(R)

Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz was used with Windows 10 and 16 GB RAM. All

implementation are coded on Python 3.9, and Gurobi 9.1.1 is used as optimizer.

5. Design of experiments

In the following, we present the instance setting details and the benchmark strategies for our

computational experiments.

5.1. Instance setting

We consider a basis instance setting for our main experiments. This setting is also the foundation for

our analysis described later. We base our instance design on publicly accessible data (de Planeación
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and Sectorial 2005, Perfetti et al. 2013, Rodolfo Enrique and Mendoza Valencia 2017, UPRA 2018,

DANE 2022, Valev 2023) and on our discussions the Colombian companies from the agri-food

sector.

Layout. Our basis instance consists of 21 nodes (20 suppliers and one warehouse), five products,

and a horizon of 20 periods (|V |= 21, |M |= 20, |K|= 5, |T |= 20). The warehouse is located at the

center of a 250km times 250km region. The coordinates of the suppliers were sampled uniformly

in the region.

Vehicles. Vehicles are provided by local freelancers. We assume vehicles have a capacity of six

tons, Q= 60 (in units of hundreds of kilograms), as common for the smaller trucks operating in the

region. We further assume a maximum working time of lmax = 480 minutes for travel and loading.

We assume that the time it takes to load the products on the vehicle is 10 minutes per supplier.

Travel times are calculated “as the crow flies”, i.e., are Euclidean. We assume a travel speed of 60

km per hour. We assume compensation of one dollar c= $1 per minute worked since it captures

both vehicle and driver costs.

Products. Not all 20 suppliers offer all five products. Instead, we assume that a product is

offered by at least 30% of suppliers. The suppliers for each product k were randomly selected

with probability 30%. Because this is done individually for each product, some suppliers may offer

a wider range of products than others. In the unusual case that a supplier m ends up with no

product at all, we assign a single, random product. We set the perishability of all products to

ϕk = 10%,∀k ∈K.

Supply and demand. The expected supply µqmk
of each supplier m and product k (if available) is

drawn from a uniform distribution between 400 and 900 kilograms. The realization of each supply

in a period follows a normal distribution with a coefficient of variation of 0.1. That means the

standard deviation is 10% of the expected product supply. The expected demand µdk of a product

k is modeled similarly and is uniformly drawn between 1,000 and 1,500 kilograms. Again, we set

the coefficient of variation to 0.1. Even though negative values are highly unlikely, we truncate

all distributions at 0 kilograms (and 2 · µqmk
and 2 · µdk kilograms to ensure symmetry). Finally,

we set the demand for all products at the first period t = 1 to zero to allow an initial system

“setup”, dk1 = 0,∀k ∈K. Preliminary tests showed that this initial system setup does not affect

the performance of the policies significantly compared to a setting without an initial setup period.

Modeling supply and demand based on the requirements leads to instances where the backorder

option is generally not needed since the demand in a period can be satisfied by the available supply

in the period.
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Prices. For each supplier m and product k, we sample the expected prices µpmk
uniformly in

the range from $50 to $120 per 100 kilograms. Again, we model the realizations with a normal

distribution and a coefficient of variation of 0.1 and truncate the distributions at $1 (and 2 ·µpmk
−$1

to ensure symmetry). The revenue per product is 10% higher than the average expected values

generated for product prices. The prices for the backorder option are set high, 250 times higher

than the expected revenue. In our experiments, the backorder option was never used.

In our main experiments, we determine the expected demand, supply, and purchase prices values

once and create 20 instance replications. In our analysis, we developed additional settings, e.g., by

varying coefficient of variation for each source of uncertainty, by assuming correlation in suppliers’

prices and supply volumes, by testing different cost and revenue percentages, by varying the per-

ishability of products, and by assuming different vehicle capacity values. These additional settings

are presented in Section 6.4.

5.2. Benchmarks

We test our policy to nine benchmark policies. We present problem-oriented and method-oriented

benchmarks. Testing a policy without consideration of routing approximation (i.e., γ = 0) leads to

substantially worse performance than all other tested policies. Thus, all benchmark policies rely

on some form of approximation of γ.

Problem. We implement three problem-oriented strategies:

• MYOPIC: The first is a MYOPIC-policy maximizing the revenue per day by avoiding any

additional travel and inventory. To approximate routing, the MYOPIC-policy assumes the same

γ-value for all suppliers which is determined via enumeration (see Appendix A.3.1 for details).

• EV: As second benchmark, we implement an expected value policy (EV) related to Çabuk

and Erol (2019). This policy plans on the expected values in purchase prices, supply, and demand.

Algorithmically, it only considers one deterministic scenario of the expected values in prices, supply,

and demand. The γ-values are tuned as for MYOPIC.

• PFA: The third benchmark is a policy function approximation (PFA). ThePFA-policy mimics

the practical idea to buy more than needed in case the prices are below average. To this end, for

all products, the policy considers a percentage of the revealed demand at the beginning of each

period and buys up to this percentage more if the product is cheaper than expected. The best

percentage is determined via enumeration. The same γ-value is used as for MYOPIC. Details of

the PFA-policy are presented in Appendix A.3.2.

Method. We test six method-oriented policies to investigate the value of scenario-generation

and adaptive routing approximation. To this end, we test different alternatives to approximate the

γ-values for the suppliers (for algorithmic details, we refer to Appendix A.3.3):
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• ST-ONE: We assume a single γ-value for all suppliers. This value is determined via enumer-

ation.

• ST-MY: This policy follows Liu and Luo (2023). The γ-value of each supplier is determined

by running policy MYOPIC and approximating the γ-values as described in Section 4.

• ST-DIST: This policy links the γ-values of a supplier to the distance to other suppliers. To

this end, we set γm relative to the the number of suppliers in supplier m’s neighborhood defined

via a travel time radius. We search for the best travel time radius via enumeration.

• ST-CAPA: This policy links the γ-values to the relative product subset and quantities offered

of a supplier assuming that a supplier with a wider subset of products and higher supply quantities

is part of more routes. We calculate a score for each supplier based on products and expected quan-

tities. The γ-values are then determined based on the suppliers’ scores relative to other suppliers.

Suppliers with more products and offer receive a smaller γ-value.

• ST-PRICE: This policy is similar to ST-CAPA, but makes γ-values dependent on the

purchase prices. It assumes that a supplier is more often part of a route if the prices are comparably

cheap. The suppliers’ scores depend on the relative expected prices of the offered products. A

supplier with cheaper prices is assigned a smaller γ-value.

• ST-DCP: This policy combines the previous three. The γ-values are set as the average of the

three individual values.

6. Computational study

In this section, we present our computational study. We first compare the solution quality of the

policies. We then take a closer look at our policy’s functionality analyzing the approximated γ-

values, the accuracy of the routing cost approximation, and the changes in decision making. Finally,

we present a sensitivity analysis on selected problem parameters.

6.1. Solution quality

To compare the solution quality of the policies, we draw on the MYOPIC-policy as basis bench-

mark and calculate the improvement in reward as follows. Let V MYOPIC be the objective value of

the myopic policy and V π the value of another policy, then the improvement of the other policy

over MYOPIC is calculated as

V π −V MYOPIC

V MYOPIC
.

First, we compare STAR-policy to the problem-oriented benchmarks without individual routing

cost approximation (PFA, EV, ST-ONE) and to the benchmark of Liu and Luo (2023), ST-

MY. The results are shown in Figure 4. The x-axis depicts the policies, the y-axis shows the
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Figure 4 Comparison of main policies to MYOPIC Figure 5 Alternative γ-value estimations

improvement over MYOPIC. We observe that all policies improve compared to myopic decision

making. Thus, building up inventory for future periods proves valuable. We also observe that

the improvement of EV with less than 1% is very limited compared to ST-ONE with more

than 2%. This indicates that consideration of the uncertainty is essential for successful decision

making. Finally, we see a gradually improvement over ST-ONE, ST-MY (ca. 5%), and STAR

(nearly 7%). Thus, approximating individual routing cost is important. However, as STAR clearly

outperforms ST-MY, the adaptive learning of the γ-values is very valuable. Interestingly, as we

show in Appendix A.4.1, while the STAR-policy achieves the highest objective values, it does so

with one of the smallest variances among all policies, thus, also leading to more reliable solutions.

To analyze the value of adaptively learning individual γ-values in more detail, we compare

the performance of STAR to the remaining approximation policies ST-DIST, ST-CAPA, ST-

PRICE, and ST-DCP. The results are shown in Figure 5. We observe that STAR outperforms

all other policies. We further observe that the approximation based on distance via ST-DIST

results in an acceptable performance while consideration of capacity (ST-CAPA) and price (ST-

PRICE) as well as their combinations (ST-DCP) perform rather poorly. This indicates that the

location of a supplier indeed plays a major role in the routing and corresponding routing cost.

Policy ST-CAPA leads to even worse results than MYOPIC. Thus, the expected capacity and

product range cannot be transferred easily to approximated routing cost, likely, because while large

expected supply volumes may lead to more visits in routes (small γ), it may also consume most of

the vehicle’s capacity, i.e., no other suppliers can be visited in the same route (large γ).

6.2. Iterative routing cost approximation

In the following, we investigate the approximation process and the final γ-values of our policy

STAR in more detail. To analyze how well the γ-values approximate the real routing cost, we
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Figure 6 Absolute error of routing cost and approximate cost

calculate the average difference between real routing cost and approximated routing cost in every

iteration. The results are shown in Figure 6 by the dashed line and left y-axis. We observe that

originally, at iteration 0, the difference is substantial with about 40% of error. In that initial itera-

tion, the values are γm = 1 for all suppliers m∈M . Thus, direct trips are assumed while, in reality,

consolidation occurs. After this initial iteration, we observe a fast decrease in approximation error

and convergence after five iterations to around 5% of error. Thus, on average, the approximation

of our γ-values is only about 5% different than the real cost and, therefore, quite accurate.

Notably, while the routing approximation error converges after five iteration, the STAR-policy

still improves in later iterations as shown in solid line on the right y-axis of Figure 6. In line with

the fast improvement in approximation error in the first iterations, we observe a fast increase in

the objective value. Still, convergence is reached after about 10 iterations. Thus, even once the

routing approximation is accurate, decision making changes for a few more iterations.

Next, we analyze the approximated γ-values in detail. First, we plot them in space, shown in

Figure 7. The figure represents the 250km times 250km service area with the 20 suppliers. The

depot 0 is located in the center. The γ of each supplier is adjacent to the supplier’s location, e.g.,

supplier 1 on the left has a value of γ1 = 1.0. We observe that there is no clear picture in how the

γ-values form. However, some insights can be identified:
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Figure 7 Geographical distribution γ-values

• As expected, suppliers that are rather isolated have a higher γ-value, e.g., suppliers 1, 5, or 16

have values of γ = 1.0. This indicates that consolidation with the suppliers is usually not possible

and explains the relatively good performance of ST-DIST.

• Suppliers with smaller γ-values either occur in clusters (e.g., suppliers 6 and 10) or are “on the

road” to other suppliers (e.g., supplier 17, 18, or 20). This can be expected as well. However, being

in a cluster or “on the road” to another supplier does not automatically lead to smaller γ-values

(e.g., for suppliers, 7, 11, or 15). Here, other factors such as expected prices and capacity come

into play.

• In two cases, the values are even slightly higher than one: γ14 = 1.06 and γ4 = 1.23. These two

supplies have rather short direct trip distances and the shared γ-calculation may lead to the values

higher than one. Interestingly, we tested limiting γ-values in the range [0,1] and the results were

inferior. As the γ-values are used in a joint calculation of the routing cost for several suppliers,

limiting the values led to an underestimation of the concerted cost.

For an additional analysis of the γ-values with respect to prices and capacity, we refer to

Appendix A.4.2.
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Figure 8 Difference in frequency of STAR and MYOPIC supplier selection

6.3. Decision making

In the following, we analyze how anticipation by the STAR-policy changes decision making com-

pared to the MYOPIC-policy. To this end, we analyze how supplier selection is made. Then,

we show how the policies affect inventory quantities and purchases, and finally, how this affects

purchasing and routing costs.

Figure 8 presents the frequency of supplier selection. The x-axis presents the IDs of the suppliers,

and the y-axis the difference in selection frequency between STAR and MYOPIC. We observe

that for many suppliers the difference is small. These suppliers can be seen as “obvious” choices in

both policies as they are either cheap or well-located (or the opposite). However, for a few suppliers,

we see significant differences. The global routing approximation of the MYOPIC-policy does not

discover every consolidation potential with fitting suppliers in its selection, so it selects suppliers

3, 11, and 15 more often. Even though the suppliers have low prices, the neighboring suppliers

are not as attractive as indicated by their high γ-values shown in Figure 7. Due to the individual

routing approximation, the STAR-policy selects suppliers 6, 10, and 18 more often, which despite

being far from the depot, allow consolidations among them at low prices, indicated by their smaller

γ-values shown in Figure 7.
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Figure 9 Average difference in quantities pur-

chased and inventory levels by STAR and

MYOPIC

Figure 10 Average percentage difference in pur-

chase and routing cost by STAR and

MYOPIC

The anticipation of our STAR-policy also changes how much is purchased in every period and

how much inventory is stored. Figure 9 presents the changes in purchase and inventory quantities.

The x-axis shows the periods. The y-axis shows the average difference between the quantities

purchased and quantities kept in inventory by STAR and MYOPIC policies. It can be seen that

the most significant difference is found in the first three periods. In the first period that is without

any demand, the STAR-policy decides to replenish almost 30 hundred kilograms, as opposed to

the MYOPIC-policy, which buys nothing. In the second and third period, MYOPIC purchases

more than STAR and the surplus in inventory decreases gradually until it reaches a constant

level of about 500kg per period until period 19. In the final period, the STAR-policy consumes all

remaining inventory.

While in periods 4 to 19, the amount of purchased products is about the same for STAR and

MYOPIC, the cost for purchasing differs significantly. This can be seen in Figure 10.

The x-axis shows the periods. The y-axis shows the percentage difference in purchase and route

costs between the STAR and MYOPIC policies. It can be observed that after the purchase

stabilizes, from period 4 onwards, the purchase costs per period are very similar between the

policies. However, the STAR-policy generates savings of 10% to nearly 30% in routing cost in

every period. Thus, purchasing and holding the “right” inventory in every period allows for more

flexible and cheaper routing in the next.

6.4. Problem’s parameters analysis

In the following, we perform an analysis of the problem’s parameters. To this end, we generate

instances, each differing in exactly one dimension. We train our method and all benchmarks for

the individual instance settings. As before, we split training and evaluation instances.
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Table 1 Performance for different coefficients of variation (left) and for correlation (right). Relative difference over the
general “standard” configuration on the top and improvement of STAR over MYOPIC on the bottom.

COV Demand Prices Supply Prices (ρ) Supply (ρ)

vs. Standard
0 -0.1% -9.4% 0.6% -59.9% -18.1%

0.1 0.0% 0.0% 0.0% -39.6% -19.2%
0.2 0.2% 18.3% -1.7% 0.5% -22.3%

vs. MYOPIC
0 6.3% 4.5% 5.6% 10.0% 8.9%

0.1 6.7% 6.7% 6.7% 4.1% 7.3%
0.2 6.9% 5.6% 6.5% 4.1% 7.2%

Uncertainty. In our main experiments, we assumed uncertainty in demand, supply, and prices

with a coefficient of variation of 0.1. We now analyze how more of less uncertainty impacts the

performance. To this end, we vary the coefficient of variation (COV) for one of the three sources

of uncertainty from 0.0 and 0.2. Setting the value to 0.0 results in the corresponding source of

uncertainty to be deterministic. The results are depicted on the left side of Table 1. On the top part

of the table, we compare the objective value of STAR for the specific setting to its objective for

the standard setting. In the bottom part, we compare the improvement of STAR over MYOPIC

for the individual settings. For completeness, the middle row shows the standard setting with a

COV of 0.1. Each column represents one source of uncertainty and the impact of varying their COV

ceteris paribus. For example, the first value in the Demand-column in the top of the table, −0.1%,

indicates the changes of the objective value if demand-values are certain and prices and supply still

have a COV of 0.1 compared to the standard setting with a COV of 0.1 also for demand. The first

entry in the bottom part, 6.3%, indicates the improvement of STAR compared to MYOPIC for

this specific setting. Looking at the bottom part of the table, we observe that STAR outperforms

MYOPIC regardless of the instance setting with improvements between 4.1% and 10.0%. When

looking at the top of the table, we observe that the overall objective is affected by the changes

in COV. We observe that uncertainty in supply and demand has relatively small impact on the

overall objective value with all changes being below 2%. However, having different volatility in the

prices impacts the performance significantly. Interestingly, having fixed prices (COV of 0) is not

necessarily beneficial, but leads to a reduction in objective value of 9.4% while an increasing in

price volatility can even increase the objective. This rather counter-intuitive observation can be

explained by the increasing opportunities for cheap purchases in case of varying prices.

Correlation. In our main experiments, we assume expected prices µpmk
and supply volumes

µqmk
of different products k are independent per supplier m. Now, we generate a correlated setting

where supplier have “low” and “high” prices (or supply volumes). We do this by sampling the value

for the first product freely. If it is below average (i.e., “low”), we ensure that all other values are

below average as well by “mirroring” the sampled values on the expected value if necessary. We
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calculate the improvements of STAR to the standard setting and compared to MYOPIC for the

three aforementioned COVs. We keep the tuning parameters of our method the same, however,

based on preliminary tests, we start with initial γ-values of zero. The results are shown on the

right side of Table 1, indicated by “ρ”. Again, our policy clearly outperforms the benchmark also

for the correlated cases. Interestingly, correlation especially in the prices leads to substantially

worse objective values. The reasons are twofold. First, correlation reduces flexibility in the routing

and purchasing as some suppliers likely are too expensive regardless of the product. Thus, the

set of suppliers to purchase from is reduced significantly leading to less consolidation or longer

routes. Same is true for the supply, likely, because some suppliers might not be worth visiting

since their supply is too small. Second, in our model, repeated visits of suppliers are prohibited.

With correlated prices or supply, it might become important to visit a supplier with more vehicles,

either, because of the cheap prices for all products or because of the vast amounts of supply.

Cost and revenue. In our general settings, we assume vehicle cost of $1 per minute and a

revenue of 10% above the average purchase price. In our analysis, we generate instances setting the

cost to $0.5 ,$1.0, $1.5, and $2.0. We further generate instances varying the revenue, setting it to

20% and 50% more than the average purchase price. The results are shown in Figures 11 and 12.

The x-axis depicts the changes in cost (revenue). The y-axis shows the performance of STAR and

MYOPIC relative to the standard setting. This allows us to depict both the value of anticipation

and the impact of varying cost and revenue. E.g., a value of −100% can be seen as a break-even

point ceteris paribus.

As expected, the overall objective value decreases with increasing routing cost. We further observe

the improvement of STAR increases as well. If routing is cheap, MYOPIC performs well since it

buys cheap and does not built any inventory that perishes over the periods. If routing is expensive,

the gap between STAR and MYOPIC becomes substantial. Here, the savings in daily routing

seen in the previous section multiple. Thus, anticipatory decision making and active building

of inventory is of particular importance if routing costs are high. For the revenue margin, the

development is the other way around. The explanation is similar as for the routing cost. With high

revenue margins, the routing cost become relatively smaller and the MYOPIC strategy performs

comparably well.

Vehicle capacity. Next, we evaluate the value of having a truck of different size. To this end,

we increase or decrease in vehicle capacity by testing Q= {40,80,100} instead of 60. The results

are shown in Figure 13. We observe that for our setting, the small trucks already perform relatively

well and there is only a mild improvement of about 2.5% for larger trucks. However, we observe

a slight increase in the gap between STAR and MYOPIC with increasing truck capacity. With

larger capacity, more inventory can be built without additional routing cost. Thus, there is benefit

for STAR but not for MYOPIC.



28

Figure 11 Changing routing cost Figure 12 Changing revenue margin

Figure 13 Changing vehicle capacity Figure 14 Changing perishability

Perishability. Finally, we analyze how perishability impacts the policies’ performances. To this

end, we generate settings with ϕ= 0% and 20% perishability instead of 10%. We further generate

a set of heterogeneous perishability for different products where we set the perishability to 0% for

the first two products, 10% for the third product, and 20% for the last two products. Thus, the

average perishability remains at 10%. The results are shown in Figure 14. As the MYOPIC policy

does not build up any inventory, the objective value does not change with changing perishability.

However, we observe that perishability has an impact on the performance of STAR. Without any

perishability, significantly more revenue can be achieved while with a perishability of 20%, the

objective value decreases slightly, as expected. Notably, in case of heterogeneous perishability, the

objective value increases, likely, because the policy learns to purchase the longer-lasting products

with ϕ = 0. Thus, it might be valuable for companies to consider investing in improved storage

facilities, even if only for a subset of products.
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7. Conclusion

In this paper we have shown how anticipatory decision making via stochastic lookahead can improve

performance significantly in dynamic multi-period purchasing inventory routing for agri-food sup-

ply chains. We have further shown how to adaptively tune and embed a cost function approximation

in the lookahead model and the benefits it brings. There are several avenues for future research.

Our computational study has shown that the supplier characteristics with respect to supply and

prices are very important for successful operations. Future research may analyze how the setup

impacts the system’s performance in more detail. Based on such an analysis, some suppliers might

be encouraged to offer a specific product or a guaranteed supply quantity via fixed contracts.

Here, the selection of suppliers and their guaranteed quantities might be of particular interest.

Further, repeated visits of suppliers within a period might be included in the model. At the same

time, future research may analyze how to improve the experience of the suppliers and ensure long-

term participation in the system, e.g., by consistent purchases or regular visits at regular times

(Zehtabian and Ulmer 2023). While our work showed how to improve operations on the first mile

between suppliers and warehouse, future work may consider a more integrated view of first and last

mile. For example, customers with larger demand quantities (e.g., canteens or restaurants) may be

served directly by the collection fleet and may even have their own inventory.

Further, we have modeled and analyzed several sources of uncertainty with demand, supply, and

prices. However, additional uncertainties might be considered. For example, the perishability may

be uncertain or may even depend on the suppliers the products were purchased from. For some

suppliers, the volumes may be uncertain until the vehicle arrives at their location. We have also

seen that the routing cost are a significant factor in the profitability of the business. In practice,

the cost and availability of vehicles is often uncertain too. Future research may incorporate this

additional uncertainty, e.g., by purchasing more when many cheap vehicles are available. Finally,

there might be other companies involved in the business and the prices and available supply may

not only vary over the days, but even within the day. Anticipatory, real-time updates of routes

might be required to adapt to changing supply and prices.

While we have designed our STAR-method for the specific problem at hand, its functionality is

a general contribution to the literature on approximate dynamic programming for dynamic prob-

lems with combinatorial decision spaces. This area is still relatively unexplored (Liu and Luo 2023,

Hildebrandt, Thomas, and Ulmer 2023). Future research may transfer our method’s general idea

of integrating an adaptively trained cost function approximation in a stochastic lookahead to other

problems in the space. We have also shown that our “soft” decomposition of the complex decision

space (full inventory decisions, approximated routing decisions) allows for high-quality decision
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making if the routing cost approximation is learned iteratively. While we selected our decomposi-

tion a priori based on domain knowledge, future research could develop automated methods that

stepwise change the decomposition based on its approximation error.
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Appendix

In this Appendix, we present a more detailed literature review, details on the algorithm and benchmark

policies, and additional results of our experiments.

A.1. Detailed literature review

This section presents work related to each decision component of our problem. First, we present the works

related to inventory routing, procurement with inventory management, procurement routing, and dynamic

multi-period routing. Then, we present a summary table.

A.1.1. Inventory routing problem. The Inventory Routing Problem (IRP) aims to find optimal inven-

tory policies and vehicle routing programs to reduce supply chain costs. A general review of the IRP is

presented in Andersson et al. (2010), Coelho, Cordeau, and Laporte (2014b), and Malladi and Sowlati (2018).

As per the flow of products in the supply chain, inventory routing can be classified as inbound routing

(replenishment) or outbound routing (delivery), as mentioned in Cobb (2016). Below we discuss the studies

given related to these two categories.

Inventory problems with inbound routes have not yet been extensively studied in the literature. The papers

found considered deterministic and static versions of the problem. They involve managing the collection

of products from suppliers to a distribution center or production plant, the latter being in charge of the

collection logistics. Moin, Salhi, and Aziz (2011) and Mjirda et al. (2014) consider an assembly problem

where each supplier provides a single type of part. In both cases, the solution approach is approximate

optimization. Cheng et al. (2016) proposes an MINLP and a genetic algorithm for a supplier pickup and

assembly problem at the silver plant considering carbon emission regulations. In Chitsaz, Cordeau, and

Jans (2019), a decomposition matheuristic is developed to solve an assembly, production, and inventory

routing problem with inbound transportation. The problem consists of selecting the suppliers to visit, their

order, and the inventory level at the supplier and the plant, considering only one product type per supplier.

Subsequently, in Chitsaz, Cordeau, and Jans (2020), the same problem is solved by a branch-and-cut (B&C)

algorithm. However, in this version, the suppliers offer different products. Finally, in Bertazzi et al. (2020),

a material assembly problem is solved where the decisions of visit, inventory management, and quantity to

be picked are managed cyclically. A Branch-and-cut algorithm is proposed to solve the problem.

Inventory problems with outbound routes have been widely studied. The Vendor Managed Inventory

(VMI) problem is the most common form known in the literature. In the VMI, customers transfer the

inventory management responsibility to a vendor, who knows the stock levels of their customers and must

plan a distribution scheme to maintain adequate levels for all customers’ products. A deterministic inventory

routing problem is solved in Toriello, Nemhauser, and Savelsbergh (2010) and Papageorgiou et al. (2015). A

Mixed Integer Linear Program (MILP) and a Value Function Approximation (VFA) are proposed to solve

the problems, respectively. In Adelman (2004), a stochastic dynamic inventory routing problem (SDIRP)

is solved. A VFA is developed based on dual relaxations to anticipate future routing costs. Each customer

has a stochastic demand per day. Bertazzi et al. (2013) propose a hybrid Rollout Algorithm (RA) to solve a

similar problem with backlogs. The solution of a MILP is used in the RA to anticipate stochastic demand and
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potential future decisions. In Coelho, Cordeau, and Laporte (2014a), an IRP with a single vehicle is solved

by optimizing a static instance whenever new information becomes available. They use forecasts to generate

an approximation of the unknown future demand. Lateral transshipment between customers is allowed. An

SDIRP in the context of Bike Sharing Systems is presented in Brinkmann, Ulmer, and Mattfeld (2019). They

propose a dynamic lookahead to relocate bikes dynamically during the day. Simulation of future periods is

done to anticipate future demands in current inventory decisions. Subsequently, in Brinkmann, Ulmer, and

Mattfeld (2020), the same problem is solved but they extend it to a multi-vehicle problem. A lookahead

method is proposed that anticipates future developments and coordination of the fleet.

Perishable products are also considered in stochastic inventory routing problems with outbound logistics.

A single perishable product SIRP is solved in Crama et al. (2018) and Onggo et al. (2019). Crama et al.

(2018) tested five policies to solve the problem: three based on expected values and two based on features

of the problem (inventory levels, routing). On the other hand, Onggo et al. (2019) proposes a simheuristic

algorithm, which integrates Monte Carlo simulation within an iterated local search to solve the problem.

In Violi, Laganá, and Paradiso (2020), a rolling horizon approach based on a multistage stochastic linear

program is proposed. They solve an IRP by considering risk measures. Finally, a matheuristic is developed

in Mousavi, Bashiri, and Nikzad (2022) for a SIRP considering production decisions.

Our paper extends the work related to inventory routing problems. In contrast to previous work, we do

not assume total control over suppliers’ offer (customers in the case of outbound logistics), which leads to a

more volatile and dynamic environment. Moreover, not having control over inventory levels and the need to

contemplate the purchase prices of the products increases the complexity of the problem.

A.1.2. Procurement with inventory management. The purchasing decisions and inventory man-

agement are related to the problems of supplier selection and order allocation (SS&OA). We refer to Aouadni,

Aouadni, and Rebäı (2019) and Naqvi and Amin (2021) for recent overviews. Generally, the routing decisions

are not considered in SS&OA problems, or an approximations function is used to estimate the routing cost.

The deterministic version of the problem uses qualitative and quantitative criteria to rank the suppliers,

then, using exact and approximate methods, operational decisions (quantities and inventories) are made.

Mendoza and Ventura (2008) presented a mathematical model for determining the optimal inventory policy.

This model uses a power-of-two (POT) approach for the effectiveness of the inventory system under con-

trol. A two-stage multiple criteria dynamic programming approach is proposed in Mafakheri, Breton, and

Ghoniem (2011). They consider decisions under time-varying prices/costs, capacity, and demand volumes

and profiles. A MINP is proposed in Pazhani, Ventura, and Mendoza (2016) to determine the optimal inven-

tory policy and allocation of orders among the suppliers at a multi-stage supply chain. Different vehicles’

size are considered, and the transportation cost is modeled using piecewise function. A procurement problem

in a blockchain context is solved in Yadav and Singh (2022). They propose a MILP that incorporates the

block development cost while purchasing, ordering, transporting and holding processes.

Different uncertainty sources have been studied in SS&OA problems. In Hammami, Frein, and Hadj-

Alouane (2012) they consider a supplier selection problem with uncertain lead time in an international

context. They use a MILP model to solve the problem. Uncertainty in the purchase prices related to exchange
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rates is considered in Hammami, Temponi, and Frein (2014). A mixed integer scenario-based stochastic pro-

gramming method is developed to minimize the total system expected cost. Esmaeili-Najafabadi et al. (2019)

solve a problem of SS&OA with supplier availability under disruption risk. A mixed-integer nonlinear pro-

gramming model is proposed. Finally, Hosseini, Flapper, and Pirayesh (2022) solve a problem with uncertain

demand and suppliers’ availability. They integrated a solution approach based on stochastic programming

and dynamic programming.

Different from the problems mentioned above, we do not consider the selection of suppliers for long periods.

In the context of agri-food chains, the characteristics of suppliers change rapidly, requiring a flexible policy.

Additionally, we contemplate the effect of three sources of uncertainty in decision making which has yet to

be done in the SS&OA literature.

A.1.3. Procurement with routing decisions. The Traveling Purchaser Problem (TPP) considers

jointly procurement and routing decisions from suppliers. We refer to Manerba, Mansini, and Riera-Ledesma

(2017) for a general overview. The TPP can use one or a fleet of vehicles. When more than one vehicle

is considered this problem is known as the Multi-Vehicle Traveling Purchaser Problem (MVTPP), only

deterministic versions have been solved. Riera-Ledesma and Salazar-González (2012) solved an MVTPP to

model a school bus routing problem. They presented a branch-and-cut (B&C) algorithm based on a two-index

single-commodity flow formulation. Bianchessi, Mansini, and Speranza (2014) proposed a branch-and-price

(B&P) algorithm to solve an MVTPP with length route bounded. The pricing problem is modeled and

solved as an elementary path problem with resource constraints (SPPRC). Manerba and Mansini (2015)

introduced a variant named MVTPP with pairwise incompatibility constraints (PIC), involving possible

incompatibilities among products that forbid loading two incompatible products into the same vehicle. A

B&C algorithm based on a three-index formulation is proposed. In Manerba and Mansini (2016), a MVTPP

is used to model a nurse routing problem with inter-route incompatibilities constraints and bounds on the

duration of the routes. A B&P algorithm is proposed to solve the problem. Finally, a Branch-and-price-

and-cut (B&P&C) algorithm is developed in Bianchessi, Irnich, and Tilk (2021) to solve the MVTPP with

additional constraints.

Articles that consider uncertainty and dynamism solve the TPP just with one vehicle. Product prices and

quantities available from suppliers are the most studied uncertain parameters in the literature (see Kang and

Ouyang (2011), Beraldi et al. (2017)). In Roy et al. (2020), uncertain travel times are considered in addition

to price and quantities. Regarding dynamic variants of the TPP in Angelelli, Mansini, and Vindigni (2016),

they solve the problem by presenting changes in the units available at suppliers, which decrease over time.

Problems that consider purchasing decisions and routing to suppliers usually solve single-period problems.

In contrast to our work, we propose a multi-period problem with the interest of looking at the effect of

purchasing decisions in future periods and the impact on routing and inventory management decisions.

A.1.4. Multi-period routing under uncertainty. There is also increasing work on multi-period rout-

ing under uncertainty (MP-R). We refer to Avraham and Raviv (2021) for a recent overview. In the work on

multi-period routing, usually the demand of future days is uncertain. Decisions are made about the period

demand should be scheduled, either with the goal of minimizing cost or with the goal of minimizing waiting
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Table A1 Literature classification

Category Author
Decisions Sources of uncertainty

Anticipation
Multi

Purchase Routing Inventory Prices Supply Demand Others period

IRP

Toriello, Nemhauser, and Savelsbergh (2010) ✓ ✓ n/a ✓
Moin, Salhi, and Aziz (2011) ✓ ✓ n/a ✓
Mjirda et al. (2014) ✓ ✓ n/a ✓
Papageorgiou et al. (2015) ✓ ✓ n/a ✓
Cheng et al. (2016) ✓ ✓ n/a ✓
Chitsaz, Cordeau, and Jans (2019) ✓ ✓ n/a ✓
Bertazzi et al. (2020) ✓ ✓ n/a ✓
Chitsaz, Cordeau, and Jans (2020) ✓ ✓ n/a ✓

Adelman (2004) ✓ ✓ ✓ ✓
Bertazzi et al. (2013) ✓ ✓ ✓ ✓ ✓
Coelho, Cordeau, and Laporte (2014a) ✓ ✓ ✓ ✓ ✓
Crama et al. (2018) ✓ ✓ ✓ ✓
Brinkmann, Ulmer, and Mattfeld (2019) ✓ ✓ ✓ ✓
Onggo et al. (2019) ✓ ✓ ✓ ✓ ✓
Brinkmann, Ulmer, and Mattfeld (2020) ✓ ✓ ✓ ✓
Violi, Laganá, and Paradiso (2020) ✓ ✓ ✓ ✓ ✓
Mousavi, Bashiri, and Nikzad (2022) ✓ ✓ ✓ ✓ ✓

SS&OA

Mendoza and Ventura (2008) ✓ ✓ n/a
Mafakheri, Breton, and Ghoniem (2011) ✓ ✓ n/a ✓
Pazhani, Ventura, and Mendoza (2016) ✓ ✓ n/a
Yadav and Singh (2022) ✓ ✓ n/a ✓

Hammami, Frein, and Hadj-Alouane (2012) ✓ ✓ ✓ ✓
Hammami, Temponi, and Frein (2014) ✓ ✓ ✓ ✓ ✓
Esmaeili-Najafabadi et al. (2019) ✓ ✓ ✓
Hosseini, Flapper, and Pirayesh (2022) ✓ ✓ ✓ ✓ ✓ ✓

TPP

Riera-Ledesma and Salazar-González (2012) ✓ ✓ n/a
Bianchessi, Mansini, and Speranza (2014) ✓ ✓ n/a
Manerba and Mansini (2015) ✓ ✓ n/a
Manerba and Mansini (2016) ✓ ✓ n/a
Bianchessi, Irnich, and Tilk (2021) ✓ ✓ n/a

Kang and Ouyang (2011) ✓ ✓ ✓
Angelelli, Mansini, and Vindigni (2016) ✓ ✓ ✓
Beraldi et al. (2017) ✓ ✓ ✓ ✓ ✓
Roy et al. (2020) ✓ ✓ ✓ ✓

MP-R

Angelelli et al. (2009) ✓ ✓ ✓
Wen et al. (2010) ✓ ✓ ✓
Albareda-Sambola, Fernández, and Laporte (2014) ✓ ✓ ✓
Klapp, Erera, and Toriello (2018b) ✓ ✓ ✓ ✓
van Heeswijk, Mes, and Schutten (2019) ✓ ✓ ✓
Rivera and Mes (2017) ✓ ✓ ✓
Klapp, Erera, and Toriello (2018a) ✓ ✓ ✓ ✓
Ulmer, Soeffker, and Mattfeld (2018) ✓ ✓ ✓ ✓
Avraham and Raviv (2021) ✓ ✓ ✓ ✓ ✓
Laganà, Laporte, and Vocaturo (2021) ✓ ✓ ✓
Keskin et al. (2023) ✓ ✓ ✓ ✓

Çabuk and Erol (2019) ✓ ✓ ✓ n/a ✓

Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

time for the customers. Early work has been presented by Angelelli et al. (2009), Wen et al. (2010), Albareda-

Sambola, Fernández, and Laporte (2014). All three papers suggests rule-based approaches to decide whom

to serve in this period and whom to serve in the next. Later, such rule-based method were either adapted for

more complex problems (Laganà, Laporte, and Vocaturo 2021) or translated in learning algorithms (Ulmer,

Soeffker, and Mattfeld 2018, Avraham and Raviv 2021). Some work proposes anticipation via stochastic

programs (Klapp, Erera, and Toriello 2018b,a) while others apply reinforcement learning (Rivera and Mes

2017, van Heeswijk, Mes, and Schutten 2019). We note that none of the previous works combines both.

Further, most of the work avoid complex combinatorial decision making, either by limiting the problem size

or by not modeling routing decisions explicitly.

A.1.5. Summary. Table A1 presents a summary of the relevant literature to this paper. We differenti-

ate work into the following categories: Decisions, which means if the problem considers purchase, routing,
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or inventory management decisions; Stochasticity, whether the work considers uncertainty in at least one

problem component; Anticipation, whether the proposed method anticipates the impact of a decision on

future costs. All deterministic problems have a ”n/a”-entry in the Anticipation column, as Anticipation is

only applicable in a stochastic problem; and Multi-period, whether the decisions have an impact over a time

horizon longer than one period.

Algorithm 1 Generate routes

Input: List τij, zt, et, Q, lmax

Output: xt : routes details, ft : number of vehicles dispatched

1: Tour←NearestNeighbourAlgorithm(et, τij)

2: for each node i in Tour do

3: SplitNodes←AddNode(i)

4: end for

5: for each contiguous subset N ′ of nodes in Tour do

6: if AccumulatedPurchase(N ′, zt)≤Q then

7: if AccumulatedTravelTime(N ′, τij)≤ lmax then

8: TravelTime←AccumulatedTravelTime(N ′, τij))

9: SplitArcs←AddWeightedArc(N ′.First,N ′.Last,TravelTime)

10: end if

11: end if

12: end for

13: G←BuildGraph(SplitNodes,SplitArcs)

14: xt, ft←BellmanFordShortestPathAlgorithm(Graph)

15: return xt, ft

A.2. Algorithmic details

In this section, additional details are given about our routing heuristic, the adaptive routing cost approxi-

mation, and the tuning of our method.

A.2.1. Routing heuristic. Algorithm 1 presents the process for constructing the routes from the

stochastic program solution. The nearest neighbor algorithm (NNA) is run to obtain a complete tour based

on the selected suppliers, et (line 1). Then, an augmented graph is constructed with this complete tour and

the quantities to be purchased from each supplier, zt (lines 2 - 13). Following the split procedure, where

through the nodes of the complete tour, the possible vehicle routes are built respecting the vehicle capacities

and the maximum travel time. After the construction of the augmented graph, we solve a shortest path

problem (line 14) using the BellmanFord algorithm, to find the routes that minimize the travel time, and the

number of vehicles required. Finally, Algorithm 1 returns the routes and the number of vehicles (line 15).
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Figure A1 Example split procedure

Creating the augmented graph is necessary, as it involves validating all the routing decision constraints

(Algorithm 1, lines 2 - 13). The first step in creating the graph is adding the nodes corresponding to the

depot and each selected supplier, according to the order in the complete tour (lines 2 - 4). Next, the arcs

representing consolidated trips between contiguous nodes of the tour are added; the possible consolidations

are identified (lines 5 - 12). These arcs are created if the capacity and maximum travel time constraints are

met for the consolidation (lines 6 - 11). Finally, the augmented graph is constructed and returned with the

generated nodes and arcs (line 13).

Figure A1 presents an example of the construction of the routes from the stochastic program solution.

Figure A1.a shows the complete tour obtained after using the NNA over the selected suppliers. From the

order of the complete tour, the possible routes are constructed by considering the subsets of contiguous

nodes. Each arc (i, j) in the graph describes the route that starts and ends at the depot and travels between

i and j, excluding i. Figure A1.b presents the possible routes to be generated. For computational efficiency,

during the creation of arcs, if a route is infeasible, evaluating the subsets of consecutive nodes containing

this route will be aborted. In our example, the route 0 - 1 - 3 - 0 is infeasible, then the routes 0 - 1 - 3 - 4

- 0 and 0 - 1 - 3 - 4 - 2 - 0 were not evaluated. Route infeasibility can be caused by exceeding the vehicle

capacity or the maximum time limit per route. After having the augmented network constructed with the

feasible routes, the shortest path problem is solved from the depot to the last supplier in the sequence to

get a detailed understanding of the routes and the quality of the solution. Figure A1.c shows the resulting

augmented network and the routes that minimize the total distance to visit the suppliers. One vehicle is

assigned for each route.

A.2.2. Adaptive routing cost approximation. The data-driven method for estimating the approx-

imate routing cost of visiting a supplier is presented in the Algorithm 2. First, we initialize the γ-values,

and count-array in the iteration 0 (lines 1 - 4). We have count as a |M |-dimensional vector that keeps a
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Algorithm 2 Adaptive learning process

Input: List T , M , K, Mk, τij, rk, ϕk, Q, lmax

Parameters: h: size of the forward horizon, MIPGap: minimum quality of the solution returned by

the optimization solver, |Ω| : Number of sample of future information, MaxIter: maximum number

of iterations, n: maximum number of simulations, Default : initial γ-values

Output: γ: routing cost approximation tuned

1: for m∈M do

2: γ0[m]←Default

3: count0[m]← 1

4: end for

5: for i← 1 To MaxIter do

6: for j← 1 To n do

7: Î1← 0

8: d1, p1, q1←UncertaintyRevealed(ω1)

9: S1← (Î1, d1, p1, q1)

10: for t∈ T do

11: at← STARPolicy(t,St, T,M,K,Mk, τij, rk, ϕk,Q, lmax;h,MIPGap, |Ω|, γi−1)

12: Sa
t ←GeneratesPostDecisionState(St, at)

13: St+1←T (Sa
t , ωt+1)

14: routes[j, t]←ExtractRoutesInformation(at)

15: end for

16: end for

17: γi, counti←UpdateGammaValues(M,T, routes, counti−1, τij, γ
i−1;n)

18: end for

19: return γ

count of the cumulative number of times each supplier has been visited throughout the iterative process.

The algorithm performs a MaxIter number of iterations (line 5); in each iteration i, a n number of simu-

lations is performed (line 6). In each simulation j, the S1 state information is initialized (lines 7 - 9), and

then the decision sequence is run over the entire planning horizon T (line 10). In each period t ∈ T , the

STAR-approach is executed with the γi−1-values fixed, and the action at is obtained (line 11). Having the

action at, the post-decision state Sa
t is generated (line 12), and using the transition function, the state St+1

is calculated (line 13). The routing information generated in each period t∈ T for each simulation j is stored

in the routes-array (line 14). At the end of the simulations, with the information on the generated routes

and the current γi−1-values, the new values of the approximate routing cost to be used in the next iteration

are estimated γi-values; it also updates the counti-array with overall count of supplier visits. (lines 17). This
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procedure is performed until the number of iterations has been completed. Algorithm 2 returns the final

γ-values (line 17).

Algorithm 3 Update gamma values

Input: List M , T , routes, count, τij, γ

Parameters: n: maximum number of simulation in the set of training instances

Output: newγ: new estimates for γ-values, count: global counter of visits to suppli-

ers.

1: for m∈M do

2: supplierInRouteFlag←False

3: List γ̄←∅

4: for j← 1 To n do

5: List γ̂← γ[m]

6: for t∈ T do

7: for each route in routes[j, t] do

8: if m in route then

9: supplierInRouteFlag←True

10: avgTime← route.time
route.number suppliers

11: γ̂←AddGamma( avgTime
τ0m+τm0

)

12: end if

13: end for

14: end for

15: γ̄←AddGamma(Average(γ̂))

16: end for

17: newγ[m]← (1− 1√
count[m]

) · γ[m] + ( 1√
count[m]

·Average(γ̄))

18: if supplierInRouteFlag=True then

19: count[m]← count[m] + 1

20: end if

21: end for

22: return newγ, count

Algorithm 3 presents the process for updating the γ-values. The process is performed for each supplier

m ∈M (line 1). supplierInRouteFlag is a flag that indicates if the supplier m has been visited at least one

period of any simulation, it is initialized to False (line 2). We use the γ̄-list to storage the estimations of each

simulation j, it is initialized as empty (line 3). The route information generated throughout the n simulations
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in the different periods is collected (lines 4 - 16). The γ̂-list stores the estimated γ-values along the decision

sequence of a horizon T ; the first value in the list is the current γ[m]-value (line 5). To update the γ-values,

in each period t ∈ T (line 6), it is checked whether the supplier m is on any route in the routes-array (lines

7 and 8). If true, the supplierInRouteFlag flag changes its value (line 9), and the routing cost extraction is

done (lines 10 - 11). First, the average time to visit a supplier avgTime is calculated. This value is obtained

by dividing the time of the route where supplier m is part by the number of suppliers composing that route

(line 10). Then, the proportion between the average time and the direct shipping cost is calculated; this

information is added to the γ̂-list (line 11). At the end of the periods of horizon T , the values stored in

the γ̂-list are averaged; this value corresponds to the average γ-values estimated for the simulation j; the

new value is stored in the γ̄-list (line 15). The process is repeated for each simulation j. At the end of

the simulations, with the current γ-value and the the average of the values in the γ̄-list representing the

final information extracted from the simulations for supplier m, the value for the next iteration is updated

newγ[m] (line 17). If the supplier m has been visited during any simulation period, its global visit counter

count is updated (lines 18 - 20). When the new γ-values for all suppliers have been estimated, the new values

are returned along with global count (line 22). This algorithm has been elaborated in detail to represent a

learning function, line 5 attempts to stabilise past knowledge as an inertia concept, which together with line

17, becomes reinforcement learning.

A.2.3. Tuning global approach parameters. In this section, we present the impact in the stochastic

lookahead algorithm performance of tuning the gap for the optimization solver (MIPGap), the number of

sample paths per uncertainty source (|Ω|) and the lookahead horizon (h). Experiments were run using 20

independent instances realizations.

First, we analyzed the impact of MIPGap and |Ω| values on the performance of solutions. We used

MIPGap= {1%,5%,10%} and |Ω|= {3,5,10,15,20}. We fixed h= 3 in the experiments. As the accuracy of

the optimizer’s stopping criterion (MIPGap with small values) and the number of scenarios per source of

uncertainty (|Ω|) is increased, the value of the objective function increases (see Figure A2). This same pattern

is repeated for the computation time. The higher the accuracy and the greater the number of scenarios, the

longer the computation time required. (see Figure A3).

Since we are looking for a methodology that finds quick solutions and is flexible to possible changes in

the sources of uncertainty not contemplated in the scenarios, we set MIPGap = 5% and |Ω| = 10. These

values were selected since with MIPGap= 5% the difference in solution quality compared to MIPGap= 1%

and computation time compared to MIPGap= 10% is not significantly increased. In addition, increasing the

number of scenarios to more than 10 does not improve the solutions with a MIPGap= 5%, significantly.

With MIPGap and |Ω| parameters tuned, we analyzed the impact of the changing size of the forward

horizon h. We used h = {1,2, . . .6,7}. Figure A4 shows performance for values used. We set h = 3 as by

increasing or decreasing its value, the difference between the solution quality is no more than 1%.

A.3. Benchmark policy details

In this section, we present details on the tuning of the benchmark policies with global γ-parameters as well

as the PFA and the alternative approaches for approximation of the γ-values.
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Figure A2 Objective function for each pair of MIPGap values and number of sample paths (|Ω|)

Figure A3 CPU time for each pair of MIPGap values and number of sample paths (|Ω|)

A.3.1. Tuning routing approximation via enumeration. In this section, we present the results of

the global γ-values tuning for MYOPIC, EV and ST-ONE policies via enumeration. For these policies,

we plot the performance for γm = {0.0,0.1, . . . ,1.0},∀m ∈M in Figure A5. We generated 20 independent

instance realizations and evaluated each γ-value for the entire set of instances.

The behavior for all three policies is similar. Initially, with increasing γ, the objective values increase as

well. They all reach a peak at γ = 0.6 and then start declining. This confirms that both no routing cost
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Figure A4 Objective function as a function of different forward horizon values (h)

Figure A5 Policy performance as a function of γ-values

consideration as well as assumption of direct trips only lead to inferior performance. Particularly notable is

the the very poor performance for γ = 0.0. That means, a clear decomposition, purchasing first, route second

without routing cost approximation, is insufficient for the problem at hand.

A.3.2. Policy function approximation (PFA). In this section, we present the policy function approx-

imation algorithm (PFA) details. First, we explain how the policy builds a solution. Later, we show how the

θ-parameter is tuned.
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Figure A6 Tuning of the policy function approximation (PFA)

The PFA seeks to keep units in inventory by purchasing an additional θ-percentage over known demand if

purchase prices are low than the expected value. PFA is equivalent to running stochastic program presented

on Section 4.2 having a forward period horizon h= 1, and |Ω|= 1. However, information for future periods

is not generated by scenarios. With h= 1 we have a set T ′ = {t, t+1}. The information for decision making

in period t is related to the state St = (Ît, dt, pt, qt), and the information for period t+ 1 is constructed as

follows: dt+1 = dt · θ, pt+1 = µp, and qt+1 = qt. Given a two-period problem, if the purchase prices in period t

are lower than the expected value of the purchase prices in t+1, the optimization model will try to satisfy

the demand in period t+1 by purchasing in period t as long as the suppliers’ capacity allows it. The PFA

used the same γ-values as MYOPIC-policy.

Different values of θ= {0.1,0.25,0.5,1,1.5,1.5,2} have been tested. We generated 20 independent instance

realizations. Figure A6 shows the results using the same θ-value for the entire set of instances. When the

θ-value increases, the profit on the solutions also increases; however, when the θ-value is greater than 1,

the profit decreases. These results could be related to the loss due perishability of the products. For the

benchmark comparison, θ= 1 is set.

A.3.3. Method-oriented policies approximation. In this section, we present the details to approxi-

mate the γ-values based on travel time radios, available quantities, and purchase prices at the suppliers. To

calculate these approximations, an indicator function I(·) is used, which takes the value of one if the condi-

tion is satisfied. This indicator function generates a score for each supplier to then calculate the γ-values.

First, we present the procedure for the ST-DIST-policy, then the policies ST-CAPA, ST-PRICE, and

ST-DCP are described.

Eq. A1 presents the way to estimate the γ-values for ST-DIST-policy. Estimates are made with

the number of suppliers that can be visited within a maximum δτ travel time radio. We tested δτ =

{15,30,45,60,75,90,105,120,135,160} as maximum visiting travel time for each supplier.
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γτ
m =

1

1+
∑

i∈M
I(τmi ≤ δτ )

,∀m∈M |m ̸= i (A1)

Experiments were run using 20 independent instances realizations. Figure A6 shows the results using the

same δτ -value for all suppliers. As the time limit to visit a supplier increases, the quality performance of the

solution decreases. The best results are obtained with small time limits, which makes sense since the aim is

to generate consolidations among close suppliers. For the benchmark comparison, δτ = 30 is set.

Figure A7 Tuning δτ for ST-DIST-policy

Eq. A2, and Eq. A3 present the calculations of the γ-values for policies ST-CAPA and ST-PRICE,

respectively. The calculations relate the information of the available quantities and purchase price of each

product at each supplier with the average information of all suppliers. The average value for the offer and the

purchase price are calculated as follows: µ̄qk =
∑

m∈Mk
µqmk

|Mk|
,∀k ∈K, µ̄pk =

∑
m∈Mk

µpmk

|Mk|
,∀k ∈K, respectively.

These values are taken as a reference to calculate the score for each supplier. The number of products whose

expected value is above (offer) or below (purchase price) the general average value of the suppliers is counted.

This count is then used to calculate the γ-values.

The last method is called ST-DCP, presented in Eq. A4. The ST-DCP method relates the information

of the previous estimates, and the γ-values are obtained by calculating the average of the estimations.

γµq
m =

1

1+
∑

k∈Km
I(µqmk

≥ µ̄qk

),∀m∈M (A2)

γµp
m =

1

1+
∑

k∈Km
I(µpmk

≤ µ̄pk

),∀m∈M (A3)

γavg
m =

γτ
m + γ

µq
m + γ

µp
m

3
,∀m∈M (A4)
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Figure A8 Analysis of variability in performance of benchmark policies

A.4. Additional results of the experiments

In this section, we present additional results of our computational study related to variability in the solutions

and the relationship of the γ-values with other characteristics of the problem.

A.4.1. Variance in the policies’ performance. In this section, we analyzed the variability behavior

in the quality of the benchmark policies’ solutions. The results are presented in Figure A8. We observe a

positive bias (higher values) in the behavior of the STAR-policy. In addition, there is less dispersion in

the solution’s quality close to the mean compared to the other policies. Furthermore, the mean value of the

STAR-policy is, in most cases, above the values that compose the third quartile of the benchmark policies,

showing a better performance in the quality of the solutions. To sum up, the STAR-policy achieves the

highest objective values; it does so with a comparably smaller variance.

A.4.2. Analysis of γ-values in relation to purchase prices, location and supply. In the following,

we analyze the relationship between purchase prices, location, and offer features to the γ-values obtained

for each supplier. Figure A9 illustrates the behavior of each feature in a heatmap. The x-axis displays the

suppliers arranged according to their IDs, ordered from the lowest to the highest γ-values obtained after

applying the adaptive learning method. The y-axis denotes the name of each feature. The heatmap represents
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the normalized value of each feature-supplier pair. To obtain the normalized values, we first calculated the

average value of each feature for each supplier. Then, we divided each value by the maximum value for all

suppliers. A dark box indicates a high value compared to the other suppliers.

Figure A9 Heatmap distribution of γ-values characteristics

Several patterns can be observed from the γ-values. Suppliers 10, 6, 17, 18, 20, and 8 exhibits the lowest

γ-values, which can be attributed to their high average distance. However, they compensate for this by having

lower average prices and capacity greater than or equal to the average supply of all suppliers. In contrast,

suppliers 4 and 14 have the highest γ-values despite having the smallest average distance. It is because

their proximity to the warehouse makes it challenging to consolidate with other suppliers. For the remaining

suppliers, their γ-values are either very close to each other or equal to 1. It suggests that direct cost provides

a reasonable estimate, given the characteristics of the other variables. While the final γ-values display a

certain structure, the complex interplay between purchasing and routing decisions makes it challenging to

explain the values clearly or set them a priori without learning.
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