
WORKING PAPER SERIES

Reinforcement Learning Variants for Stochastic Dynamic
Combinatorial Optimization Problems in Transportation

Florentin D. Hildebrandt / Alexander Bode
Marlin W. Ulmer / Dirk C. Mattfeld

Working Paper No. 06/2023

Impressum (§ 5 TMG)
Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Wirtschaftswissenschaft
D Dekan

Verantwortlich für diese Ausgabe:

Otto-von-Guericke-Universität Magdeburg
Fakultät für Wirtschaftswissenschaft
Postfach 4120
39016 Magdeburg
Germany

http://www. ww. /femm

Bezug über den Herausgeber
ISSN 1615-4274

Florentin D. Hildebrandt, Alexander Bode

Reinforcement Learning Variants for Stochastic Dynamic
Combinatorial Optimization Problems in Transportation

Florentin D. Hildebrandt
Chair of Management Science, Otto-von-Guericke-Universität Magdeburg, florentin.hildebrandt@ovgu.de

Alexander Bode
Institute for Decision Support, Technische Universität Braunschweig, alexander.bode@tu-braunschweig.de

Marlin W. Ulmer
Chair of Management Science, Otto-von-Guericke-Universität Magdeburg, marlin.ulmer@ovgu.de

Dirk C. Mattfeld
Institute for Decision Support, Technische Universität Braunschweig, d.mattfeld@tu-braunschweig.de

With rising customer expectations and increasing computational potential, many transportation services face real-time

decision making in stochastic and dynamic environments. They often need to find and adapt complex plans that are

effective now but also flexible with respect to future developments. Mathematically, these three challenges of searching

the large and complex decision space for effective and flexible decisions are reflected in the three parts of the famous

Bellman Equation, namely the reward function (effective), the value function (flexible), and the decision space (search).

In the transportation literature, reinforcement learning (RL) has shown potential to quickly evaluate the reward- and

value function of the Bellman Equation for a limited number of decisions but struggles to search a complex, constrained

decision space immanent in most transportation problems. The question of how to combine the thorough search of the

complex decision space with RL-evaluation techniques is still open. We propose three RL-based solutions, each inspired

by one component of the Bellman Equation, to search for and evaluate decisions in an integrated manner. The first

and second method learn to dynamically manipulate the reward function and decision space to encourage effective

and flexible and prohibit inflexible decisions, respectively. The third method models the Bellman Equation as a mixed-

integer linear programming formulation in which the value function is given by a neural network approximator. We

compare our proposed solution methods in a structured analysis for carefully designed problem classes based on long-

haul, medium-haul, and short-haul transportation logistics. We demonstrate the overall effectiveness of our methods

compared to prominent benchmark methods and highlight how the methods’ performances depend not only on the

problem classes but also on the instances’ parameterizations.

Key words : stochastic dynamic transportation problems, sequential decision processes, mixed integer linear

programming, reinforcement learning, approximate dynamic programming

1. Introduction
Enabled by real-time information streams and catalyzed by increasing service expectations, transporta-

tion companies turn towards dynamic and real-time decision processes (Soeffker, Ulmer, and Mattfeld

1

2

2022). In such processes, decisions are made repeatedly in reaction to and in anticipation of future devel-

opments, e.g., new customers requesting service. The transportation applications are countless, ranging

from long-haul trucking towards last-mile fulfillment. While the individual problems differ, they usually

share the challenge that identifying a feasible decision in a state is a complex, often NP-hard, problem in

itself. Typically decisions correspond to request selection, assignment, or routing and induce diverse con-

straints with respect to capacity, time, and customer requirements. OR-methods are required to search the

space for effective decisions in a fast manner, given the need for real-time decision making. However, with

the dynamism a new challenge arises: The value of a decision is unknown as it depends on future infor-

mation and decisions. Decisions that are effective now may lead to inflexibility towards the future. This

balance between immediate and future value is captured in the famous Bellman Equation (here shown for

a maximization problem):

𝑉 (𝑆𝑘) = max𝑥∈(𝑆𝑘) 𝑅(𝑆𝑘, 𝑥) + 𝑉 (𝑆𝑥𝑘). (1)

The value 𝑉 (𝑆𝑘) of a state 𝑆𝑘 is the maximum value that can be achieved over all decisions in this

state 𝑥 ∈ (𝑆𝑘). Thus, an optimal decision 𝑥 maximizes the immediate reward 𝑅(𝑆𝑘, 𝑥) plus the expected
future reward 𝑉 (𝑆𝑥𝑘) conditioned on the decision taken. The complexity of the decision space is nicely

hidden in the term 𝑥 ∈ (𝑆𝑘). While the immediate reward function 𝑅(𝑆𝑘, 𝑥) is usually known, the value

function 𝑉 (𝑆𝑥𝑘) is highly uncertain and usually intractable. Since runtime in a state is limited, research

increasingly focuses on learning the value function a priori by means of reinforcement learning (RL, also

known under the terms approximate dynamic programming, value function approximation, approximate

value iteration). Such RL-techniques use repeated offline simulations to approximate the value function

which is then accessed for real-time decision making without additional runtime required. While this

addresses the challenges of the second term of the Bellman Equation, the search of the complex decision

space remains an issue. As a recent literature survey shows, most of the RL-work does not answer this

challenge (Hildebrandt, Thomas, and Ulmer 2023). Often, the decision space is not fully searched but

decomposed to “easy” and complex parts. The evaluation of the value function is then reduced to the easy

parts while the complex parts are solved via heuristics.

In this research, we analyze how both the search of the decision space and its evaluation can be achieved

via RL in an integrated manner. Based on the Bellman Equation, we identify three potential connection

points for RL that still allow the search of the decision space with OR-methods: (1) adapting the decision

space (𝑆𝑘), (2) adapting the reward function 𝑅(𝑆𝑘, 𝑥), (3) or directly learning and integrating the value

function 𝑉 (𝑆𝑥𝑘) into a mixed integer linear programming formulation of the Bellman Equation. Given the

framework by Powell (2022), the first two belong to the class of cost function approximation (CFA) where

reward function or decision space are manipulated to penalize or even prohibit inflexible decisions. While

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
3

the parameters of a CFA are usually determined by enumeration and are the same for all states, we propose

using RL to search directly for state-specific parameters, either for the constraints of the decision space,

or for the manipulation of the reward-function. For the third approach, approximating the value function𝑉 (𝑆𝑥𝑘), we use a neural network approximator that is integrated directly in the search of the decision space

via a mixed integer linear programming formulation (MILP).

In theory, each of the three proposed concepts should be effective when solving dynamic problems in

transportation with complex decision spaces. As there are at least hundreds of individual problems, we

decide to specify and analyze our methodology for three representative problems: long-haul, medium-

haul, and short-haul transportation with dynamic request selection. These problems reflect the common

practice in transportation that a service provider serves dynamically occurring transportation requests

with limited resources. Furthermore, the three problems allow for a careful and controlled increase in deci-

sion space complexity, from mere capacity constraints (all problems), over additional routing constraints

(medium- and short-haul), to specific customer time-window constraints (short-haul). In a structured

experimental analysis, we derive the following insights.

• All three methods show potential, but their performances depend on the problem and, equally impor-

tant, the instance data characteristics.

• A direct approximation of the value function and an integrated optimization via the Bellman Equation

provides the best results for the majority of test problems and instances but not for all. It should

therefore be the first option when tackling dynamic problems in the field of transportation with RL.

• A decomposition of the complex decision space, as current practice in most of the RL-work in trans-

portation, is inferior, sometimes to all three proposed methods.

• When deciding between a CFA and a decomposition of the decision space, the CFA is favorable for

instances with high-dimensional decision spaces while the decision-space decomposition is prefer-

able for instances with long decision horizons.

Our work makes the following contributions.

• We present a general classification of RL-approaches based on the Bellman Equation. This classifica-

tion aids discussions of existing work but may also foster the development of future RL-methodology

in our field.

• We detail an existing RL-approach and introduce two new RL-approaches to tackle the complex

decision spaces immanent in problems from the area of transportation. All three approaches are

general and, thus, applicable to a broader range of problems.

• We specify the three approaches for our three problems which building blocks are fundamental for

many dynamic problems in transportation.

• We present analytical results on the expressiveness and convergence of our three methods.

4

• We assess the performance of our methods using established ADP methods from the literature as

well as a perfect information lower bound.

• Our computational study does not only show that our RL-methods provide effective solutions for the

individual problems, it also allows general insights in the interplay of methods, problem character-

istics, and instance data.

The remainder of this work is structured as follows. Section 2 briefly summarizes the current state in

optimization for dynamic problems in transportation. Section 3 motivates and defines the three funda-

mental problems we address in our computational study. Section 4 presents and analysis the three general

RL-methods we propose. It also presents their specification for the three defined problems. Section 5 pro-

vides the details of our experimental study. Section 6 analyzes and discusses the policies’ performance for

the problems. Finally, Section 7 concludes our work and identifies future research opportunities.

2. Literature
Historically, solution methods for stochastic dynamic transportation problems fall either under the

umbrella of static (re-)optimization or one of the policy classes of approximate dynamic programming

(Soeffker, Ulmer, and Mattfeld 2022). Early works on combinatorial dynamic transportation problems

treated decision states in the dynamic problem as static sub-problems on a rolling-horizon basis in order

to exploit well-known mixed integer linear programming (MILP) methodologies (Gendreau et al. 1999,

Ichoua, Gendreau, and Potvin 2000, Yang, Jaillet, and Mahmassani 2004, Branchini, Armentano, and

Løkketangen 2009, Chen and Xu 2006). They focused on constructing “optimal” (for the current state of

information only) decisions in a timely manner whenever information is updated in the decision process.

Subsequent work additionally aimed to derive decisions that lead to better future values, e.g., decisions

that induce flexible states (Benyahia and Potvin 1998, Mitrović-Minić and Laporte 2004, Thomas 2007,

Pureza and Laporte 2008, Zehtabian, Larsen, and Wøhlk 2022). These methods are mostly characterized

as hand-crafted (or rule-of-thumb) policies and fall under the domain of policy function approximations

(PFAs). Follow-up work combined both concepts by integrating a PFA into static optimization proce-

dures. Such cost function approximations (CFAs) manipulate the constraints or the objective function of the

static optimization procedure in a non-state dependent manner (Riley, Van Hentenryck, and Yuan 2020,

Ulmer et al. 2020, 2021). For example, Riley, Van Hentenryck, and Yuan (2020) add an artificial penalty

for unserved requests for the ride-hailing problem while Ulmer et al. (2021) add a buffer to a deadline-

constraint in a restaurant-meal-delivery problem to avoid delayed deliveries. Static optimization proce-

dures, PFAs, and CFAs are all analytical in nature and do not evaluate decisions with regard to future

uncertainty. In contrast, data-driven approaches incorporate estimations of stochasticity and future uncer-

tainty into the decision policy. These approaches either sample stochastic information online or learn the

value of decisions offline. Sampling-based approaches, such as multiple-scenario approaches (MSA) (Bent

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
5

and Van Hentenryck 2004) or dynamic scenario hedging heuristics (DSHH), construct an anticipatory solu-

tion by optimizing over a set of sampled future scenarios. Other sampling-based approaches, such as the

post-decision rollout algorithm (RA) (Goodson, Thomas, and Ohlmann 2017) or Monte Carlo tree search

(MCTS), thoroughly evaluate a small subset of candidate decisions by a forward simulation of their impact

on the system (Secomandi 2001, Ulmer et al. 2019).

However, augmenting the decision problem by integrating sampled stochastic information before solv-

ing it online is often computationally too costly for large-scale applications. In contrast, reinforcement

learning (RL) approaches learn the value of decisions in a given state in an extensive offline simulation to

be able to instantly evaluate decisions when deployed online. The long-term value of decisions in a given

state is learned either directly by means of value function approximations (VFA) or indirectly by means

of policy gradient (PG) methods (Hildebrandt, Thomas, and Ulmer 2023). The focus of these RL methods

is on the evaluation of decisions and they generally struggle to search vast and complex decision spaces.

Therefore, sensible decision-space decompositions or a-priori-generated sets of candidate decisions are

required to directly employ RL methods for stochastic dynamic transportation problems (Chen, Hewitt,

and Thomas 2018, Ulmer, Mattfeld, and Köster 2018, Ulmer, Soeffker, and Mattfeld 2018, Lei, Jiang, and

Ouyang 2019, Soeffker, Ulmer, andMattfeld 2019, Ulmer et al. 2019, Agussurja, Cheng, and Lau 2019, Ulmer

and Thomas 2020, Ulmer 2020, Ma et al. 2021, Chen, Ulmer, and Thomas 2022, Basso et al. 2022, Chen et al.

2023, Akkerman, Mes, and van Jaarsveld 2022).

In summary, the described methods provide a provenly solid groundwork to build on but each comes with

its own significant shortcoming. Static re-optimization, PFA, and CFA methods do not explicitly evaluate

decision with regard to future uncertainty, sampling-based approaches such as MSA, DSHH, RA, MCTS

do not scale well due to their computational complexity, and off-the-shelf RL methods such as VFA and

PG are not designed to search complex decision spaces. Motivated by the methods’ shortcomings, we

envision three paths leading from this groundwork towards searching a decision space while evaluating

decisions’ future impact. The paths correspond to the application of reinforcement learning to each one

of the three elements of the Bellman Equation (1), namely the reward function 𝑅(𝑆, 𝑥), the decision space

(𝑆𝑘), and the value function 𝑉 (𝑆𝑥𝑘). The first and second approach train a policy gradient method to

dynamically adjust the reward function or decision space based on current state information to induce

efficient and flexible decisions. The third approach directly approximates the value function by a neu-

ral network which is integrated in a mixed integer linear program formulation representing the Bellman

Equation to search the complex decision space. To our knowledge, there is no work that follows the first

or second path, i.e., that learns to dynamically manipulate the reward function or decision space of the

Bellman Equation. However, there is research related to the third path of approximating the value func-

tion and integrating the approximation into exact solvers. For the field of static optimization, Delarue,

6

Anderson, and Tjandraatmadja (2020), Papalexopoulos et al. (2022) integrate a piecewise affine neural net-

work in a MÌLP model to heuristically solve combinatorial optimization problems including capacitated

vehicle routing problems. For the field of stochastic dynamic optimization, there are works that employ

linear approximations (Rivera andMes 2017, Heinold, Meisel, and Ulmer 2022), tree-based approximations

(Biggs and Perakis 2020), and even neural-network approximations (Silva, Pedroso, and Viana 2023) of the

value function to facilitate the optimization over the Bellman Equation.

3. Dynamic Problems in Transportation
There is a broad range of dynamic problems in transportation. For an in-depth discussion, we refer to

Soeffker, Ulmer, and Mattfeld (2022). The individual problems differ in their objective, constraints, the

uncertain information, and the complexity of dynamic decisions. The latter is of particular interest for this

work. Thus, instead of examining specific individual problems, we focus on three representative problem

classes that differ in their decision space complexity. More specific, we differentiate between long-haul,

medium-haul, and short-haul transportation problems. In the following, we briefly summarize the three

classes and distill the core decision components in these problems.

Long-haul transportation usually comprises transportation of large batches from an origin to a desti-

nation and is done by truck, train, plane, or vessel. A classical example for long-haul transportation is the

transport of goods between two distant cities via large trucks. Medium-haul describes the transportation

of smaller entities in a confined region. A classical example is less-than-truckload routing where within

the day a number of business customers (stores, factories, etc.) is served by a larger delivery truck that

starts and ends its tour in a depot. Short-haul transportation requires the transportation of smaller entities

to end-customers in a smaller region, often the infamous “last-mile” within the city and within a specified

time-window. An example is attended home delivery of white goods where customers are present during

the time-window to receive the delivery.

The main source of uncertainty for such applications is the uncertainty in demand (Soeffker, Ulmer, and

Mattfeld 2022) and one main decision component is demand management, i.e., the selection of demand

to serve (Fleckenstein, Klein, and Steinhardt 2023). For example, many providers of long-haul, medium-

haul, or short-haul transportation receive requests during the day or operate on online freight exchange

platforms (Miller, Nie, and Liu 2020). Such platforms match real-time transportation requests with trans-

portation service providers. In both cases, in a first (capture) phase, transportation requests reveal over

time. Requests are unknown until they are placed and are usually associated with a compensation pay-

ment, with shipment sizes, individual delivery locations (usually onlymedium- and short-haul), andwith a

delivery time-window (usually only short-haul). Providers dynamically select batches of requests they are

willing to satisfy given their limited fleet resources. The fleet resources comprise the vehicle capacity and

the limited routing time to visit the locations (only medium- and short-haul) within their time-windows

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
7

(only short-haul). After the first phase terminates, the selected requests are then satisfied in a second (ful-

fillment) phase. The goal of the providers is to use their limited resources effectively, i.e., to generate as

much revenue as possible.

3.1. Example
In the following, we illustrate the three problems via an example. Figure 1 depicts a decision state for each

of the three problems. The left-most portion of the figure shows the example for long-haul transportation.

In the state, two requests (A and B) were already selected and added to the vehicle (represented by the grey

boxes). Three new requests (C, D, and E) are available for selection, represented by the white boxes. The

size of the boxes indicate the required capacity. The size of the dollar symbol represents the compensation

payment. For example, requests C and D have the same size but D provides a higher payment; requests

D and E provide the same payment, but E requires more capacity. Long-haul transportation is performed

from one predefined origin to one destination, thus, there is no routing involved. The decision for long-

haul problems is now what requests to select given the limited capacity of the truck (and in anticipation

of future requests before departure). Thus, the long-haul problem can be described as a dynamic knapsack

problem (dKP).

The medium-haul problem is depicted in the middle portion. It is an extension of the long-haul problem.

Now, routing decisions through the individual request locations (circles) must be made to ensure feasibil-

ity of the selection. This increases complexity of decision making. For example, while for the knapsack

problem request D dominated request E, this is not the case for the medium-haul problem where request

E is very close to previously selected request A. Furthermore, there is consolidation potential dependent

on the selected subsets, e.g., if requests D is selected, request C does not require much additional routing

time. In essence, the medium-haul problem extends the dKP by a routing component and maximum route

length constrains. It can be represented by a dynamic capacitated orienteering problem (dCOP).

On the right side of the figure, the short-haul state is depicted. It is an extension of the medium-haul

state as now, each request is associated with a delivery time window, indicated by the boxes next to

the locations. This again leads to an increase in complexity in making effective decisions. For example,

request C provides less payment than D but can be served directly after A without the vehicle idling.

The final problem extends the dCOP to the dynamic capacitated orienteering problem with time windows

(dCOPTW).

We note that while we focus on general long-haul, medium-haul, and short-haul transportation, the

three components of limited capacity, routing constraints, and TWs can be found as essential parts of

many other dynamic transportation applications, e.g. mobility on-demand (Kullman et al. 2022, Xie, Liu,

and Chen 2023, Haferkamp, Ulmer, and Ehmke 2023, Heitmann et al. 2023), on-demand delivery (Ulmer

and Thomas 2018, Voccia, Campbell, and Thomas 2019, Ulmer 2020, Dayarian, Savelsbergh, and Clarke

2020), or attended home grocery delivery (Campbell and Savelsbergh 2006, Agatz et al. 2011, Yang and

Strauss 2017, Waßmuth et al. 2023).

8

Figure 1 Example for the three problems.

Requests

Capacity

Routing

Long-haul Medium-haul Short-haul

Origin

Destination

O/D O/D

𝐶 𝐷 𝐸
$ $ $

𝐶 𝐷 𝐸
$ $ $

𝐶 𝐷 𝐸
$ $ $𝐵 𝐴 𝐵 𝐴 𝐵 𝐴

𝐵 𝐴 𝐵 𝐴
𝐶𝐷
𝐸

𝐶𝐷
𝐸

[2, 4][4, 6]
[4, 6]

[2, 4] [0, 2]
[0, 8]

3.2. Problem Definition

Formally, the three problems are characterized as follows. A decision maker is presented a new set of

requests 𝐼𝑘 in each decision point 𝑘 = 1,… ,𝐾 . Requests 𝑖 ∈ 𝐼𝑘 are characterized by their capacity require-

ment 𝑤𝑘𝑖 ∈ ℝ𝑚, their value 𝑝𝑘𝑖 ∈ ℝ, their location 𝑙𝑘𝑖 ∈ 𝐴 ⊂ ℝ2 (in the dCOP and dCOPTW only), and their

time window 𝑡𝑘𝑖 ∈ ℝ2 (in the dCOPTW only). The decision maker may choose requests from the set of pre-

sented requests. However, the set of requests chosen in this decision point and previous decision points

must not exceed a given knapsack capacity, they must be served within a maximum tour length (only in

the dCOP and dCOPTW), andmust be servedwithin their respective timewindows (only in the dCOPTW).

Note, that the routes are executed only after the end of the decision horizon. Once an request is chosen,

it may not be discarded in later decision points and requests that have been rejected in previous decision

points cannot be reconsidered in subsequent decision points. The objective is to maximize the cumulative

value of requests collected over all decision points.

In the following, we model the three problems as sequential decision processes. Sequential decision pro-

cesses are modeled by a sequence of decision points 𝑘 = 1,… ,𝐾 . In each decision point we derive a decision𝑥𝑘 based on the current state 𝑆𝑘. The state 𝑆𝑘 is given by the known information relevant to decision-

making. After a decision is made, a reward 𝑅(𝑆𝑘, 𝑥𝑘) is assigned based on the state and the decision. Finally,
we transition 𝑆𝑀 ∶ (𝑆𝑘, 𝑥𝑘,𝑊𝑘+1) ↦ 𝑆𝑘+1 to the next state 𝑆𝑘+1 based on the current state 𝑆𝑘, the decision

taken 𝑥𝑘, and the realization of stochastic information 𝑊𝑘+1 sampled from an exogenous process. We first

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
9

define the SDP for the dKP in Subsection 3.3 before we modify relevant elements of the SDP to match the

dCOP in Subsection 3.4 and dCOPTW in Subsection 3.5.

3.3. Dynamic Knapsack Problem

The dKP can be defined as follows:

Decision point: A decision point 𝑘 ∈ {1,… ,𝐾} occurs when a new set of requests is revealed. The number

of decision points 𝐾 is deterministic.

State: A state 𝑆𝑘 = (𝑘, 𝑏𝑘,𝑤𝑘, 𝑝𝑘) in decision point 𝑘 consists of the current decision point 𝑘, the remaining

knapsack capacity 𝑏𝑘, and the capacity requirements 𝑤𝑘𝑖 and values 𝑝𝑘𝑖 of all requests 𝑖 ∈ 𝐼𝑘 revealed
in decision point 𝑘. The number of revealed requests is given by 𝑛 = |𝐼𝑘|. We denote the space of all

states as  .

Decision: A decision 𝑥𝑘 ∈ {0, 1}𝑛 defines which of the 𝑛 requests in 𝐼𝑘 are chosen. We denote the space of all

feasible decisions in state 𝑆𝑘 as(𝑆𝑘). The decision space is characterized by the following constraints
∑𝑖∈𝐼𝑘 𝑤𝑘𝑖 ⋅ 𝑥𝑘𝑖 ≤ 𝑏𝑘 (2a)𝑥𝑘𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼𝑘 (2b)

Decisions are derived by a policy 𝜋 ∶  →  that assigns a decision 𝑥𝑘 to each given state 𝑆𝑘. We

denote the optimal policy as 𝜋∗.
Reward: The reward function 𝑅 ∶  × →ℝ assigns a reward 𝑅(𝑆𝑘, 𝑥𝑘) to each state-decision tuple. The

Reward 𝑅(𝑆𝑘, 𝑥𝑘) in state 𝑆𝑘 is given by the inner product of reward vector 𝑝𝑘 and the decision taken𝑥𝑘: 𝑅(𝑆𝑘, 𝑥𝑘) = 𝑝ᵀ𝑘 𝑥𝑘 (3)

Post-decision state: The post-decision state 𝑆𝑥𝑘 ∶= (𝑘+1, 𝑏𝑘+1) represents the state immediately after a deci-

sion was made but before new information is revealed. It consists of the updated decision point 𝑘 +1
and the updated capacity 𝑏𝑘+1 = 𝑏𝑘 −𝑤ᵀ𝑘 𝑥𝑘. We denote the space of post decision states as 𝑥 .

Stochastic information: The stochastic information 𝑊𝑘+1 ∈ Ω is revealed after the decision 𝑥𝑘 is made in

state 𝑆𝑘. The stochastic information consists of the new set of requests 𝐼𝑘+1.
Transition: The transition 𝑆𝑀 ∶ 𝑥 × Ω →  maps a post-decision state and a stochastic information to a

new state 𝑆𝑘+1 = 𝑆𝑀(𝑆𝑥𝑘 , 𝑥𝑘,𝑊𝑘+1).
Value function: The value function 𝑉 ∶ 𝑥 → ℝ assigns each post-decision state 𝑆𝑥𝑘 the expected reward-

to-go if we follow the optimal policy 𝜋∗:
𝑉 (𝑆𝑥𝑘) = 𝔼[𝐾∑𝑙=𝑘+1𝑅(𝑆𝑙, 𝜋∗(𝑆𝑙)) ∣ 𝑆𝑥𝑘] (4)

10

Objective function: The objective is to identify a policy that maximizes the expected total reward over all

the decision points: max𝜋∈Π 𝑉 𝜋(𝑆0). (5)

3.4. Dynamic Capacitated Orienteering Problem

The dCOP extends the dKP by a spatial component as requests 𝑖 ∈ 𝐼𝑘 are now also associated with a location𝑙𝑘𝑖 ∈ 𝐴 in a service area 𝐴 ⊂ ℝ2. Each pair of locations corresponding to requests 𝑖 and 𝑗 is associated with

a distance 𝑑𝑖𝑗 ∈ ℝ+. If a request is chosen, its location must be visited within a tour that starts at the depot,

ends at the same depot, and visits all requests chosen prior. The tour must not exceed a maximal tour

length 𝐿. However, the tour is tentative and can be altered in every decision point, i.e., it is only constructed
to assert the feasibility of a decision. The actual tour is only executed after the end of the decision horizon.

Thus, a decision’s feasibility depends on the requests chosen in previous decision steps. For that reason,

we introduce the index set 𝐼𝑘 denoting the indices of all requests chosen before decision point 𝑘. We extend

our description of states and decisions accordingly:

State: A state 𝑆𝑘 = (𝑏𝑘,𝑤𝑘, 𝑝𝑘, 𝑙𝑘), is now extended by the locations 𝑙𝑘𝑖 with 𝑖 ∈ 𝐼𝑘 ∪𝐼𝑘, i.e., the locations 𝑙𝑘𝑖, 𝑖 ∈ 𝐼𝑘
that were chosen in the previous decision points and the newly revealed locations 𝑙𝑘𝑖, 𝑖 ∈ 𝐼𝑘.

Decision: A decision 𝑥𝑘 ∈ {0, 1}𝑛 describes which requests in 𝐼𝑘 are chosen. We further define 𝑥𝑘𝑖 = 1, ∀𝑖 ∈ 𝐼𝑘.
The decision 𝑥𝑘 must not only fulfill capacity constraints but there also must exist a tour of length

lesser than or equal to the maximum tour length 𝐿 that visits all requests previously and currently

chosen. We denote the depot at the start of the tour as 0 and the (virtual) depot at the end of the tour
as 𝑁 = 1+∑𝐾𝑙=0 |𝐼𝑙 |. Further, we denote the set of all known requests as 𝐼 ∶= 𝐼𝑘 ∪ 𝐼𝑘 and 𝐼+ = 𝐼 ∪ {0,𝑁 }.
We introduce the decision variable 𝑦𝑖𝑗 denoting if the tour contains an arc from request 𝑖 to request 𝑗
and the decision variable 𝑠𝑖 denoting when the tour arrives at location 𝑖 ∈ 𝐼+. Finally, we characterize
the decision space by the following set of constraints:∑𝑖∈𝐼𝑘 𝑥𝑘𝑖𝑤𝑘𝑖 ≤ 𝑏𝑘 (6a)∑𝑖∈𝐼+ 𝑦0,𝑗 =∑𝑖∈𝐼+ 𝑦𝑖,𝑁 = 1 (6b)∑𝑖∈𝐼+ 𝑦𝑖𝑚 −∑𝑗∈𝐼+ 𝑦𝑚𝑗 = 0 𝑚 ∈ 𝐼 (6c)∑𝑖∈𝐼 𝑦𝑖𝑗 = 𝑥𝑘𝑗 𝑗 ∈ 𝐼𝑘 (6d)𝑠𝑖 + 𝑑𝑖𝑗 − 𝑠𝑗 ≤ 𝐿 ⋅ (1 − 𝑦𝑖𝑗) 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐼 (6e)𝑠𝑛⋅𝑘+1 ≤ 𝐿 (6f)𝑥𝑘𝑖 = 1 𝑖 ∈ 𝐼𝑘 (6g)𝑥𝑘𝑖 ∈ {0, 1} 𝑖 ∈ 𝐼𝑘 (6h)

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
11𝑦𝑖𝑗 ∈ {0, 1} 𝑖 ∈ 𝐼+, 𝑗 ∈ 𝐼+ (6i)𝑠𝑖 ∈ [0, 𝐿] 𝑖 ∈ 𝐼+ (6j)

Constraint (6a) ensures that the knapsack capacity is not exceeded. Constraint (6b) guarantee that

the tour starts and ends at the depot. Constraints (6c) provide the connectivity of the tour. Con-

straints (6d) state that every chosen request must be visited and discarded requests cannot be visited.

Constraints (6e) determine the timeline of the tour. Constraint (6f) ensures that the maximum tour

length is not exceeded. Constraints (6g) specify that previously selected requestsmust also be selected

in this decision point.

3.5. Dynamic Capacitated Orienteering Problem with Time Windows

The dCOPTW further extends the dCOP by a temporal component. Each request 𝑖 ∈ 𝐼𝑘 is now also associ-

ated with a time window 𝑡𝑘𝑖 ∶= (𝑡−𝑘𝑖, 𝑡+𝑘𝑖). We update state- and decision space accordingly:

State: A state 𝑆𝑘 = (𝑏𝑘,𝑤𝑘, 𝑝𝑘, 𝑙𝑘, 𝑡𝑘), is now additionally given by the time windows 𝑡𝑘𝑖 with 𝑖 ∈ 𝐼 .
Decision: The decision space is still characterized by Constraint (6a)-(6g) as well as by the following time

window constraints: 𝑡−𝑘𝑖 ≤ 𝑠𝑖 ≤ 𝑡+𝑘𝑖 ∀𝑖 ∈ 𝐼 (7a)

Constraints (7a) ensure that the lower and upper bounds of the time windows are met.

4. Methodology
We now turn towards solving the described sequential decision processes. As already illustrated with the

small example in Figure 1, finding optimal policies is intractable because (1) the decision space is complex

and searching it requires significant time, and (2) the value of a decision is unknown as it depends on future

information and decisions (i.e., the future value). Instead, we employ reinforcement learning strategies

that search the complex space and use an approximating of the future value of a decision in a state.

In Subsection 4.1, we discuss how optimal solutions can be found in theory and motivate based on the

Bellman Equation the selection of our methodology. In Subsection 4.2, we give an example for the general

functionality of our methods and then provide the algorithmic details for the VFA (MILP) Subsection 4.2.1)

and the RL-CFA methods Subsection 4.2.2).

4.1. The Bellman Equation

To characterize an optimal solution, i.e., an optimal policy 𝜋∗, for a given sequential decision process, we

require the notion of a value function 𝑉 𝜋 . The value function 𝑉 𝜋 corresponds to the value of being in a

state 𝑆𝑘 ∈  and following a policy 𝜋 ∈ Π. It is formally defined as

𝑉 𝜋(𝑆𝑘) = 𝔼𝜋[𝐾∑𝑡=𝑘 𝑅(𝑆𝑡 , 𝜋(𝑆𝑡)) ∣ 𝑆𝑘]. (8)

12

Figure 2 Three policies derived from the Bellman Equation (11).𝜋∗(𝑆𝑘) ∈ argmax𝑥 ∈(𝑆𝑘) 𝑅(𝑆𝑘, 𝑥) + 𝑉 (𝑆𝑥𝑘)
𝑥𝑘 ∈ argmax𝑥∈(𝑆𝑘) 𝜋MOD-O(𝑆𝑘)ᵀ𝑥𝑥𝑘 ∈ argmax𝑥∈𝜋MOD-C(𝑆𝑘) 𝑅(𝑆𝑘, 𝑥) 𝑥𝑘 ∈ argmax𝑥∈(𝑆𝑘) 𝑅(𝑆𝑘, 𝑥) + 𝑉̂ (𝑆𝑥𝑘)

RL-CFA (C) RL-CFA (O) VFA (MILP)

These value functions establish a partial ordering over the domain of policies Π: A policy 𝜋 is better or

equal than a policy 𝜋′, i.e, 𝜋 ≥ 𝜋′, if 𝑉 𝜋(𝑆𝑘) ≥ 𝑉 𝜋′(𝑆𝑘) for all 𝑆𝑘 ∈  . On this basis, we may characterize the

set of optimal policiesΠ∗ ⊂ Π by 𝜋∗ ∈ Π∗ if and only if 𝜋∗ ≥ 𝜋, ∀𝜋 ∈ Π (Sutton and Barto 2018). Consequently,

there is also the optimal value function𝑉 (𝑆𝑘) = max𝜋∈Π 𝑉 𝜋(𝑆𝑘), ∀𝑆𝑘 ∈  (9)

The optimal value function can also be defined recursively according to𝑉 (𝑆𝑘) = max𝑥∈(𝑆𝑘) 𝑅(𝑆𝑘, 𝑥) +𝔼[𝑉 (𝑆𝑘+1) ∣ 𝑆𝑥𝑘]. (10a)𝔼[𝑉 (𝑆𝐾+1) ∣ 𝑆𝑥𝐾] = 0, (10b)

for all terminal post-decision states 𝑆𝑥𝐾 . In the rest of this work, and by a slight abuse of notation, we refer

to the optimal value function only as value function and we notate the reward-to-go 𝔼[𝑉 (𝑆𝐾) ∣ 𝑆𝑥𝐾] as 𝑉 (𝑆𝑥𝑘).
By this recursive definition, an optimal policy 𝜋∗ ∈ Π∗ satisfies the Bellman Equation, i.e., it maximizes

the immediate reward plus the expected reward-to-go over all the decision points𝜋∗(𝑆𝑘) ∈ argmax𝑥∈(𝑆𝑘) 𝑅(𝑆𝑘, 𝑥) + 𝑉 (𝑆𝑥𝑘). (11)

Unfortunately, Equation (11) is almost never tractable due to the Curses of Dimensionality (see Powell

2022). Therefore, approximate solution methods, such as the ones discussed in Section 1, are often success-

fully applied. In this work, we extend two famous policies for sequential decision processes, namely cost

function approximation (CFA) and value function approximation (VFA) methods. Our proposed policies

are derived directly from each of the three parts of the Bellman Equation (11) as highlighted in Figure 2.

The three parts of the Bellman Equation that we are referring to are given by the decision space (𝑆𝑘),
the reward function 𝑅(𝑆𝑘, 𝑥), and the value function or reward-to-go 𝑉 (𝑆𝑥𝑘). Our first policy, RL-CFA (C),

manipulates the decision space based on current state information before maximizing the current reward

over the manipulated decision space. Our second policy, RL-CFA (O), manipulates the current reward

associated with each decision before maximizing the manipulated current reward over the entire decision

space. Our third policy, VFA (MILP), approximates the value function by a piecewise affine neural network

VFA before maximizing the current reward plus the approximated reward-to-go over the entire decision

space. Optimizing over each decision space is performed by dedicated MILP solvers for all three policies.

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
13

Figure 3 Overview of our solution methods at the example of the dKP.

Max

s.t.

Max

s.t.

Max

s.t.

Max

s.t.

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3

𝑆𝑘

𝑆𝑘

𝑆𝑘

𝑆𝑘

𝑆𝑥𝑘

𝑆𝑥𝑘

𝑆𝑥𝑘

𝑆𝑥𝑘
𝑥𝑘 = ⎛⎜⎜⎝011⎞⎟⎟⎠ 𝑥𝑘 = ⎛⎜⎜⎝110⎞⎟⎟⎠

𝑥𝑘 = ⎛⎜⎜⎝100⎞⎟⎟⎠𝑥𝑘 = ⎛⎜⎜⎝101⎞⎟⎟⎠

Static Opt. CFA (O)

CFA (C) VFA (MILP)

𝑉̂ (𝑆𝑥𝑘)

𝑏𝑘𝑤𝑘1 𝑝𝑘1

4.2. Solution Methods

We provide an intuition for our proposed methods at the hand of an introductory example, highlighted

in Figure 3, before we describe them in detail in Subsection 4.2.1 and Subsection 4.2.2.

Figure 3 is divided into four parts. Each part shows the same decision state in the dynamic Knapsack

problem but corresponds to a different solution method, namely a static optimization policy (Static Opti-

mization, top, left), a manipulation of the MILP by altering 𝑝𝑘 (RL-CFA O, top, right), a manipulation of

the MILP by altering 𝑏𝑘 (RL-CFA C, bottom, left), and an extension of the MILP’s objective function by a

value function approximation (VFA MILP, bottom, right). The decision state 𝑆𝑘 in the dynamic Knapsack

problem consists of 𝑛 = 3 presented requests. The items are represented by their weights 𝑤𝑘, depicted in

dark gray, and their values 𝑝𝑘, shown in light gray. For the sake of example, we assume that the weights of

the presented requests are given by 𝑤𝑘 = (2, 4, 3)ᵀ and their values are given by 𝑝𝑘 = (2, 4, 3)ᵀ. Further, the
state includes the current Knapsack capacity, given by the black bar in the state 𝑆𝑘 and on the right side of

the constraints. We assume that the current knapsack capacity has a numerical value of 𝑏𝑘 = 8. Next, we
highlight how each policy derives a decision 𝑥𝑘 from the state 𝑆𝑘.
Static Optimization. The static optimization policy (top, left) maximizes the immediate reward such that

the sum of weights does not exceed the knapsack capacity of 𝑏𝑘 = 8. This is achieved by taking request
two and three 𝑥𝑘 = (0, 1, 1)ᵀ, collecting a reward of 𝑅𝑘 = 𝑝2 +𝑝3 = 4+3 = 7, and reducing the knapsack
capacity to 𝑏𝑘+1 = 𝑏𝑘 −𝑤2 −𝑤3 = 8− 4− 3 = 1.

14

RL-CFA (O). The RL-CFA (O) policy (top, right) manipulates the request values 𝑝𝑘 in order to maximize not

only the immediate reward but also the reward-to-go. This policy derives decisions on the current

state information but does not explicitly plan into the future. Instead, it learns behaviors that tend to

do well with regard to future uncertainty. In our example, the policy might update the request values

to 𝑝′𝑘 = (2, 3,−1). In the next step, the virtual immediate reward is maximized such that the capacity

constraints are met. Thus, requests one and two are chosen 𝑥𝑘 = (1, 1, 0)ᵀ, resulting in a virtual reward
of 𝑅′𝑘 = 𝑝′1 + 𝑝′2 = 2 + 3 = 5 (and an actual reward of 𝑅𝑘 = 2 + 4 = 6), and updating the capacity to𝑏𝑘+1 = 𝑏𝑘 −𝑤1 −𝑤2 = 8− 2− 4 = 2.

RL-CFA (C). The RL-CFA (C) policy (bottom, left) works analogously to the second policy, but manipulates

the current capacity 𝑏𝑘 by virtually decreasing it. Again, the decision is based on current state infor-

mation but the policy does not explicitly plan into the future. It learns behaviors that work well with

regard to future uncertainty. In our example, the policy might modify the current knapsack capacity

to 𝑏′𝑘 = 5 in order to reserve some capacity for later decision points. We then maximize the imme-

diate reward such that the modified capacity 𝑏′𝑘 is not exceeded. This results in taking request one

and three (𝑥𝑘 = (1, 0, 1)ᵀ), collecting a reward of 𝑅𝑘 = 𝑝1 + 𝑝3 = 2 + 3 = 5, and updating the knapsack

capacity to 𝑏𝑘+1 = 𝑏𝑘 −𝑤1 −𝑤3 = 8− 2− 3 = 3.
VFA (MILP). Our final policy (bottom, right), aims to maximize the current reward plus an expected future

reward given by a value function approximation of the post-decision state (here, the post-decision

state is given by the time and the updated knapsack capacity 𝑏𝑘+1). Thus, the policy plans explicitly

into the future. In our example, the value function approximation could take the form of a linear

mapping 𝑉̂ (𝑆𝑥𝑘) = 1.1 ⋅ (𝑏𝑘 −𝑤ᵀ𝑘 𝑥𝑘).
Note that this linear mapping is just an arbitrary example and we will use more expressive neural

networks in our actual implementation. Maximizing the immediate reward plus the expected reward-

to-go according to 𝑉̂ leads to the first request being selected 𝑥𝑘 = (1, 0, 0)ᵀ, resulting in an immediate

reward of𝑅𝑘 = 𝑝1 = 2 (and an expected future reward of 𝑉̂ (𝑏𝑘+1) = 𝑉̂ (6) = 6.6), and an updated capacity
of 𝑏𝑘+1 = 𝑏𝑘 −𝑤1 = 8− 2 = 6.

Next, we detail how concrete policies can be derived from these classes for our benchmark problems.

4.2.1. Extending the Objective Function of theMILP. An optimal decision policy per definitionem

solves each decision state for the decision that maximizes the current reward plus the expected reward-

to-go conditioned on the corresponding post-decision state:

𝑥𝑘 ∈ argmax𝑥𝑘∈(𝑆𝑘) 𝑝ᵀ𝑘 𝑥𝑘 + 𝑉 (𝑆𝑥𝑘). (12)

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
15

Figure 4 Application of the notation to a small neural network.

𝑛11
𝑛12
𝑛13

𝑛21
𝑛22
𝑛23
𝑛24

𝑛31

Here, the expected reward-to-go is represented by the value function 𝑉 (𝑆𝑥𝑘) of the post-decision state 𝑆𝑥𝑘
if we take decision 𝑥𝑘 in state 𝑆𝑘. Of course, 𝑉 is unknown but we may approximate it with the help of

a predictive model 𝑉̂𝜔 with trainable weights 𝜔. Such a model maps a post-decision state 𝑆𝑥𝑘 to a scalar

approximate 𝑣𝑥𝑘 ∶= 𝑉̂𝜔(𝑆𝑘) of the expected reward-to-go 𝑉 (𝑆𝑥𝑘). Further, the predictive model should be

sufficiently expressive to approximate arbitrary value functions as well as result in a benign optimization

problem when substituting 𝑉 (𝑆𝑥𝑘) by 𝑣𝑥𝑘 ∶= 𝑉̂𝜔(𝑆𝑥𝑘) in Equation (12) (see also Figure 3, bottom, right).

We choose a standard feed-forward neural network with ReLU-activations, 𝑅𝑒𝐿𝑈(𝜈) = max(𝜈, 0), as the
predictive model. Such a network is expressive enough to approximate any (potentially non-linear) value

function while being piecewise affine. The neural network is given by its 𝑙 ∈ ℕ layers and corresponding

number of neurons 𝑚𝑖, 𝑖 ∈ {1,… , 𝑙} in layer 𝑖. Each layer 𝑖 + 1 can be recursively defined by the output 𝑛𝑖 of
the previous layer’s nodes {𝑛𝑖𝑗 }, 𝑗 = 1, ...,𝑚𝑖. In the Figure 4, we highlight how the definition of each node𝑛𝑖𝑗 corresponds to a neural network with 3 layers and 3,4, and 1 nodes per layer.

Formally, we define the output of neuron 𝑗 in layer 𝑖 as𝑛𝑖𝑗 ∶= ReLU(𝜔𝑖,𝑗 ⋅ 𝑛𝑖−1 + 𝛽𝑖,𝑗). (13)

Here, 𝜔 ∶= {𝜔𝑖,𝑗 , 𝛽𝑖,𝑗 ∣ 𝑖 ∈ {1,… , 𝑙}, 𝑗 ∈ {1,… ,𝑚𝑖}} denotes the trainable weights and biases of the neural net-

work. The ReLU activations can be written as big-M constraints (Anderson et al. 2020). While stronger

formulations for ReLU activations over an affine function exist, big-M formulations perform well for small

neural networks (Anderson et al. 2020). Let 𝑀+𝑖𝑗 and 𝑀−𝑖𝑗 denote the maximum and minimum value that

our affine function 𝑔(𝜈) = 𝜔𝑖,𝑗 ⋅ 𝜈 + 𝛽𝑖,𝑗 attains over its input domain. Then, we write the output of neuron𝑗 in layer 𝑖 as 𝑛𝑖𝑗 ≥ 𝜔𝑖,𝑗 ⋅ 𝑛𝑖−1 + 𝛽𝑖,𝑗 (14a)𝑛𝑖𝑗 ≤ 𝜔𝑖,𝑗 ⋅ 𝑛𝑖−1 + 𝛽𝑖,𝑗 −𝑀−𝑖𝑗 ⋅ (1 − 𝑧) (14b)𝑛𝑖𝑗 ≤ 𝑀+𝑖𝑗 ⋅ 𝑧 (14c)𝑧 ∈ {0, 1} (14d)

16

By expressing the neural network VFA 𝑉̂𝜔 as a set of linear constraints, we define our policy 𝜋 as follows:𝜋(𝑆𝑘) = argmax𝑥𝑘∈(𝑆𝑘) 𝑝ᵀ𝑘 𝑥𝑘 + 𝑉̂ (𝑆𝑥𝑘). (15)

We acknowledge that this mapping is not well-defined in general as the problem might not be feasible

or it might correspond to a one-to-many mapping. However, under the assumption off a non-empty

decision space (𝑥𝑘 = 0⃗ is always feasible) and since solving Equation (15) to optimality using a standard

solver returns a single maximizer, this notation is reasonable.

In practice, it is often not desirable to use the entire post-decision state 𝑆𝑥𝑘 as input of 𝑉̂ due to its high

dimension (Soeffker, Ulmer, and Mattfeld 2019). Instead, we map a vector of post-decision state features𝑓 𝑥𝑘 ∶= 𝜙(𝑆𝑥𝑘) to a scalar approximate 𝑣𝑘 ∶= 𝑉̂𝜔(𝑓 𝑥𝑘) of the expected reward-to-go 𝑉 (𝑆𝑥𝑘). In the following, we

show how an implementation of the decision policy may look like for our stochastic dynamic transporta-

tion problems. For ease of exposition, we assume our value function has one hidden layer with𝑚 neurons,

our input features are given as 𝑓𝑘, and the final output of the neural network 𝑣𝑥𝑘 is scalar. Then, we may

extend the objective function by our approximation of the expected reward-to-go as given in Model (16).

max [𝑛−1∑𝑖=0 𝑝𝑘𝑖𝑥𝑘𝑖] + 𝑣𝑥𝑘 (16a)

s.t. 𝑛1𝑗 ≥ 𝜔1,𝑗 𝑓 𝑥𝑘 + 𝛽1,𝑗 𝑗 = 1,… ,𝑚 (16b)𝑛1𝑗 ≤ 𝜔1,𝑗 𝑓 𝑥𝑘 + 𝛽1,𝑗 −𝑀−1𝑗 (1 − 𝑧) 𝑗 = 1,… ,𝑚 (16c)𝑛1𝑗 ≤ 𝑀+1𝑗𝑧 𝑗 = 1,… ,𝑚 (16d)𝑣𝑥𝑘 = 𝜔2,1𝑛1 + 𝛽2,1 (16e)𝑧 ∈ {0, 1} (16f)𝑥𝑘 ∈(𝑆𝑘) (16g)

We omitted the definition of feature vector 𝑓 𝑥𝑘 in Model (16). Since the feature vectors 𝑓 𝑥𝑘 should depend

on the current decision variables in the respective MILP, they must be defined in a way tractable for the

MILP. For that reason, we choose the mapping 𝜙 to be linear.

We construct the feature vectors 𝑓𝑘 for the dKP, dCOP, and dCOPTW as follows. For the dKP, a post-

decision state is given by the current time of the decision state and the remaining knapsack capacity after

taking a decision 𝑥𝑘. Thus, we may define 𝑓𝑘 ∈ ℝ2 as𝑓 𝑥𝑘1 = 𝑡𝑘 (17a)𝑓 𝑥𝑘2 = 𝑏𝑘 − 𝑛−1∑𝑖=0 𝑥𝑘𝑖𝑝𝑘𝑖 (17b)

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
17

For the dCOP, we additionally provide the current route length to characterize the decision state:

𝑓 𝑥𝑘3 = 𝑛−1∑𝑖=0 𝑛−1∑𝑗=0 𝑦𝑘𝑖𝑗𝑑𝑘𝑖𝑗 (18a)

For the dCOPTW, we further include the length of the subroutes induced by each set of time windows𝑡1,… , 𝑡𝑀 (we assume 𝑀 uniform, disjunct time windows)

𝑓 𝑥𝑘,3+𝑚 = 𝑛−1∑𝑖∈𝐼(𝑡𝑚) 𝑛−1∑𝑗=0 𝑦𝑘𝑖𝑗𝑑𝑘𝑖𝑗 ∀𝑚 = 1,… ,𝑀 (19a)

with 𝐼 (𝑡𝑚) ∶= {𝑖 ∈ 𝐼 ∣ 𝑡𝑘𝑖 = 𝑡𝑚}. By combining the problem constraints, the neural network constraints,

and the feature constraints, we may solve for a feasible decision that maximizes current reward plus

the expected future reward according to our neural network value function approximation. We refer to

Appendix C for our training procedure and related implementation details.

4.2.2. Dynamically Manipulating the MILP. A potential drawback of integrating a VFA directly

into a MILP is the added complexity introduced into the MILP, as well as the fact that we now directly

search over all possible approximation errors of the VFA in the MILP. In our RL-CFA (C) and RL-CFA (O)

approaches, we manipulate the constraints and reward vector of the MILP, respectively, depending on

current state information before we solve the MILP. The RL-CFA (C) policy reserves capacities for later

decision points, i.e., by decreasing the knapsack capacity or maximum route length as shown in Figure 3

(bottom, left). The RL-CFA (O) policy alters the rewards associated with each request to incentivize or

disincentivize choosing certain requests as shown in Figure 3 (top, right).

The corresponding decision policy 𝜋 ∶  →  for the sequential decision problem is given by first

manipulating the reward or decision space based on the state 𝑆𝑘 before choosing a decision according to

the static optimization policy. (Policy (20a) and policy (20b) are well-defined if their decision spaces are

non-empty and if we use a recovery procedure that returns a unique maximizer instead of the entire set

of maximizers). This may result in one of the two proposed policies:𝜋(𝑆𝑘) = argmax𝑥∈(𝑆𝑘) 𝜋MOD-O(𝑆𝑘)ᵀ𝑥 (20a)𝜋(𝑆𝑘) = argmax𝑥∈𝜋MOD-C(𝑆𝑘) 𝑅(𝑆𝑘, 𝑥) (20b)

Here, the manipulation of the reward, RL-CFA (O), is of the form 𝜋MOD-O ∶  →ℝ𝑛 and the manipulation

of the constraints, RL-CFA (C), is of the form 𝜋MOD-C ∶  → (). 𝜋MOD-O manipulates the reward 𝑝𝑘 of
requests according to 𝑝′𝑘 = 𝜋MOD-O(𝑆𝑘) (21)

with the image of 𝜋MOD-O() being chosen such that negative request values may occur to ensure that such

requests are not chosen. The second manipulation, 𝜋MOD-C, restricts the knapsack capacity 𝑏𝑘 (as well as

18

the maximum tour length 𝐿 in the case of the dCOP and dCOPTW). Technically, the manipulation maps

a state to a subset of the decision space (𝑆𝑘). However, as the restricted decision space is induced by

the modification of the capacities 𝑏𝑘 and 𝐿𝑘, we do not explicitly construct the restricted decision space.

Instead, the knapsack capacity 𝑏𝑘 is directly modified according to𝑏′𝑘 = 𝑏𝑘 ⋅ 𝜋MOD-C(𝑆𝑘) (22)

with the image of 𝜋MOD-C() being contained in [0, 1] to ensure that the updated capacity is lesser equal

than the true capacity but remains positive. In the case of dCOP and dCOPTW, we additionally modify

the maximal route length 𝐿 by 𝐿′ = 𝐿 ⋅ 𝜋MOD-C(𝑆𝑘) + 𝐿𝑘−1 ⋅ (1 − 𝜋MOD-C(𝑆𝑘)) (23)

with the image of 𝜋MOD-C() again being contained in [0, 1] to ensure that the previous route with length𝐿𝑘−1 is still feasible. For the dCOP and dCOPTW, we learn the manipulation of 𝑏 and 𝐿 in a single policy𝜋MOD-C ∶  → [0, 1]2. In our implementation, the manipulation policies have access to the full state infor-

mation, i.e., no information is aggregated.

The manipulations 𝜋MOD-C and 𝜋MOD-O can be learned by any reinforcement learning method that allows

for continuous decisions. We employ a deep deterministic policy gradient method (DDPG) (Lillicrap et al.

2015). In such an implementation, the policy 𝜋MOD is learned by a neural network 𝜋MOD𝜃 with trainable

weights 𝜃. 𝜋MOD𝜃 is updated with the help of a second, independent Q-network 𝑄𝜔 with trainable weights𝜔. 𝑄 serves as an estimator of the immediate reward plus reward-to-go given a state-decision tuple, i.e.,𝑄𝜔 ∶  × →ℝ. We provide details on the training framework in Appendix C.

4.3. Policy Discussion

While we focus on individual problems, the proposed policies are general. In this section, we show that

under reasonable assumptions, the proposed policy classes can emulate any deterministic policy. In the

case of the VFA integrated in the MILP, we further sketch conditions in which we can show convergence

guarantees. For the rest of this section, we make the following assumption that are in line with most

transportation problems, including our proposed problem classes.

Assumption 1. We assume the sequential decision process to have a finite number of decision points, i.e.,𝑘 ≤ 𝐾 ∈ℕ. We further assume that for all 𝑆𝑘 ∈  the decision space (𝑆𝑘) is non-empty and can be expressed

as a set of linear constraints as follows

(𝑆𝑘) = {𝑥𝑘 ∈ ℤ𝑛+ ∣ ∃𝜈 ∈ ℝ𝑚−𝑛+ s.t. 𝐴𝑘[𝑥𝑘, 𝜈]𝑇 ≤ 𝑏𝑘}, (24)

with 𝐴𝑘 ∈ ℝ𝑚×𝑛, 𝑏𝑘 ∈ ℝ𝑚 being a state-dependent matrix and vector, respectively, and 𝜈 ∈ ℝ𝑛−𝑚+ being a set of

positive continuous decision variables. We further assume that the reward 𝑅𝑘 in a decision point 𝑘 is bounded
and is given by the inner product of the decision 𝑥𝑘 ∈(𝑆𝐾) and the profit vector 𝑝𝑘 ∈ ℝ𝑛, i.e., 𝑅𝑘 = 𝑝ᵀ𝑘 𝑥𝑘.

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
19

While we already introduced our policy classes for our benchmark problems, we now formally define

our proposed classes for an even more general setting. Our first policy class RL-CFA (O) manipulates the

value of decisions based on the current state information.

Definition 1 (RL-CFA O). We call a policy 𝜋 ∈ Π a RL-CFA (O) policy, if there exists a mapping𝜋MOD-O(𝑆𝑘) ∶  →ℝ𝑛 such that 𝜋 satisfies

𝜋(𝑆𝑘) ∈ argmax𝑥𝑘∈(𝑆𝑘) 𝜋MOD-O(𝑆𝑘)ᵀ𝑥𝑘, ∀𝑆𝑘 ∈ 
Our second policy class, manipulates the decision space (𝑆𝑘) in order to save resources for later deci-

sion points.

Definition 2 (RL-CFA C). We call a policy 𝜋 ∈ Π a RL-CFA (C) policy, if there exists a mapping 𝜋MOD-b ∶
 →() such that 𝜋 satisfies

𝜋(𝑆𝑘) ∈ argmax𝑥𝑘∈𝜋MOD-b(𝑆𝑘) 𝑝ᵀ𝑘 𝑥𝑘, ∀𝑆𝑘 ∈  .
Our third policy class approximates the post-decision state value by a piecewise affine function and solves

for a feasible decision that maximizes current plus approximated future reward.

Definition 3 (VFA MILP). We call a policy 𝜋 ∈ Π a VFA (MILP) policy, if there exists a bounded, piece-

wise affine mapping 𝑉̂ ∶ 𝑥 → ℝ such that 𝜋 satisfies

𝜋(𝑆𝑘) ∈ argmax𝑥𝑘∈(𝑆𝑘) 𝑝ᵀ𝑘 𝑥𝑘 + 𝑉̂ (𝑆𝑥𝑘), ∀𝑆𝑘 ∈  .
The proposed policy classes are highly flexible. In fact, the policies can emulate any deterministic policy,

i.e., also the optimal policy, under reasonable assumptions.

Proposition 1. Let Π𝐷 denote the space of deterministic policies for a sequential decision process that

satisfies Assumption (1). Further, let Π𝑂,Π𝐶,Π𝑉 denote the space of RL-CFA (O), RL-CFA (C) and VFA (MILP)

policies for this sequential decision process, respectively. Then it holds that

Π𝐷 = Π𝐶 = Π𝑉 . (25)

If we require binary decision vectors in every decision point (𝑆) ⊂ {0, 1}𝑛 , then it holds that

Π𝐷 = Π𝑂 = Π𝐶 = Π𝑉 (26)

Proof. See Appendix A.

Typically, we do not want to emulate any given policy but rather approximate the unknown optimal

policy. Thus it is important to characterize when our policies coincide with the optimal policy.

20

Proposition 2. Let {𝑉̂𝑖}𝑖∈ℕ be a sequence of value function approximations with𝑉̂𝑖 ∶ 𝑥 → ℝ, ∀𝑖 ∈ ℕ
and let {𝜋𝑖}𝑖∈ℕ ⊂ Π𝑉 be a corresponding sequence of VFA (MILP) policies satisfying𝜋𝑖(𝑆𝑘) ∈ argmax𝑥𝑘∈(𝑆𝑘) 𝑝ᵀ𝑘 𝑥𝑘 + 𝑉̂𝑖(𝑆𝑥𝑘), ∀𝑆𝑘 ∈  .
If lim𝑖→∞ 𝑉̂𝑖 = 𝑉 uniformly, then 𝜋̄ ∶= lim𝑖→∞ 𝜋𝑖 is an optimal policy.

Proof. See Appendix A.

Indeed, there are known conditions in which we can construct a sequence {𝑉̂𝑖}𝑖∈ℕ which converges with

probability one to 𝑉 .
Proposition 3. Given a sequential decision process with fine state space | | < ∞, finite decision space| | < ∞, and a bounded reward function 𝑅, and given a policy 𝜋, such that ℙ[𝑥 ∈ (𝑆) ∣ 𝑆 ∈ ] > 0 for all

state-decision pairs (𝑥, 𝑆) ∈ × . Then, the sequence {𝑉̂𝑖}𝑖∈ℕ defined by the update rule𝑉̂𝑡+1(𝑆𝑥𝑡) = 𝑉̂𝑡(𝑆𝑥𝑡) + 𝛼𝑡[𝑅𝑡 + 𝛾 ⋅ max𝑥′∈(𝑆𝑡+1) 𝑉̂𝑘(𝑆𝑥′𝑡+1) − 𝑉̂ (𝑆𝑥𝑡)] (27)

converges with probability one to the optimal value function 𝑉 for a sequence of states {𝑆𝑡}𝑡∈ℕ ⊂  visited by𝜋 if ∑𝑡 𝛼∞𝑡=1 = ∞ ∞∑𝑡=1 𝛼2 <∞ (28)

for all 𝑆𝑥𝑡 ∈ 𝑥 .
Proof. See the convergence proof of the standard Q-learning technique (Fan et al. 2020).

Having detailed our proposed policy classes, we apply them to long-haul-, medium-haul-, and short-

haul transportation.

5. Experimental Design
We first describe the design of our experiments and the benchmark policies before we present and analyze

the results in Section 6. Our experiments are designed to analyze the given problems as well as the

proposed policy classes. They extend well-known instances from the literature by common assumptions

to cover capacity constraints (dKP), route length constraints (dCOP), and time-window constraints

(dCOP). The parameterization of the instances is chosen such that capacity- and tour-length constraints

are equally restricting, and such that the workload per vehicle is realistic for long-haul, medium-haul,

and short-haul problems, respectively (5 to 25 customers are served per day and vehicle). We consider

instances with large combinatorial decision spaces (𝑛 > 𝐾) to analyze the value of searching the decision

space and instances with a long decision horizon (𝐾 > 𝑛) to analyze the value of evaluating decisions with

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
21

respect to future uncertainty. The rest of the section is structured as follows. First, we describe the general

parameters of the experiments. Second, we define the request distributions (including weights, values,

and vehicle capacities) that are shared by all three problems. Third, we define the spatial distributions of

locations to visit, the location of the depot, and the maximum tour length. These characteristics are shared

by the dCOP and dCOPTW. Fourth, we define how we sample time windows in the dCOPTW. Fifth, we

define the performance metrics used in our computational study. Sixth, we describe our benchmarks

methods.

General Design: For ease of exposition, we consider a deterministic number of equidistant decision

points. The number of requests per decision point is also deterministic and equal in all decision points.

We conduct three sets of experiments. The first set of experiments considers 𝑛 = 3 requests per decision
point and 𝐾 = 5 decision points. The second set of experiments analyzes the value of evaluating decisions

with respect to future uncertainty and, therefore, considers 𝑛 = 3 requests per decision point and 𝐾 = 15
decision points. The third set of experiments analyzes the value of searching the decision space and,

therefore, considers 𝑛 = 10 requests per decision point and 𝐾 = 5 decision points.

Item Distributions: We follow the work of Chu and Beasley (1998) to sample request weights and

rewards, and to choose the knapsack capacity: All weights are sampled uniformly random from the

half-open interval [0, 1), i.e., 𝑤𝑘𝑖 ∼ 𝑈(0, 1), ∀𝑘 = 1,… ,𝐾 , ∀𝑖 = 1,… , 𝑛 . The initial knapsack capacity is set

according to 𝑏1 = 𝛼 𝐾∑𝑘=1 𝑛∑𝑖=1 𝑤𝑘𝑖. We choose a restrictive knapsack capacity of 𝛼 = 0.3 in all our experiments.

The values of all requests are dependent on their weights and chosen according to 𝑝𝑘𝑖 = 𝑤𝑘𝑖 + 0.5 ⋅ 𝑞𝑘𝑖,∀𝑘 = 1,… ,𝐾 and ∀𝑖 = 1,… , 𝑛 with 𝑞𝑘𝑖 ∼ 𝑈(0, 1) being a random variable following a uniformly random

distribution in the half-open interval [0, 1). In the case of the dCOP and dCOPTW, the rewards are

independent of spatial characteristics (discussed in the following).

Spatial Distribution: We consider a square service area of unit size with centrally located depot. All

locations 𝑙𝑘𝑖, ∀𝑘 = 1,… ,𝐾 , ∀𝑖 = 1,… , 𝑛 are uniformly random distributed within the service area 𝐴. The
distance between two locations is given by their Euclidean distance. The maximum tour length is chosen

according to 𝐿 = 𝛼 ⋅ √|𝐴| ⋅ 𝑛 ⋅ 𝐾 with |𝐴| being the surface area of the service area in the case of the dCOP

and 𝐿 = 𝛼 ⋅ √|𝐴| ⋅ 𝑛 ⋅ 𝐾 ⋅ 𝑚 in the case of the dCOPTW (𝑚 being the number of time window slots). This

continuous approximation is chosen such that in approximately half of all optimal solutions to the dCOP

and dCOPTW the maximum tour length constraint is active and in the other half the capacity constraint

is active.

22

Time Window Distribution: We consider 𝑚 = 2 types of time windows given by [0, 12𝐿] and [12𝐿, 𝐿]
with 𝐿 being the maximum tour length. Which time window is assigned to a location is decided by a fair

coin flip.

Performance Metrics: So far, we described how we sample instances 𝐽 ∈  from a distribution of

instances . Next, we detail the metrics we use to assess the performance of different policies on these

instances. We consider two type of metrics. For our detailed analyses, we report the perfect-information

(PI) gap of a policy 𝜋 on an instance 𝐽 ∈  given by

gap(𝜋, 𝐽) ∶= 1− 𝑅𝜋(𝐽)𝑅PI(𝐽) .𝑅𝜋 denotes the objective value achieved by the policy 𝜋 on instance 𝐽 ∈  and 𝑅PI(𝐽) denotes the objective
value of solving the instance ex post, i.e., under perfect information, to optimality. For training results,

we report the approximated PI gap as it is computationally infeasible to compute the true PI gap for all

training instances. We define the approximated PI gap of a policy 𝜋 on an instance 𝐽 ∈  as

gap(𝜋, 𝐽) ∶= 1− 𝑅𝜋(𝐽)𝔼𝐼∼[𝑅PI(𝐼)] .𝑅𝜋 denotes the objective value achieved by the policy 𝜋 on instance 𝐽 ∈  and 𝔼𝐼∼[𝑅PI(𝐼)] denotes the
expected ex post optimal objective value if we randomly sample an instance 𝐼 from the space of instances

.

Benchmarks: Our benchmark policies cover all problem classes of approximate dynamic programming

except for online lookahead methods. We omit online lookahead methods because they are computation-

ally too costly and because they tend to underperform on stochastic dynamic transportation problems that

share components of knapsack and routing problems (Ulmer and Thomas 2020). As benchmark methods,

we employ

1. a value function approximation that uses a decision-space decomposition to avoid searching the

combinatorial decision space (VFA Decomposition);

2. a policy function approximation that chooses requests based on their value-to-resourcemargin (PFA);

3. a cost function approximation that reserves resources in each decision state for later decision states

(CFA);

4. and a static optimization method, that searches the decision space by solving a MILP maximizing

immediate reward but disregarding future rewards (Static Optimization).

We refer to Appendix B for the implementation details of our benchmark methods.

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
23

6. Results
We first discuss the results of the training phase in Subsection 6.1 before we analyze the performance of

each policy on 1000 evaluation instances in more detail in Subsection 6.2. For detailed information on our

implementations and training procedures, please see Appendix C.

6.1. Training Results

We train all policy on 20.000 realizations of each problem instance. Each policy is allowed 5 seconds of

computation time per decision point. No requests are accepted if no solution is found. The observed mean

approximated PI gap (sliding window of size 100) over the 20.000 training steps is shown in Figure 5.

The x-axes denote the training episodes and the y-axes denote the approximated mean optimality gaps.

We observe that all policies significantly improve over the course of training. For small instances with𝑛 = 3,𝐾 = 5, all policies show similar performance. However, for larger and, in particular, more complex

instances, i.e., dCOP and dCOPTWwith 𝑛 = 10 or 𝐾 = 15, it becomes apparent that the VFA (MILP) policy

outperforms all other policies. The RL-CFA (O) policy is noticeably worse than all other methods on these

instances. Not shown in Figure 5 are the PFA and CFA policies as their parameter fitting scheme does not

result in learning curves.

6.2. Evaluation

We evaluate our proposed policies and the benchmark policies on a set of 1000 realizations of the same

six problem instances (this set is excluded from the training instances). Again, each policy is allowed 5

seconds of computation time per decision point. The mean optimality gaps to the perfect information

bounds are summarized in Table 1.

In Figure 6, we further summarize the results aggregated by the problem type (top) and the instance

parameters (bottom). The columns in Figure 6 correspond to the results for the dKP, the dCOP, and the

dCOPTW, respectively. The x-axis denotes the instance parameters and the y-axis shows the mean opti-

mality gap for each policy. We make the following observations.

The cost of neglecting uncertainty. Table 1 and Figure 6 highlight that solving each decision state statically,

without consideration of future uncertainty, is not a viable policy. Indeed, the static optimization

policy is dominated by all other methods on all instances. No matter how uncertainty is addressed

in the solution method, it always improves on the static policy.

When to learn request values. When analyzing the results for the dKP instances, we observe that the

RL-CFA (O) method outperforms all other policies. In these instances, requests’ value-to-resource-

consumption-ratio is independent of previously chosen requests and the RL-CFA (O) is able to learn

reasonable request value manipulations. For instances with routing- or time-window constraints

requests’ value-to-resource-consumption-ratio is dependent on previously chosen requests and the

RL-CFA (O) policy proves to be among the worst policy. Practitioners should therefore evaluate if

and how requests’ long-term impacts are interdependent before employing a RL-CFA (O) policy.

24

Figure 5 Approximated mean PI gap over 20,000 training episodes for all methods and all considered problem

instances.

Table 1 Mean PI gap for 1000 realizations of each instance.

dKP dCOP dCOPTW
n=3
K=5

n=10
K=5

n=3
K=15

n=3
K=5

n=10
K=5

n=3
K=15

n=3
K=5

n=10
K=5

n=3
K=15 Mean

Static Opt. 30.7 36.8 41.3 28.0 34.5 40.4 27.5 35.7 41.0 35.2
VFA (Decomp.) 19.0 9.6 15.8 20.2 17.0 20.0 23.4 22.7 26.5 19.4
CFA 16.0 6.8 18.7 25.6 12.8 23.2 26.1 22.6 33.9 20.6
PFA 15.4 9.6 9.4 26.6 34.2 29.3 23.9 32.1 29.1 23.3
RL-CFA (O) 6.1 3.3 6.6 24.9 31.0 33.5 22.4 29.8 33.8 21.3
RL-CFA (C) 12.9 4.9 11.8 24.7 12.3 27.5 25.4 27.5 33.7 20.1
VFA (MILP) 6.1 7.3 10.2 19.0 9.8 13.5 18.9 16.4 17.7 13.2

The value of searching and evaluating. For instances with complex constraints (dCOP and dCOPTW), the

VFA (MILP) policy performs best. This highlights its capability to handle complex, combinatorial

decision spaces. The improvement on the other policies is particularly large for instances with long

horizons, i.e, instances with 𝑛 = 3,𝐾 = 15. In these instances, the immediate-reward term in the

Bellman Equation is dominated by the reward-to-go term. For instances with short horizons and

large decision spaces, i.e., instances with 𝑛 = 10,𝐾 = 5, a CFA policy that searches the decision space

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
25

Figure 6 Observedmean PI gaps for all instances aggregated by problem (top) and instance parameters (bottom).

but does not directly evaluate future uncertainty is a viable alternative. As a final remark, the VFA

(MILP) policy improves upon the VFA (Decomposition) policy for all considered instances. This is to

be expected, as the VFA (MILP) is an extension of the VFA (Decomposition).

When to search and when to evaluate. When a more complex policy, such as the VFA (MILP) policy, is not

feasible, wemust decide between focusing on searching the decision space and focusing on evaluating

decisionswith regard to future uncertainty. Our findings, as summarized in Figure 6 (bottom), indicate

that searching (represented by the CFA policy) is more valuable than evaluating (represented by

the VFA Decomposition policy), when the decision space is large and the horizon is short (𝑛 >>𝐾). In turn, evaluating is more important than searching when the horizon is long and decision

space is small (𝐾 >> 𝑛). We further analyze this effect at the example of the dCOPTW. This result

highlights that CFAs are viable alternatives to VFAs with decision-space decomposition, which are

currently prevalent in the dynamic transportation literature. Figure 7 summarizes how the CFA, VFA

(Decomposition), and VFA (MILP) policies behave for dCOPTW instances with either large decision

spaces or high uncertainty. The x-axes describe the decision points. The y-axis describes the mean

relative expended tour length or capacity as well as the mean relative reward obtained (percentage of

the optimal reward) aggregated over 1000 instance realizations. We observe that policies that search

the decision space (CFA, VFAMILP) tend to use the tour length resource to its full potential, reaching

a tour length of 90% of the allowed tour length in both instances. The VFA (Decomposition) policy

is only able to use around 80% of the tour length and, therefore, performs worse than the CFA, when

the horizon is short (𝑛 = 10,𝐾 = 5). In turn, the CFA tends to deplete available resources earlier in

26

Figure 7 Usage of resources and obtained reward for the CFA, VFA (Decomposition), and VFA (MILP) at the exam-

ple of the dCOPTW with 𝑛 = 10,𝐾 = 5 (top) and 𝑛 = 3,𝐾 = 15 (bottom).

the decision horizon. For 𝐾 = 15 decision points, the CFA has depleted almost all resources after 8

decision steps, which highlights its limitation to anticipate long horizons. The VFA (Decomposition)

policy in comparison, steadily uses the resources over all 15 decision points and yields a higher total

reward.

In summary, we observe that reinforcement learning methods are valuable when solving stochastic

dynamic transportation problems, but their effectiveness depends on various factors, such as the decision

space complexity, the problem horizon, and the instance dimensions.

7. Outlook & Conclusion
Last-mile logistic problems are often characterized by complex, combinatorial decision spaces as well as

dynamic decision making due to future uncertainty. Yet, past solution methods tend to focus either on

searching the complex, combinatorial decision space or the evaluation of decisions with regard to future

uncertainty. This work provided theoretical and empirical arguments in favor of simultaneously search-

ing and evaluating the decision space as well as concrete ideas on how such integrated solutions may be

achieved via reinforcement learning. In one approach, a neural network value function is integrated into

a mixed integer linear program to solve for decisions that maximize current reward plus expected future

reward. In another approach, cost function approximation parameterizations are learned on a state-to-

state basis by a policy gradient method.

We see several avenues for future research leading from our proposed solution methods. We highlighted

that a cost function approximation parameterized based on state information can improve on a globally

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
27

parameterized cost function approximation. Thus, future work may analyze how existing CFAs might

be improved via reinforcement learning. For example, in the ride-hailing problem proposed by Riley,

Van Hentenryck, and Yuan (2020), postponement of customer services is discouraged by artificial penalty

terms. However, in some states, postponement might even be valuable to keep the fleet flexible for future

demand. Thus, state-dependent penalties of the CFA (O) might prove valuable. Furthermore, a CFA (C)

might be developed to prohibit imbalanced distributions of vehicles in the city. As another example, in

Ulmer et al. (2021), artificial penalty terms are integrated to hedge against late deliveries. Here, the pro-

posed concepts might make the penalties state-dependent, e.g., based on the current and expected work-

load of the fleet. In general, there are many globally parameterized approximate dynamic programming

methods that may be extended in a similar way. Obvious examples are policy function approximations, but

also lookahead methods have global parameters such as the depth, width, and level of detail of the looka-

head procedure. Reinforcement learning provides many suitable methods to learn such a state-dependent

parameterization and may be a natural extension of these established methods.

Our findings further indicate that searching the decision space and evaluating decisions with regard to

future uncertainty in an integrated approach yields a powerful decision policy. One drawback of integrat-

ing a VFA directly into the search is the added complexity in the mixed-integer linear program. Future

research may investigate techniques that allow for and improve the integration of more complex and

expressive neural networks into mixed-integer linear programs. If solving mixed-integer linear programs

with standard solvers is too time-consuming, future research may integrate VFAs into metaheuristics and

matheuristics where ideally reinforcement learning does not only evaluate the decisions but also guides

the search.

Acknowledgments
Florentin Hildebrandt’s research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-

dation), project 413322447.Marlin Ulmer’s work is funded by the DFG EmmyNoether Programme, project 444657906.

We gratefully acknowledge their support. Furthermore, the authors acknowledge the North-German Supercomput-

ing Alliance (HLRN) for providing HPC resources that have contributed to the research results reported in this paper.

References
Agatz N, Campbell A, Fleischmann M, Savelsbergh M, 2011 Time slot management in attended home delivery. Trans-

portation Science 45(3):435–449.

Agussurja L, Cheng SF, Lau HC, 2019 A state aggregation approach for stochastic multiperiod last-mile ride-sharing

problems. Transportation Science 53(1):148–166.

Akkerman F, Mes M, van Jaarsveld W, 2022 A comparative analysis of neural networks in anticipatory transportation

planning. Preprint at University of Twente.

28

Anderson R, Huchette J, Ma W, Tjandraatmadja C, Vielma JP, 2020 Strong mixed-integer programming formulations

for trained neural networks. Mathematical Programming 183(1-2):3–39.

Basso R, Kulcsár B, Sanchez-Diaz I, Qu X, 2022 Dynamic stochastic electric vehicle routing with safe reinforcement

learning. Transportation Research Part E: Logistics and Transportation Review 157:102496.

Bent RW, Van Hentenryck P, 2004 Scenario-based planning for partially dynamic vehicle routing with stochastic cus-

tomers. Operations Research 52(6):977–987.

Benyahia I, Potvin JY, 1998 Decision support for vehicle dispatching using genetic programming. IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans 28(3):306–314.

Bergstra J, Bardenet R, Bengio Y, Kégl B, 2011 Algorithms for hyper-parameter optimization. Advances in neural infor-

mation processing systems 24.

Biggs M, Perakis G, 2020 Dynamic routing with tree based value function approximations. Available at SSRN 3680162 .

Branchini RM, Armentano VA, Løkketangen A, 2009 Adaptive granular local search heuristic for a dynamic vehicle

routing problem. Computers & Operations Research 36(11):2955–2968.

Campbell AM, Savelsbergh M, 2006 Incentive schemes for attended home delivery services. Transportation Science

40(3):327–341.

Chen X, Hewitt M, Thomas BW, 2018 An approximate dynamic programming method for the multi-period techni-

cian scheduling problem with experience-based service times and stochastic customers. International Journal of

Production Economics 196:122–134.

Chen X, Ulmer MW, Thomas BW, 2022 Deep q-learning for same-day delivery with vehicles and drones. European

Journal of Operational Research 298(3):939–952.

Chen X, Wang T, Thomas BW, Ulmer MW, 2023 Same-day delivery with fair customer service. European Journal of

Operational Research 308(2):738–751.

Chen ZL, Xu H, 2006 Dynamic column generation for dynamic vehicle routing with time windows. Transportation

Science 40(1):74–88.

Chu PC, Beasley JE, 1998A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4(1):63–

86.

Dayarian I, Savelsbergh M, Clarke JP, 2020 Same-day delivery with drone resupply. Transportation Science 54(1):229–

249.

Delarue A, Anderson R, Tjandraatmadja C, 2020 Reinforcement learning with combinatorial actions: An application to

vehicle routing. Advances in Neural Information Processing Systems 33:609–620.

Fan J, Wang Z, Xie Y, Yang Z, 2020 A theoretical analysis of deep q-learning. Bayen AM, Jadbabaie A, Pappas G,

Parrilo PA, Recht B, Tomlin C, Zeilinger M, eds., Proceedings of the 2nd Conference on Learning for Dynamics

and Control, volume 120 of Proceedings of Machine Learning Research, 486–489 (PMLR).

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
29

Fleckenstein D, Klein R, Steinhardt C, 2023 Recent advances in integrating demand management and vehicle routing:

A methodological review. European Journal of Operational Research 306(2):499–518.

Gendreau M, Guertin F, Potvin JY, Taillard É, 1999 Parallel tabu search for real-time vehicle routing and dispatching.

Transportation Science 33(4):381–390.

Goodson JC, Thomas BW, Ohlmann JW, 2017 A rollout algorithm framework for heuristic solutions to finite-horizon

stochastic dynamic programs. European Journal of Operational Research 258(1):216–229.

Haferkamp J, Ulmer MW, Ehmke JF, 2023 Heatmap-based decision support for repositioning in ride-sharing systems.

Transportation Science URL http://dx.doi.org/https://doi.org/10.1287/trsc.2023.1202.

Heinold A, Meisel F, Ulmer MW, 2022 Primal-dual value function approximation for stochastic dynamic intermodal

transportation with eco-labels. Transportation Science URL http://dx.doi.org/https://doi.org/10.

1287/trsc.2022.1164.

Heitmann RJO, Soeffker N, Ulmer MW, Mattfeld DC, 2023 Combining value function approximation and multiple

scenario approach for the effective management of ride-hailing services. EURO Journal on Transportation and

Logistics 12:100104.

Hildebrandt FD, Thomas BW, Ulmer MW, 2023 Opportunities for reinforcement learning in stochastic dynamic vehicle

routing. Computers & Operations Research 150:106071.

Ichoua S, Gendreau M, Potvin JY, 2000 Diversion issues in real-time vehicle dispatching. Transportation Science

34(4):426–438.

Kullman ND, Cousineau M, Goodson JC, Mendoza JE, 2022 Dynamic ride-hailing with electric vehicles. Transportation

Science 56(3):775–794.

Lei C, Jiang Z, Ouyang Y, 2019 Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully

compliant drivers. Transportation Research Procedia 38:77–97.

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D, 2015 Continuous control with deep

reinforcement learning. arXiv preprint arXiv:1509.02971 .

Ma Y, Hao X, Hao J, Lu J, Liu X, Xialiang T, Yuan M, Li Z, Tang J, Meng Z, 2021 A hierarchical reinforcement learn-

ing based optimization framework for large-scale dynamic pickup and delivery problems. Advances in Neural

Information Processing Systems 34:23609–23620.

Miller J, Nie Y, Liu X, 2020 Hyperpath truck routing in an online freight exchange platform. Transportation Science

54(6):1676–1696.

Mitrović-Minić S, Laporte G, 2004Waiting strategies for the dynamic pickup and delivery problem with time windows.

Transportation Research Part B: Methodological 38(7):635–655.

Papalexopoulos TP, Tjandraatmadja C, Anderson R, Vielma JP, Belanger D, 2022 Constrained discrete black-box opti-

mization using mixed-integer programming. Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S, eds.,

Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine

Learning Research, 17295–17322 (PMLR).

30

Powell WB, 2022 Reinforcement Learning and Stochastic Optimization (Hoboken, NJ: John Wiley & Sons).

Pureza V, Laporte G, 2008 Waiting and buffering strategies for the dynamic pickup and delivery problem with time

windows. INFOR: Information Systems and Operational Research 46(3):165–175.

Riley C, Van Hentenryck P, Yuan E, 2020 Real-time dispatching of large-scale ride-sharing systems: Integrating opti-

mization, machine learning, and model predictive control. arXiv preprint arXiv:2003.10942 .

Rivera AEP, Mes MR, 2017 Anticipatory freight selection in intermodal long-haul round-trips. Transportation Research

Part E: Logistics and Transportation Review 105:176–194.

Secomandi N, 2001 A rollout policy for the vehicle routing problem with stochastic demands. Operations Research

49(5):796–802.

Silva M, Pedroso JP, Viana A, 2023 Deep reinforcement learning for stochastic last-mile delivery with crowdshipping.

EURO Journal on Transportation and Logistics 12:100105.

Soeffker N, Ulmer MW, Mattfeld DC, 2019 Adaptive state space partitioning for dynamic decision processes. Business &

Information Systems Engineering 61:261–275.

Soeffker N, Ulmer MW, Mattfeld DC, 2022 Stochastic dynamic vehicle routing in the light of prescriptive analytics: A

review. European Journal of Operational Research 298(3):801–820.

Sutton RS, Barto AG, 2018 Reinforcement learning: An introduction (MIT press).

Thomas BW, 2007 Waiting strategies for anticipating service requests from known customer locations. Transportation

Science 41(3):319–331.

Ulmer MW, 2020 Dynamic pricing and routing for same-day delivery. Transportation Science 54(4):1016–1033.

UlmerMW, Goodson JC, Mattfeld DC, HennigM, 2019Offline–online approximate dynamic programming for dynamic

vehicle routing with stochastic requests. Transportation Science 53(1):185–202.

Ulmer MW, Mattfeld DC, Köster F, 2018 Budgeting time for dynamic vehicle routing with stochastic customer requests.

Transportation Science 52(1):20–37.

Ulmer MW, Nowak M, Mattfeld D, Kaminski B, 2020 Binary driver-customer familiarity in service routing. European

Journal of Operational Research 286(2):477–493.

Ulmer MW, Soeffker N, Mattfeld DC, 2018 Value function approximation for dynamic multi-period vehicle routing.

European Journal of Operational Research 269(3):883–899.

Ulmer MW, Thomas BW, 2018 Same-day delivery with heterogeneous fleets of drones and vehicles. Networks 72(4):475–

505.

Ulmer MW, Thomas BW, 2020 Meso-parametric value function approximation for dynamic customer acceptances in

delivery routing. European Journal of Operational Research 285(1):183–195.

Ulmer MW, Thomas BW, Campbell AM, Woyak N, 2021 The restaurant meal delivery problem: Dynamic pickup and

delivery with deadlines and random ready times. Transportation Science 55(1):75–100.

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
31

Voccia SA, Campbell AM, Thomas BW, 2019 The same-day delivery problem for online purchases. Transportation Sci-

ence 53(1):167–184.

Waßmuth K, Köhler C, Agatz N, Fleischmann M, 2023 Demand management for attended home delivery–a literature

review. European Journal of Operational Research URL http://dx.doi.org/https://doi.org/10.1016/

j.ejor.2023.01.056.

Xie J, Liu Y, Chen N, 2023 Two-sided deep reinforcement learning for dynamic mobility-on-demand management with

mixed autonomy. Transportation Science URL http://dx.doi.org/https://doi.org/10.1287/trsc.

2022.1188.

Yang J, Jaillet P, Mahmassani H, 2004 Real-time multivehicle truckload pickup and delivery problems. Transportation

Science 38(2):135–148.

Yang X, Strauss AK, 2017 An approximate dynamic programming approach to attended home delivery management.

European Journal of Operational Research 263(3):935–945.

Zehtabian S, Larsen C, Wøhlk S, 2022 Estimation of the arrival time of deliveries by occasional drivers in a crowd-

shipping setting. European Journal of Operational Research 303(2):616–632.

32

Appendix
In the Appendix, we will first provide the proofs of our propositions. We will then present the details of the bench-

mark policies. Finally, we will discuss implementation and training details.

A. Proofs

In this section, we formally prove Proposition (1) and Proposition (2).

Proof of Proposition (1) To prove Π𝐶 = Π𝑉 = Π𝐷, we show that that Π𝐶 ⊂ Π𝐷,Π𝑉 ⊂ Π𝐷 as well as Π𝐷 ⊂ Π𝐶,Π𝐷 ⊂ Π𝑉 .𝚷𝐂 ⊂𝚷𝐃,𝚷𝐕 ⊂ 𝚷𝐃 ∶ By definition, we have Π𝐶,Π𝑉 ⊂ Π𝐷 as these policy classes are deterministic in nature.1𝚷𝐃 ⊂𝚷𝐕 ∶ Let 𝜋 ∈ Π𝐷 be an arbitrary deterministic policy. We define 𝜋′ as𝜋′(𝑆𝑘) = argmax𝑥𝑘∈(𝑆𝑘) 𝑝ᵀ𝑘 𝑥𝑘 + 𝑉̂ (𝑆𝑥𝑘), ∀𝑆𝑘 ∈ 
with 𝑉̂ (𝑆𝑥𝑘) = {𝑀, 𝑥 = 𝜋(𝑆𝑘)0, else.𝜋′ is bounded, piecewise affine and, therefore, we have 𝜋′ ∈ Π𝑉 . By choosing 𝑀 ∈ ℝ sufficiently large, the

maximum is only attained at 𝑥 = 𝜋(𝑆𝑘) as 𝑅𝑘 is bounded by Assumption (1). As there is a unique maximizer, 𝜋′
is well-defined. By construction, we have 𝜋(𝑆𝑘) = 𝜋′(𝑆𝑘), ∀𝑆𝑘 ∈  and it follows 𝜋 ∈ Π𝑉 , and Π𝐷 ⊂ Π𝑉 .𝚷𝐃 ⊂𝚷𝐂 ∶ Let 𝜋 ∈ Π𝐷 be an arbitrary deterministic policy. We define 𝜋′ as𝜋′(𝑆𝑘) = argmax𝑥𝑘∈𝜋MOD-C(𝑆𝑘) 𝑝ᵀ𝑘 𝑥𝑘, ∀𝑆𝑘 ∈ 
with 𝜋MOD-C(𝑆𝑘) = {𝜋(𝑆𝑘)} ⊂ (𝑆𝑘). By construction, we have 𝜋′ ∈ Π𝐶 . Further, 𝜋′ is well-defined as there is a

unique maximizer. Also by construction, we guarantee 𝜋(𝑆𝑘) = 𝜋′(𝑆𝑘), ∀𝑆𝑘 ∈  and, therefore, 𝜋 ∈ Π𝐶 . Thus, we
yield Π𝐷 ⊂ Π𝐶 .

Next, we consider the case that 𝑥 ∈ {0, 1}𝑛, ∀𝑥 ∈ and show that Π𝐷 = Π𝑂 . Showing Π𝑂 ⊂ Π𝐷 follows by definition

of Π𝑉 as we only consider deterministic policies. It remains to be shown that Π𝐷 ⊂ Π𝑂 . Let 𝜋 ∈ Π𝐷 be an arbitrary

deterministic policy. We define 𝜋′ as 𝜋′(𝑆𝑘) = argmax𝑥𝑘∈(𝑆𝑘) 𝜋MOD-O(𝑆𝑘)ᵀ𝑥𝑘, ∀𝑆𝑘 ∈ 
such that 𝜋MOD-O(𝑆𝑘) = 𝑝′𝑘 ∈ ℝ𝑛 with𝑝′𝑘𝑖 = {1, 𝑥𝑘𝑖 = 1, 𝑥𝑘 = 𝜋(𝑆𝑘)−1, 𝑒𝑙𝑠𝑒. , 𝑖 = 1,… , 𝑛. (29)

Again, this yields a unique maximizer given by 𝑥𝑘 = 𝜋(𝑆𝑘). Thus, 𝜋′ is well-defined. By construction, we have 𝜋′ ∈ Π𝑂
and 𝜋′(𝑆𝑘) = 𝜋(𝑆𝑘), ∀𝑆𝑘 ∈  . Therefore, we yield 𝜋 ∈ Π𝑂 and Π𝐷 ⊂ Π𝑂 .

Proof of Proposition (2) To show that 𝜋̄ ∶= lim𝑖→∞ 𝜋𝑖 is optimal, i.e., 𝜋̄ ∈ Π∗, we show that 𝑉 𝜋̄(𝑆) = 𝑉 (𝑆) for all𝑆 ∈  . As {𝑉̂𝑖}𝑖∈ℕ converges uniformly to the optimal value function 𝑉 , we have for every 𝛿 > 0, there exists 𝑁 ∈ ℕ
such that for all 𝑆 ∈  |𝑉 (𝑆) − 𝑉̂𝑛(𝑆)| < 𝛿, ∀𝑛 ≥ 𝑁 . (30)

1 All three policy classes can be extended to allow for stochastic policies. However, this is not the case in our work.

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
33

For all terminal states 𝑆𝐾 ∈  , we have|𝑉 𝜋𝑛 (𝑆𝐾) − 𝑉 (𝑆𝐾)| = | max𝑥∈(𝑆𝐾) 𝑅(𝑆𝐾 , 𝑥) + 𝑉̂𝑛(𝑆𝑥𝐾) − max𝑥∈(𝑆𝐾) 𝑅(𝑆𝐾 , 𝑥)| < | max𝑥∈(𝑆𝐾) 𝑅(𝑆𝐾 , 𝑥) + 𝛿 − max𝑥∈(𝑆𝐾) 𝑅(𝑆𝐾 , 𝑥)| = 𝛿, ∀𝑛 > 𝑁 .
(31)

Under Assumption (1) of a finite number of decision points, we can apply this argument recursively to get|𝑉 𝜋𝑛 (𝑆) − 𝑉 (𝑆)| < 𝐾 ⋅ 𝛿, ∀𝑛 > 𝑁 . (32)

As 𝐾 ∈ℕ is constant and 𝛿 can become arbitrarily small, we get lim𝑛→∞ 𝑉 𝜋𝑛(𝑆) = 𝑉 𝜋̄(𝑆) = 𝑉 (𝑆) for all 𝑆 ∈  . Therefore,
we have 𝜋̄ ∈ Π∗.
B. Benchmark Policies

In this part of the appendix, we detail our benchmark policies.

B.1. VFA with a Decision-Space Decomposition

Directly deriving decisions based on a value function approximation for our given sequential decision problems

is challenging. We cannot evaluate all possible decisions by enumeration as the decision space features complex

constraints and a combinatorial number of decisions. Decomposing an 𝑛-dimensional decision 𝑥𝑘 into a sequence of 𝑛
binary decisions 𝑥(1)𝑘 ,… , 𝑥(𝑛)𝑘 ∈ {0, 1} is one way to surmount this challenge. In such a decision-space decomposition we

sequentially decide for each request presented in a decision point whether to choose it or not. However, it is still not

elementary to check if a binary decision is feasible. In the dCOP and dCOPTW, feasibility can only be guaranteed by

constructing a tour that visits all chosen requests and fulfills the tour-length and time-window constraints. Therefore,

we still must solve a MILP or construct a tour by a dedicated heuristic to ensure feasibility of the binary decision.

After each binary sub-decision 𝑥(𝑖)𝑘 ∈ {0, 1}, the sub-decision state 𝑆(𝑖)𝑘 is updated by removing the request that was

decided on, updating the state information, and proceeding with the next sub-decision 𝑥(𝑖+1)𝑘 until no requests remain.

Finally, the sequence of sub-decisions yields a feasible decision 𝑥𝑘 = (𝑥(1)𝑘 ,…𝑥(𝑛)𝑘) ∈(𝑆𝑘) for the actual decision point𝑆𝑘 .
The binary decisions can be made by any feasible reinforcement learning method. We decide for a value function

approximation due to its long history in stochastic dynamic transportation problems. We take a request if the reward

of the request plus the estimated reward-to-go (estimated by the VFA) of the post-decision state when taking the

request is larger than the estimated reward-to-go of the post-decision state when not taking the request. As we are

revealed multiple requests in each decision step, we first evaluate all the requests, before choosing the request with

the highest reward plus reward-to-go. We repeat this process until it is more profitable to not take any remaining

request or no requests remain.

We highlight the VFA with decision-space decomposition at the example of the dKP. Let 𝑉̂ denote a value function

approximation that maps a post-decision state, given by the current time 𝑡𝑘 and the current knapsack capacity 𝑏𝑘 ,
to its estimated reward-to-go 𝑅̂ ∈ ℝ+. Then, we can solve a decision state 𝑆𝑘 as given in Algorithm 1. The algorithm

does not terminate as long as there is an request 𝑖with 𝑝𝑘𝑖 + 𝑉̂𝜔(𝑡𝑘, 𝑏𝑘 −𝑤𝑘𝑖) ≥ 𝑉̂ (𝑡𝑘, 𝑏𝑘). In each iteration, the algorithm

loops over all remaining requests. Requests that are infeasible are assigned a value of negative infinity. Otherwise,

we save the request’s marginal value 𝛿𝑘𝑖 = 𝑝𝑘𝑖 + 𝑉̂ (𝑡𝑘, 𝑏𝑘 − 𝑤𝑘𝑖) − 𝑉̂ (𝑡𝑘, 𝑏𝑘). Once all requests are evaluated, we choose
the request 𝑖∗ = argmax𝑖 𝛿𝑘𝑖 with the highest marginal value if the corresponding marginal value is non-negative.

34

Algorithm 1 Solving a dKP decision state using a VFA with decision-space decomposition

Require: Value function approximation 𝑉̂ , state 𝑆𝑘 ∶= (𝑡𝑘, 𝑏𝑘,𝑤𝑘, 𝑝𝑘) with 𝑤𝑘 ∈ ℝ𝑛, 𝑝𝑘 ∈ ℝ𝑛.
1: 𝑥𝑘 ← [0]𝑛
2: while True do

3: Define 𝛿𝑘 ∈ ℝ𝑛 according to
4: 𝛿𝑘𝑖 = {−∞, if 𝑏𝑘 −𝑤𝑘𝑖 < 0 or 𝑥𝑘𝑖 = 1𝑝𝑘𝑖 + 𝑉̂ (𝑡𝑘, 𝑏𝑘 −𝑤𝑘𝑖) − 𝑉̂ (𝑡𝑘, 𝑏𝑘), otherwise
5: if max𝛿𝑘 > 0 then
6: 𝑥𝑘𝑖∗ = 1 with 𝑖∗ = argmax𝛿𝑘
7: 𝑏𝑘 ← 𝑏𝑘 −𝑤𝑘𝑖∗
8: else

9: return 𝑥𝑘
Otherwise, we terminate the algorithm. If the marginal value is positive, we update 𝑥𝑘𝑖∗ = 1, we update the remaining

capacity 𝑏𝑘 ← 𝑏𝑘 −𝑤𝑘𝑖∗ , and remove the request from the list of requests. Algorithm 1 requires a trained VFA 𝑉̂𝜔. We

train the VFA in standard fashion by generating observation-reward tuples during a simulation and saving them in

an experience replay. After each simulation we sample random training batches from the experience replay to update

the VFA’s trainable weights 𝜔. We detail this procedure in the following. Whenever we perform an iteration 𝑚 in

Algorithm 1, we return an updated post-decision state 𝑆(𝑚)𝑘 ∶= (𝑏𝑘, 𝑡𝑘) and the reward 𝑅(𝑚)𝑘 = 𝑝𝑘𝑖∗ . Thus, by simulating

the entire sequential decision process we obtain a trajectory of length 𝑛 ⋅ 𝐾 and of the form(𝑆(1)1 , 𝑥(1)1 , 𝑅(1)1),… , (𝑆(𝑛)𝐾 , 𝑥(𝑛)𝐾 , 𝑅(𝑛)𝐾).
At the end of one simulation, we calculate the reward-to-go 𝑅̄(𝑚)𝑘 ∶= ∑𝐾𝑖=𝑘 ∑𝑛𝑗=𝑚+1 𝑅(𝑗)𝑖 for each observation 𝑆(𝑚)𝑘 and

add the tuples to the experience replay. Then, we sample from the experience replay and update the VFA’s weights𝜔 according to 𝜔←𝜔+𝛼 ⋅ ∇𝜔 1𝐵 𝐵∑𝑖=1 [𝑉̂𝜔(𝑆𝑖) − 𝑅𝑖]2, (33)

where (𝑆𝑖, 𝑅𝑖), 𝑖 = 1, ..., 𝐵 are the sampled experiences.

The observations and rewards-to-go are obtained off-policy, i.e., by following an 𝜖-greedy policy. In each decision

state, the 𝜖-greedy policy either takes a random feasible decision with probability 𝜖 or by constructing a decision

according to Algorithm 1. Further, we choose a linear decay strategy for 𝜖
𝜖(ℎ) =max(0, 0.5 ⋅ 𝐻 − ℎ0.5 ⋅ 𝐻).

Here, 𝐻 denotes the number of training simulations to perform. Our VFA (Decomp.) method operates on post-

decision states. Therefore, input information is already strongly aggregated and a small network architecture suffices.

Thus, we use a feed-forward neural network with ReLU activation and a hidden layer of size 16 for the VFA.

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
35

B.2. Policy Function Approximation

Our policy function approximation (PFA) is inspired by Dantzig’s famous Knapsack heuristic. It emulates a simple

rule-of-thumb onwhen to accept a request. The PFA iterates over each presented request (sorted by value-to-resource

margin) in a state and selects the current request if (i) it is feasible and (ii) its value-to-resource margin is sufficiently

high. In the case of the dKP, the decision rule on the value-to-resource margin is defined as𝑝𝑘𝑖 −𝑤𝑘𝑖 ≥ 𝛼, (34)

where 𝛼 ∈ ℝ is a threshold hyperparameter to be fitted. In the dCOP and dCOPTW, we further require the additional

route length 𝛿tour when taking an request to be below a fitted threshold hyperparameter. Thus, we take a request if𝑝𝑘𝑖 −𝑤𝑘𝑖≥ 𝛼, (35a)𝛿tour ≤ 𝛽, (35b)

hold true, where 𝛼, 𝛽 ∈ ℝ are threshold hyperparameters to be fitted. For all instances, the threshold hyperparameters

are fitted by a tree-structured Parzen estimator approach optimizing expected improvement Bergstra et al. (2011).

We perform 200 hyperparameter search trials of 100 test instances each, amounting to a total of 20,000 training

instances.

B.3. Cost Function Approximation

Our cost function approximation (CFA) constraints the knapsack capacity available in each decision step and the

maximum tour length that is allowed in each decision step (in the case of the dCOP and dCOPTW). The knapsack

capacity 𝑏𝑘 is modified according to 𝑏′𝑘 = 𝑏𝑘 ⋅ 𝛼 (36)

with 𝛼 ∈ (0, 1] to ensure that the updated capacity is lesser equal than the true capacity but remains positive. In the

case of dCOP and dCOPTW, we additionally modify the maximal route length 𝐿 by𝐿′ = 𝐿 ⋅ 𝛽 + 𝐿𝑘−1 ⋅ (1 − 𝛽) (37)

with 𝛽 ∈ (0, 1] to ensure that the previous route with length 𝐿𝑘−1 is still feasible. Again, we choose a tree-structured
Parzen estimator approach optimizing expected improvement to fit 𝛼, 𝛽 ∈ (0, 1] for all instances. We perform 200

hyperparameter search trials of 100 test instances each, amounting to a total of 20,000 training instances.

B.4. Static Optimization

Treating each decision state isolated, i.e., without consideration of future uncertainty and dynamism, yields a static

optimization policy. This policy maximizes the immediate reward in each decision state while ignoring the reward-

to-go. The corresponding decision is obtained by solving the combinatorial decision problem given in each decision

state to optimality. The static optimization policy serves as a benchmark policy in our experimental study.

C. Implementation and Training Details

In this section, we lay out the implementations details and training procedures of our VFA (MILP) and RL-CFA

policies.

36

Algorithm 2 Fitting the VFA

Require: VFA 𝑉̂𝜔, learning rate 𝛼(ℎ), exploration rate 𝜖(ℎ), total epochs 𝐻,batch size 𝐵
1: ER← { }
2: for ℎ = 1,… ,𝐻 do

3: 𝑆1 ∼ 

4: for 𝑘 = 1, ..., 𝐾 do

5: if 𝑧 < 𝜖(ℎ), 𝑧 ∼ 𝑈(0, 1) then
6: 𝑆𝑥𝑘 , 𝑅𝑘 ← RandomFeasibleDecision(𝑆𝑘)
7: else

8: 𝑆𝑥𝑘 , 𝑅𝑘 ← Solve Eq. (16)

9: 𝑆𝑘+1 ← 𝑆𝑀(𝑆𝑥𝑘)
10: 𝑅̄𝑘 =∑𝐾𝑖=𝑘+1 𝑅𝑖, ∀𝑘 = 1,… ,𝐾
11: ER← ER ∪ {(𝑆𝑥1 , 𝑅̄1),… , (𝑆𝑥𝐾 , 𝑅̄𝐾)}
12: Sample (𝑆𝑥𝜄(1), 𝑅̄𝜄(1)),… , (𝑆𝑥𝜄(𝐵), 𝑅̄𝜄(𝐵)) ∼ ER

13: Update 𝜔←𝜔+𝛼(ℎ) ⋅ 1𝐵∇𝜔∑𝐵𝑖=1[𝑉̂𝜔(𝑆𝑥𝜄(𝑖)) − 𝑅̄𝜄(𝑖)]2
14: return 𝜔
C.1. VFA (MILP)

The success of integrating a VFA into the objective function of the MILP depends strongly on the prediction quality

of the neural network. We train the value function approximation 𝑉̂𝜔 off-policy by following an 𝜖-greedy policy. We

summarize how we fit the value function approximation in Algorithm 2. The procedure uses an experience replay

(ER) to save tuples of post-decision states and observed rewards-to-go to sample training batches from. The ER is

filled by iteratively simulating a random instance of the given sequential decision process starting at a random root

state 𝑆1. In each decision state, the 𝜖-greedy policy either takes a random feasible decision with probability 𝜖(𝑛),
with 𝜖(𝑛) → 0 for 𝑛→𝑁 , or by solving the MILP extended by the VFA given by Problem (16). After each instance is

simulated, we collect the visited post-decision states and observed rewards-to-go, fill our experience replay, and fit

the VFA on a random batch of previously observed post-decision-states and rewards-to-go.

Again, as our VFA (MILP) method operates on post-decision states a small network architecture suffices. Thus, we

use a feed-forward neural network with ReLU activation and a hidden layer of size 16. We further choose the same

linear decay strategy for 𝜖 𝜖(𝑠) = max(0, 0.5 ⋅ 𝑆 − 𝑠0.5 ⋅ 𝑆)
and learning rates are constant (𝛼 = 0.001).
C.2. Training of the RL-CFA methods

The update procedure for the RL-CFA policies is given in Algorithm 3. The algorithm is summarized as follows:

Hildebrandt et al.: Reinforcement Learning for Stochastic Dynamic Transportation Problems
37

Algorithm 3 RL-CFA Algorithm

Require: 𝑄𝜔, 𝜋MOD𝜃 learning rate 𝛼(ℎ),
noise process 𝜂(𝑠), number of training epochs 𝑆, batch size 𝐵

1: ER← []
2: for ℎ = 1,… ,𝐻 do

3: 𝑆1 ∼ 

4: for 𝑘 = 1, ..., 𝐾 do

5: 𝑥MOD𝑘 = 𝜋MOD𝜃 (𝑆𝑘) + 𝜂(ℎ)
6: 𝑆𝑥𝑘 , 𝑅𝑘 ←MILP(𝑆𝑘, 𝑥MOD𝑘)
7: 𝑆𝑘+1 ← 𝑆𝑀(𝑆𝑥𝑘)
8: for k=1,. . . ,K do

9: 𝑅̄𝑘 =∑𝐾𝑖=𝑘+1 𝑅𝑖
10: ER← ER ∪ (𝑆𝑘, 𝑥MOD𝑘 , 𝑅̄𝑘)
11: Sample (𝑆𝜄(1), 𝑥MOD𝜄(1) , 𝑅̄𝜄(1)),… , (𝑆𝜄(𝐵), 𝑥MOD𝜄(𝐵) , 𝑅̄𝜄(𝐵)) ∼ ER

12: Update 𝜔←𝜔+𝛼(ℎ) ⋅ ∇𝜔∑𝐵𝑖=1[𝑄𝜔(𝑆𝜄(𝑖), 𝑥MOD𝜄(𝑖)) − 𝑅̄𝜄(𝑖)]2
13: Update 𝜃 ← 𝜃 +𝛼(ℎ) ⋅ 1𝐵 ∑𝐵𝑖=1 ∇𝑥𝑄𝜔(𝑆𝜄(𝑖), 𝑥)∇𝜃𝜋MOD𝜃 (𝑆𝜄(𝑖))||𝑥=𝜋MOD𝜃 (𝑆𝜄(𝑖))
14: return 𝜔
When simulating an instance, we obtain the trajectory(𝑆1, 𝑥MOD1 , 𝑅1), (𝑆2, 𝑥MOD2 , 𝑅2),… .
We transform the reward to 𝑅̄𝑖 = ∑𝐾𝑗=𝑖 𝑅𝑗 . Again, we save the samples with the modified reward in an experience

replay. At the end of each trajectory, we sample 𝐵 tuples from the experience replay and update 𝑄𝜔 according to

𝜔←𝜔+𝛼 ⋅ ∇𝜔 1𝐵 𝐵∑𝑖=1 [𝑄𝜔(𝑆𝑖, 𝑥MOD𝑖) − 𝑅̄𝑖]2. (38)

Then we sample another batch of 𝐵 experiences and update 𝜋MOD𝜃 according to

𝜃 ← 𝜃 +𝛼 ⋅ 1𝐵 𝐵∑𝑖=1 ∇𝑥𝑄𝜔(𝑆𝑖, 𝑥)∇𝜃𝜋MOD𝜃 (𝑆𝑖)||𝑥=𝜋MOD𝜃 (𝑆𝑖). (39)

To ensure exploration during training, we add noise to each decision:𝑥MOD𝑖 = 𝜋MOD𝜃 (𝑆𝑖) + 𝜂(ℎ). (40)

In the case of the dKP, we use Gaussian noise in the form of 𝜂(ℎ) ∼ (0, 𝜎(ℎ)). Here, we choose to decay 𝜎(ℎ) linearly
according to 𝜎(ℎ) =max(0, 0.25 ⋅ 𝐻 − ℎ0.25 ⋅ 𝐻).

38

In the case of the dCOP and dCOPTW, we explore more aggressively (in our preliminary experiments Gaussian noise

did not yield good results) and employ Ornstein-Uhlenbeck noise. The noise 𝜂 is given by𝜂(ℎ, 𝑡) ∶= 𝑥𝑡 ⋅ 𝜇(ℎ),
with 𝜇(ℎ) being a scaling factor 𝜇(ℎ) ∶=max(0, 0.75 ⋅ 𝐻 − ℎ0.75 ⋅ 𝐻)
and 𝑥𝑡 being a realization of the Ornstein-Uhlenbeck process defined by𝑥𝑡 = 𝑥0 exp (−𝛼𝑡) + 𝛾(1 − exp (−𝛼𝑡)) + 𝛽 exp (−𝛼𝑡)∫ 𝑡

0 exp (𝛼𝑝)𝑑𝑊𝑝,
where 𝑊𝑡 is some Brownian-motion, 𝛾 is the asymptotic mean, 𝛼 denotes the mean-reversion rate, and 𝛽 controls

the random shocks of the process.

Finally, we choose the network architectures as follows. The RL-CFA methods operate on states, i.e., they are fed

high-dimensional information. Thus, we choose a larger feed-forward neural network with ReLU activation and two

hidden layers of size 128 for actor and critic of both RL-CFA methods. The actor network when manipulating 𝑝
has a tangens hyperbolicus activation in the output layer and the actor network when manipulating 𝑏 has a sigmoid

activation in the output layer to conform with the manipulation decision spaces.

Otto von Guericke University Magdeburg
Faculty of Economics and Management
P.O. Box 4120 | 39016 Magdeburg | Germany

Tel.: +49 (0) 3 91 / 67-1 85 84
Fax: +49 (0) 3 91 / 67-1 21 20

www.ww.uni-magdeburg.dewww.fww.ovgu.de/femm

ISSN 1615-4274

