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1 IntroducƟon 
 
Planning stability or its counterpart, planning nervousness, is a challenging 
issue for many companies as well as for scienƟsts who try to analyze and 
explain this phenomenon. It was, however, not just this topic that stood at 
the beginning of the collaboraƟon between Ton de Kok and me. We both 
spent some Ɵme of pracƟcal work with a company before we started our 
university careers. In pracƟce, we both were confronted with challenging 
problems from the field of supply chain planning which we made to a 
central subject of our scienƟfic work aŌer switching to academia. This 
common interest in supply chain opƟmizaƟon brought us together, and it 
is this area where one of our two joint papers (Inderfurth et al. (2001)) 
refers to. 
   
The other publicaƟon (De Kok and Inderfurth (1997)) belongs to a different 
field and considers the issue that this paper is dedicated to, namely the 
analysis of nervousness in planning systems. The problem is old, but 
research in this area for a long Ɵme was only descripƟve or simulaƟon-
based. This changed in the middle 1990s when the first analyƟcal 
invesƟgaƟon was published in Inderfurth (1994). In this context, I was 
happy that I could draw Ton’s aƩenƟon to this research topic so that a 
collaboraƟon started in which I could profit a lot from Ton’s enormous 
analyƟc experƟse. StarƟng with this joint research, the present paper 
presents an overview of the outcome of the analyƟcal research 
contribuƟons on the topic of planning stability. It describes the advantages 
of gaining analyƟcal insights, but also the technical difficulƟes of this 
research approach which might have deterred many researchers from 
trying to analyze planning stability in this way. A maƩer of nervousness in 
tackling hard problems? 
 

 
1 This paper is a contribuƟon to a Liber Amicorum for Prof. Dr. Ton de Kok from the Eindhoven of Technology 
2 Prof. Dr. Karl Inderfurth, OƩo-von-Guericke-Universität Magdeburg, karl.inderfurth@ovgu.de 
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2 Planning Stability Research 

 
Research in the area of planning stability mainly concentrates on the field 
of producƟon and materials planning. Standard planning systems like MRP 
are generally operaƟng in a rolling horizon framework where aŌer each 
period a replanning takes place according to updated informaƟon. 
Updates, in general, stem from a prolongaƟon of the planning horizon and 
from forecast errors and new demand esƟmates. Thus, changes in the 
quanƟty or Ɵming of planned orders are generated which create system 
nervousness. Planning stability research focusses on how MRP rules and 
policies affect the size of planning instability. In pracƟce, different types of 
Period Order QuanƟty (POQ) or Fixed Order QuanƟty (FOQ) lotsizing are 
used in an MRP context. Under demand uncertainty these lotsizing policies 
are equivalent to employing stochasƟc inventory control rules of the 
(s,nQ), (s,S), or (R,S) type (see Lagodimos and Anderson (1993)). Therefore, 
much research concerning planning nervousness refers to the impact of 
these rules and their parameters.  
 
Usually, in the field of producƟon and inventory planning the economic 
effect of different control rules is measured in terms of operaƟng cost. In 
many cases, however, a pure cost-oriented valuaƟon of effects is not 
sufficient so that an addiƟonal measure is needed. This is well-known for 
the objecƟve of reaching a high service degree. If cost of material 
shortages can hardly be esƟmated, a service level is used as an addiƟonal 
criterion to assess the performance of a planning system. Next to service 
deficiencies, frequent replanning acƟviƟes can harm the efficiency of 
planning procedures. In general, the impact of planning nervousness is 
much harder to value in terms of costs than the service impact. So, the 
level of planning stability can be viewed as the third aƩribute that, next to 
cost and service level, is a relevant performance criterion of a planning 
system. Accordingly, almost all scienƟfic contribuƟons in the field address 
the influence of ordering rules on the stability level isolated from cost 
consideraƟons.       
 
The majority of research papers which invesƟgate the impact of control 
rules on system nervousness is based on simulaƟon methods. This starts 
with a first study by Blackburn et al. (1986) and conƟnues to recent papers 



3 
 

like those by Atadeniz and Sridharan (2020) and Sáez et al. (2023). Many 
of these papers consider the impact of different standard planning 
procedures, others are dedicated to the analysis of specific planning tools 
which are designed for dampening planning instability. SimulaƟon-based 
studies can cope with complex planning situaƟons met in mulƟ-product, 
mulƟ-stage producƟon systems or with different kinds of stochasƟc inputs 
and non-staƟonariƟes. These research contribuƟons also allow for an 
analysis of the impact of various dampening methods on planning 
nervousness. They, however, are bound to a specific planning environment 
and do not allow for deeper and general insights into the interrelaƟonship 
between specific control rules and the degree of planning instability 
generated by them. AddiƟonally, these approaches typically use problem-
specific measures for the size of planning nervousness which cannot be 
generalized. Thus, a comparison of the nervousness level under different 
planning scenarios is not possible. 

To overcome the shortcomings of these simulaƟon-based procedures 
analyƟcal approaches have been developed. For sake of mathemaƟcal 
tractability, they mainly are restricted to planning problems with a single-
item, single-stage environment and to the applicaƟon of basic inventory 
control rules. Despite these limitaƟons they provide important insights 
into the creaƟon of nervousness. These analyƟcal approaches and their 
general findings will be described in the sequel. 

 

3 AnalyƟcal Approaches 

In all analyƟcal approaches under consideraƟon the main inventory control 
rules, namely the (s,nQ), (s,S), and (R,S) rule, are invesƟgated under 
stochasƟc demand condiƟons. Completely different from standard 
stochasƟc inventory research which aims to find opƟmal control 
parameters for a single planning instance, nervousness research analyzes 
steady state condiƟons of two consecuƟve planning runs and compares 
ordering decisions for the same planning periods in these runs. By this way 
it is possible to develop closed-form formulas which describe how the level 
of planning nervousness in form of order deviaƟons depends on the choice 
of the specific control rule and its parameters.  

In order to invesƟgate the interdependence of consecuƟve planning 
instances analyƟcally, usually some restricƟons concerning the planning 
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situaƟon must be accepted. Only single-stage staƟonary inventory systems 
with stochasƟc demand and an infinite planning horizon are considered. 
The demand per period is assumed to be a staƟonary and independent 
random variable. The demand’s expected value is used as (constant) 
demand forecast (denoted by D) for each planning period of a cycle. Thus, 
order changes for the same period from cycle to cycle are generated by 
deviaƟons of the actual demand in the first period from its forecast the 
period before.    

In the literature, we only find a very limited number of contribuƟons which 
are dedicated to the described type of analysis. Chronologically, these are 
Inderfurth (1994), De Kok and Inderfurth (1997), Heisig (1998), Heisig and 
Fleischmann (2001), and Heisig (2002). These approaches differ with 
respect to the types of order deviaƟons and number of compared planning 
periods they consider. Depending on the pracƟcal relevance of order 
changes for planning stability, it can be the pure deviaƟon in order quanƟty 
from one planning run to the next that maƩers or, alternaƟvely, the fact 
that irrespecƟve of the quanƟty the setup characterisƟc of orders is 
changing. Accordingly, we differenƟate the types of quanƟty-oriented and 
setup-oriented planning stability. In a temporal respect, only order 
deviaƟons concerning the first period of a planning horizon might be 
relevant in pracƟce so that it is short-term stability of orders that maƩers. 
If mulƟple periods play a role in the valuaƟon and measurement of order 
deviaƟons we refer to long-term stability.  

Thus, in combinaƟon we end up with four types of stability cases which 
reflect the major aspects of nervousness in pracƟcal problems. For the 
sake of comparability of nervousness levels under different problem data 
and under different control rules, addiƟonally a normalizaƟon of the 
nervousness metric is needed. This aspect is first discussed in Jensen 
(1993) where a normalized measure is defined in which the size of order 
deviaƟons under concern is divided by the respecƟve maximum deviaƟon 
that can occur. In that way, all of the four stability measures introduced 
above are normalized such that they can only take on numerical values 
between 0 (minimum stability) and 1 (maximum stability). This is very 
similar to the normalizaƟon of service measures in inventory control where 
respecƟve service levels (of different types) are limited to an interval 
between 0 and 1. Concerning these planning stability measures, the five 
literature contribuƟons with analyƟcal stability research present deep 
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insights into the planning stability characterisƟcs of the three control rules 
under consideraƟon.  

    

 

4 Findings  
 
4.1 Overall Findings 

 
The first finding refers to the impact of the specific control rule parameter 
which is mainly responsible for the service level that a rule provides. This 
is the reorder point s for the (s,nQ) and the (s,S) rule, and the reorder level 
S for the (R,S) rule. It turns out that these rule parameters have no impact 
on planning nervousness at all. This holds for both short-term and long-
term planning stability instances. This property can easily be evaluated. It 
is due to the fact that the respecƟve control parameters in steady state do 
not influence the sequence and size of order decisions. They only 
determine the basic inventory level of the producƟon system. Thus, as a 
general finding we can secure that opƟmizing customer service and 
planning stability are no conflicƟng goals in this planning context.  
With respect to the impact of the other control rule parameters, we must 
consider the specific rules and differ between short-term and long-term 
stability.  
 
 
4.2 Short-term Stability 
 
When applying an (s,nQ) policy, planning nervousness is only affected by 
the size of the standard lotsize Q. In De Kok and Inderfurth (1997) it is 
shown how the level of planning stability π depends on the choice of 
parameter Q. A closed-form soluƟon for the so-called stability funcƟon 
π(Q) is derived which can be exploited both analyƟcally and numerically.  
 
StarƟng with the results for setup-oriented stability, it turns out that this 
measure approaches 100% when the lotsize tends to be very small (Q→0) 
or very large (Q→∞). This result is intuiƟve. For Q→0 the (s,nQ) policy 
turns into a simple order-up-to-s policy which results in a planned and 
executed setup in each period of any planning cycle. On the other hand, 
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also for Q→∞ more and more planned and executed orders within a cycle 
become equal because of an increasing number of periods without any 
setup. Inside these boundaries, π(Q) reacts such that the planning stability 
is quickly decreasing when Q increases unƟl π reaches a minimum level in 
the region D≤Q≤2⋅D Thus, the size of the lotsize/demand raƟo is 
responsible for the instance of maximum planning nervousness. When Q 
rises further on, planning stability π increases again. The detailed shape of 
this unimodal stability funcƟon as well as the locaƟon of its minimum and 
the respecƟve stability level depend on the properƟes of the stochasƟc 
demand distribuƟon. If a very general distribuƟon funcƟon in form of a 
mixture of two Erlang distribuƟons is chosen, the values of π(Q) can be 
determined numerically for various parameters of the demand 
distribuƟon. A respecƟve invesƟgaƟon in De Kok and Inderfurth (1997) 
shows that – as can be expected – the demand variance has a significant 
impact on the course of π(Q). It appears that for all values of Q the level of 
nervousness increases if demand variability rises. To get an idea of the 
numerical value of the stability measure, the π value will be reported for 
the specific lotsize Q which triggers minimum planning stability. In this 
case, the size of the stability level goes down to 57% if the squared 
coefficient of demand variaƟon (CV) is very high (CV=2.0) and reaches 87% 
for low variaƟon (CV=0.25).  
 
The respecƟve property of the stability funcƟon π(Q) is very different if we 
consider quanƟty-oriented planning stability. When deviaƟons in the 
complete order quanƟty maƩer, a 100% stability cannot be reached under 
random demand. Surprisingly, however, this type of stability does not 
change with a variaƟon of lotsize Q. The stability level only depends on the 
properƟes of the demand distribuƟon and, specifically, on the demand 
variability. With respect to the CV impact, its size is close to the values 
reported above for the minimum level for setup-oriented stability. The 
main finding from this analysis is that quanƟty-oriented stability cannot be 
controlled by parameter choice under an (s,nQ) policy.  
 
When an (s,S) rule is applied, an analogous analysis of ordering-related 
nervousness can be performed. Here, we find closed-form expressions for 
a stability funcƟon π(QM) which describes how stability measure π 
depends on minimum lotsize QM (with QM =S-s). So, under the (s,S) rule 
the lotsize parameter is defined by the spread between reorder level and 
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reorder point. For setup-oriented stability the same property of 100% 
stability holds for the lotsize limits QM→0 and QM →∞ like under the (s,nQ) 
policy.  Concerning the complete course of stability funcƟon π(QM), a 
different picture emerges. StarƟng from the 100% level at QM→0, stability 
π sharply declines with increasing QM and reaches its minimum value 
exactly at QM =D. A further rise of QM results in an upward jump of stability 
π followed by a monotone increase. Thus, as a specific property of the 
stability funcƟon for an (s,S) policy we find that a disconƟnuity appears at 
a lotsize level which equals the demand forecast. At this order size, which 
represents a lot-for-lot policy we face minimum planning stability with 
values of only 45% for demand variability CD=2.0 and 61% for CD=0.25.    

 
When we turn to quanƟty-oriented stability, we find that the stability 
funcƟon in the case of an (s,S) policy shows a behavior  that is very 
different from the one under an (s,nQ) rule. Only for the lotsize limits 
QM=Q→0 and QM=Q→∞ the stability values for both control rules coincide. 
Under an (s,S) policy, however, the stability level π does not remain 
constant for varying lotsize choices. Instead, stability always undershoots 
the (s,nQ) level. The respecƟve stability funcƟon has properƟes similar to 
those in the case of setup-oriented stability. That means that we find a 
disconƟnuity at the lotsize level QM=D which also characterizes the 
locaƟon of minimum planning stability. 
 
Different from the situaƟon under reorder-point control rules, the analysis 
of planning stability under an (R,S) policy turns out to be quite simple. 
Because the replenishment cycle has a fixed length of R periods, every 
cycle starts with an order-up-to-S decision followed by R-1 periods of zero 
setups. This holds for the same periods in consecuƟve planning runs. Thus, 
the sequence of respecƟve setups is idenƟcal, resulƟng in a 100% setup-
oriented planning stability (given that zero demand cannot occur with 
posiƟve probability). With respect to quanƟty-oriented stability it is 
obvious that in the first period of a cycle a deviaƟon between planned and 
executed order will emerge. On average this difference amounts to the 
mean absolute deviaƟon of demand from its expectaƟon (=forecast). For 
R=1 the (R,S) policy simplifies to an ordinary order-up-to-S rule just like we 
found for the reorder-point policies in the case of QM=Q→0. So the 
quanƟty-oriented stability level in this special (R,S) case is below 100% and 
is idenƟcal to respecƟve value for the (s,nQ) and (s,S) policy with QM=Q→0. 
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For larger reorder cycles (R>1) the planning stability increases due to more 
and more idenƟcal non-setup periods and approaches 100% for R→∞.  
 
A comparison of the three control policies shows that with respect to 
planning stability the periodic (R,S) rule is always superior to the reorder-
point policies. Referring to the stability properƟes of (s,nQ) and (s,S) rule, 
a clear dominance does not exist. If we compare the stability results for 
varying lotsize parameters Q=QM we can observe that the setup-oriented 
stability is higher for the (s,nQ) policy if Q=QM≤D, but higher for the (s,S) 
policy if Q=QM>2⋅D. In between this lot parameter interval, the relaƟve 
superiority depends on the variability level of demand. When we consider 
quanƟty-oriented stability, analyƟcal results for a direct comparison are 
only available for the range Q=QM≤D. Here it turns out that, like for the 
setup-oriented measure, the (s,nQ) policy guarantees a higher planning 
stability than the (s,S) rule. From numerical invesƟgaƟons there is some 
evidence that this superiority of the (s,nQ) rule holds for the complete 
domain of lotsize values.     
 
  
4.3 Long-term Stability 
 
Long-term planning stability refers to a situaƟon where order deviaƟons 
over mulƟple periods of a planning horizon play a significant role in the 
context of nervousness. In this case, an appropriate measure of planning 
stability must include addiƟonal informaƟon. First, the number of planning 
periods has to be determined for which deviaƟons are of relevance. Here, 
this number will be introduced as stability horizon, denoted by T. Second, 
it must be considered how order deviaƟons in different periods should be 
weighted for an overall stability metric. Subsequently, it is assumed that 
all periods are weighted equally.  
 In De Kok and Inderfurth (1997) it can be found that the analyƟcal 
derivaƟon of the stability funcƟons for the short-term stability case needs 
a huge amount of cumbersome algebra. In the long-term stability context, 
complete sequences of T orders have to be compared and analyzed with 
respect to their deviaƟons. Under these condiƟons the analysis and 
derivaƟon of closed-form stability funcƟons is even a lot harder, mainly 
because a high number of cases must be analyzed in parallel. This holds 
for the invesƟgaƟon of the (s,nQ) and (s,S) policy. The (R,S) policy, in 
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contrast, is easy to analyze because the situaƟon is essenƟally the same as 
under short-term stability consideraƟons. So, in principle, the short-term 
stability funcƟon π(R) carries over to the long-term treatment under an 
(R,S) rule. 
 
Literature contribuƟons which succeed in transferring the complex 
mathemaƟcal analysis for short-term stability to the even more complex 
long-term case are given in Heisig (1998) and Heisig (2002). There, closed-
form soluƟons are presented for the stability funcƟons of the (s,nQ) and 
(s,S) policy in the case of setup-oriented planning stability. For the 
invesƟgaƟon of quanƟty-oriented stability, however, no corresponding 
analysis has been performed so far.  
 
Concerning setup-oriented stability, some results from the short-term 
stability analysis carry over to the long-term case. This, e.g., holds for the 
100% stability property if the lotsize parameters Q and QM approach zero 
or infinity. We also find that with increasing value of Q under an (s,nQ) 
policy the stability metric decreases unƟl it reaches a minimum value in 
the range of D≤Q≤2⋅D and rises monotonously with further increase of Q.    
For T=1 the minimum level of stability has (by definiƟon) the same value 
as in the short-term case and decreases slightly as the stability horizon T 
increases. For a large horizon and high demand variability the level of 
planning stability can go down to only 40%.  
 
When we consider the stability properƟes of an (s,S) rule under long-term 
condiƟons, numerical invesƟgaƟons reveal some major differences to the 
short-term case. First, the stability funcƟon π(QM) contains mulƟple points 
of disconƟnuity at which the stability level performs considerable jumps. 
Second, the course of the stability funcƟon between these jumps is not 
monotonous. However, aŌer T jumps things change, and the stability is 
steadily rising with increasing lotsize parameter QM. Third, the point of 
minimum stability is not necessarily located at a lotsize value of QM=D but 
can also switch to QM=2⋅D as stability horizon T increases. The level of 
minimum stability is somewhat lower than for the (s,nQ) policy, but 
different from this policy it can also rise with increasing T. Generally, a 
global comparison over the whole range of lotsize values reveals that both 
control policies perform similarly with respect to planning stability.   
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In Heisig (2002) the formulas for the long-term stability funcƟons are 
exploited to gain insights into addiƟonal aspects. So, the impact of 
different weighƟng schemes for the periods of the stability horizon is 
invesƟgated. Also, the influence of forecast errors, i.e. deviaƟons of the 
forecasted demand from its expected value, is checked. In Heisig and 
Fleischmann (2001) and Heisig (2002) it is demonstrated that the steady-
state technique for analyzing planning stability can be transferred to an 
(s,S) control policy which is applied to a product remanufacturing context 
where addiƟonally stochasƟc inflows of recoverable products are 
included.  
 
 
4.4 Managerial Insights 
 
The analyƟcal stability research reported in this paper provides very useful 
insights for managing producƟon and materials planning decisions when 
nervousness in the planning process plays a significant role. Next to cost 
and service aspects, relevant decision rules as they are given by the basic 
control policies of (s,nQ), (s,S), and (R,S) type can affect the level of 
planning stability to a very different extent. This holds for all types of 
stability measurement (short/long-term as well as setup/quanƟty-
oriented). Summarizing, from the above research contribuƟons six 
important managerial insights can be deduced.  
 
1. Planning stability is only affected by the lotsize-specific policy 

parameter of the respecƟve control rules. This means that the 
parameter choice concerning service level aspects is not relevant for 
planning stability consideraƟons. 

2. With respect to the stability objecƟve, the periodic (R,S) order policy is 
superior to the two reorder-point policies of (s,nQ) and (s,S) type. This 
suggests that the (R,S) rule should be preferred as long as other aspects 
like its missing flexibility and its limited cost effecƟveness do not argue 
against. 

3. If quanƟty-oriented stability is relevant within the planning process, the 
(s,nQ) policy is superior to the (s,S) rule if short-term stability is 
considered. Since the stability level is constant for each Q value, the 
parameter choice for the (s,nQ) policy can be made independent of 
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planning nervousness aspects in this case. Unfortunately, due to 
missing research contribuƟons this result cannot be confirmed in the 
long-term stability context. 

4. In situaƟons where setup-oriented stability is relevant, there does not 
exist a general superiority of (s,nQ) or (s,S) rule to the other. Depending 
on the choice of the lotsize parameters (Q and QM), one policy can 
perform beƩer than the other, but the differences are not serious. In 
general, the (s,nQ) rule with its standard lotsize may be more aƩracƟve 
from a logisƟcal and organizaƟonal point of view.  

5. When applying an (s,nQ) or (s,S) policy, from a planning stability point 
of view the respecƟve lotsize parameter should be chosen carefully. 
The above analysis reveals that a parameter choice in the range 
between once and twice the demand forecast value can lead to 
considerably low stability levels. So, these lotsize values should be 
avoided unless they are specifically aƩracƟve for cost reasons.  

6. The level of planning stability highly depends on the variance of the 
random demand. Concerning the minimum stability level, unfavorable 
lotsize choice can lead to a stability level below 50% if demand 
variability is very high. This means that on average order deviaƟons can 
be so large that more than 50% of worst-case differences can prevail. 
This holds for both setup and quanƟty deviaƟons.     

 
 

5 Challenges for Future Nervousness Research 
 
In this paper, it is demonstrated that useful general insights can be 
provided by advanced approaches of analyƟcal nervousness research. It 
would be desirable, however, if some more insights would be generated 
by extending this research procedure to further problem areas. 
 
The most urgent open quesƟon refers to the analysis of the quanƟty-
oriented stability of an (s,nQ) policy in the long-term context. It would be 
highly interesƟng if the independence of stability metric π on lotsize Q for 
short-term consideraƟon carries over in this case. If yes, the third 
managerial insight in secƟon 4 would be valid for all Ɵme-oriented 
instances. Only one single finding from the short-term analysis can easily 
be transferred. Since for Q→0 a basic order-up-to-S policy is valid in each 
period, the level of long-term stability is idenƟcal to the short-term level in 
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this case. It is, however, an open quesƟon if this level remains constant 
with increasing Q values. SimulaƟon studies of this case in Jensen ( 1993) 
and Jensen (1996) do not give a reliable answer to this quesƟon. Thus, an 
analyƟcal study is needed even if it might be extremely cumbersome from 
a technical point of view. 
 
A completely new research topic would be the analysis of nervousness 
under non-staƟonary stochasƟc demand. From a rough simulaƟon study 
in Kilic and Tarim (2011) we know that the type of demand paƩern has a 
disƟnct impact on planning stability under different control policies. For 
more general and deeper insights an analyƟcal invesƟgaƟon would be 
needed. This might be feasible for a very simple cyclical demand scheme.  
 
A further challenge consists in extending the analyƟcal approach to a 
mulƟ-stage producƟon system. SimulaƟon studies like in Jensen (1996) 
reveal that the long-term stability of the control rule at the end-item level 
has a major influence on the planning stability of the enƟre system. In this 
context, a lot-for-lot ordering policy at lower stages seems to be favorable 
in reducing the total system nervousness. It certainly is worthwhile to 
invesƟgate analyƟcally if the simulaƟon-based findings can be generalized. 
At least for a simple linear two-stage system there should be a chance to 
extend the single-stage analysis. 
 
In literature, there is a major debate on the effecƟveness of various 
nervousness dampening strategies (see Atadeniz and Sridharan (2020)). A 
widely used approach in this context is the strategy of freezing planned 
producƟon orders (at end-item level) for a given number of periods. Many 
simulaƟon-based invesƟgaƟons show that this procedure can lead to a 
significant reducƟon of system nervousness. This, however, can come at 
the expense of a major increase in costs and decline in customer service if 
the freeze length is too high. An analyƟcal stability study for a single-level 
system would shed some light into the general interdependence of 
freezing and planning stability. Such an invesƟgaƟon might be feasible for 
a relaƟvely simple case of a frozen horizon of one or two periods. 
 
Another approach for nervousness reducƟon is proposed in the form of 
using safety stocks for avoiding order deviaƟons. A respecƟve method 
which can be implemented by extending the reorder-point control policies 
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is described in Jensen (1993). Thereby, nervousness is reduced by 
abstaining from reorder-point triggered decisions if they deviate from 
former planned orders and if the inventory level is within a criƟcal range 
around the reorder point. The width of this range is given 
 
 
 by an addiƟonal policy parameter. SimulaƟon results presented in Jensen 
(1993) could be confirmed and generalized if an analyƟcal study of the 
stability performance of such a three-parameter policy would be 
conducted. 
 
The managerial insights formulated in secƟon 4 could be enriched and 
extended considerably if at least some of these tasks for further research 
were tackled. The mathemaƟcal challenges are enormous. Against the 
background of potenƟal insights, however, it would be highly desirable if 
ambiƟous researchers could be moƟvated to take on this job without 
(nervous) hesitaƟon.  
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