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Abstract 

In this paper we model the interaction between an auditor and a client firm. The client firm’s manager 
can either report truthfully or commit fraud. The auditor needs to plan a two stage audit that allows 
to detect fraud. In the first stage an AI tool is employed that provides a signal about the quality of the 
client’s internal control system (ICS). Classifying the ICS as weak or strong, the signal alters the auditor’s 
expectations regarding the client’s fraud probability. In the second stage, the auditor decides about 
her  audit  effort  conditional  on  the  information  provided  by  the  AI.  Comparing  the  AI  setting  to  a 
benchmark setting without AI use, we find that employing the AI tool reduces the manager’s incentives 
to  commit  fraud. At  the  same  time  it  reduces  the equilibrium effort provided by  the auditor. As a 
consequence, the probability that actual fraud is detected remains unchanged. We extend our model 
and allow the AI tool to be customized such that it can either focus on detection of the weak ICS, the 
strong ICS, or on both equally. We find that the AI specification that minimizes ex ante probability for 
fraud not necessarily coincides with the specification that minimizes auditing costs. It follows that the 
auditor in charge of customizing the AI cannot necessarily be expected to do so in a fraud minimizing 
way. 

 

Keywords: Artificial Intelligence, Auditing, Game Theory, Fraud detection 
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1. Introduction 
Recent advances in AI seem to affect almost all types of professions including the auditing profession. 

In particular, AI tools are either expected to replace standardized but labor intensive tasks or they do 

so already.1 As such, AI is supposed to increase labor efficiency but also changes the job descriptions 

for many employees.  

With regard to the auditing profession, practitioners as well as scientists envision that AI use will not 

only increase audit efficiency as it relieves auditors from time consuming tasks, but might also help to 

improve audit effectiveness as it increases audit quality and/or reduces  fraud. Empirical evidence that 

hints in this direction has been presented in a recent study by Law and Shen (2024), who find that AI 

use  reduces  the  number  of misspecified  going  concern  opinions  and  also  achieves more  accurate 

assessments of internal controls in audits. In an earlier contribution Issa et. al. (2016) argue that the 

availability of AI  facilitates  the automation of  routine  tasks  in auditing but may also be used as an 

assistant for non‐routine tasks, leaving the decision authority with the auditor. Kokina and Davenport 

(2017) emphasize that AI may be particularly relevant in auditing with respect to identifying anomalies. 

On a broader level, AI use might even be considered as a means to restore market participants’ trust 

in financial statements that allegedly suffered as a result of several high profile audit failures.2   

In this paper, we analyze a game‐theoretic interaction between an auditor and a client firm in order to 

shed some  light on the effects of AI use  in auditing.  In particular, we consider a client firm, whose 

financial statements need to be audited, and an auditor. The manager of the client firm can set up the 

financial statements correctly or commit fraud. The auditor, in turn, needs to plan her audit including 

the use of AI.  In  line with  Eisikovits  et.al.  (2024) AI  is  perceived  as  “a  group of  statistical machine 

learning technologies which recognize patterns in large data sets and offer predictions based on those 

patterns” in what follows. 

In our model AI is used to assess the client firm’s internal control system (ICS), which can be either 

strong or weak. Specifically, we assume that the AI detects discrepancies from expected patterns in 

the data  known as  accounting  anomalies.  A  large  amount  of  anomalies  hints  towards  a weak  ICS. 

Accordingly, the AI tool predicts the ICS to be weak, if it detects a sufficiently high amount of anomalies 

and to be strong otherwise.3 If the ICS is weak, however, it is easier for the client firm’s manager to 

                                                            
1 See, Webb (2020). 
2 See e.g. Blake (2024). 
3 See Kokina and Davenport (2017) and Law and Shen (2004) from above but also, e.g. the German 
Wirtschaftsprüferkammer (2025).   
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override  the  controls  and  to  commit  fraud.4    Once  the  auditor  has  observed  the  ICS  classification 

provided by AI, she decides upon any follow up auditing activities.  

We consider two different settings. In the first setting we assume that the classification, or signal, the 

AI tool provides is informative but imperfect and that its precision is given exogenously.  

We find that the additional information provided by the AI results in a decrease in audit effort. This is 

pretty much in line with the idea that AI replaces some of the auditor’s tasks and enhances efficiency.  

However, we also find that the probability for actual fraud to remain undetected increases with AI, 

rather than to decrease. Simultaneously, the probability that a client firm’s manager commits fraud 

decreases.  Finally,  the  two  effects,  namely  the  increase  in  undetected  fraud  and  decrease  in  the 

probability that fraud is committed, compensate each other in equilibrium. As a result, the ex ante 

probability that fraud is not detected remains unaffected by AI use. Accordingly, our model suggests 

that audit quality, at  least  if defined as  the probability  that actual  fraud  is detected,  suffers  in  the 

presence of an AI tool. However, AI makes up for this outcome by discouraging fraudulent behavior in 

the first place.  

In  the  second  setting we  consider  a more  sophisticated  AI  tool. We  assume  that  the  auditor  can 

“customize” the tool and specify a critical amount of anomalies that suffices for the ICS to be classified 

as weak. That way, she can focus on identifying a weak control system or on identifying a strong control 

system or she can specify  the AI  to be “neutral” and to  focus evenly on both. However,  if  the tool 

focuses  on  detecting  the  weak  system,  it  will  inevitably misspecify  a  strong  system  as  weak with 

considerable positive probability and v.v.   

In a first step of our analysis, we aim at minimizing the probability for fraudulent behavior. We find 

that it is either optimal to fully focus on the weak system or on the strong one. It is never optimal to 

focus on both evenly. If the strong system is more likely than the weak one and additional costs for 

committing fraud in the presence of a strong system are sufficiently small, it is optimal to focus on the 

strong system. Otherwise focusing on the weak one minimizes the probability that fraud is committed.  

However, while reducing fraud is probably desirable from an investor’s or capital market’s perspective, 

the actual  choice about  the AI  specification  is made by  the auditor. Therefore, we  investigate  in a 

second step which AI specification maximizes the auditor’s payoff.  It  turns out that the choice that 

maximizes the auditor payoff does not always coincide with the one that minimizes expected fraud. It 

                                                            
4 See Smith et.al. (2000) for a similar argument. 
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follows that we cannot necessarily expect that AI applied in auditing is used in the most desirable way 

from a capital market or even general public perspective. 

Our paper  is closely related and somewhat builds on Smith et al.  (2000). They consider a setting  in 

which an auditor can split his effort between two tasks. The first task aims at  identifying a possibly 

weak control system. Given the system has been identified as weak or not, the auditor decides about 

additional audit effort referred to as substantive testing. While the benchmark case in their setting and 

ours is similar, the subsequent analysis differs in various respects. Most important, Smith et.al. assume 

that the auditor spends effort to detect a weak ICS while we assume that an AI tool is present that 

replaces the auditor. Accordingly, in their model effort costs arise for identifying a weak system and 

the auditor might decide not to spend any effort in doing so, if e.g. costs are too high. In our paper, we 

assume that using the AI is costless or, at most, caused an up‐front investment expenditure which is 

sunk. Moreover, Smith et.al. (2000) assume that the auditor either detects a weak system or fails to 

detect it. The probability to classify a strong system as weak is zero by assumption. In our setting, the 

AI  produces a signal that classifies the ICS as strong or weak, while both classifications can possibly be 

wrong.  In  addition,  and  in  order  to  reflect  typical  AI  attributes,  we  assume  that  the  auditor  can 

customize  the  AI  tool  such  that  detection  probabilities  become  endogenous.  Overall,  Smith  et.al. 

(2000) focus on optimal effort allocation and resulting reductions in audit costs. In our paper, the main 

focus is on whether AI reduces auditor effort and on its effect on incentives for managerial fraud and 

fraud detection.  

Our analysis is also inspired by Kwon (2005). Investigating the effect of accounting conservatism on 

management incentives, he assumes that an accounting signal is observed that needs to be converted 

in the financial statements to either state a high or a low result. Depending on the threshold that needs 

to be exceeded  to  justify a high  report, he classifies  the accounting system as  liberal, neutral, and 

conservative. In a somewhat similar approach we assume that the AI tool is customized to either detect 

a weak and a strong ICS with identical probability (neutral), or to focus either on the weak or the strong 

system. 

The rest of the paper is organized as follows. The next section presents the model.  In section three we 

consider a benchmark case in which no AI tool is available. Section four analyses the setting in which 

an AI tool is available that detects the client’s type of control system with exogenous probability. We 

extend the model to allow for endogenous AI specification in section five and subsequently present 

optimal AI specification in order to minimize fraud probability and auditing costs. Section six concludes. 
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2. Model 
We consider a client firm, whose financial statements need to be audited, and an auditor or audit firm. 

The auditor  can use  an AI  tool  that offers  insights with  regard  to  the  client  firm’s  internal  control 

system.  

There are two types of client firms: Firms that have a strong internal control system (ICS) implemented 

and firms with a weak one. If the ICS is weak, the number and size of irregularities and discrepancies 

from expected patterns in the financial data, so called accounting anomalies, tends to be higher than 

with a strong ICS.  Therefore, a weak ICS makes it relatively easy for the manager of the client firm to 

commit and hide fraud, while doing so is costly if the controls are strong. We denote the firm with the 

strong  ICS a  type‐1  firm (𝑡ଵሻ and the weak  ICS  firm a  type‐2  firm  (𝑡ଶ)  in what  follows. The ex ante 

probability for a type‐1 firm to be present is 𝜃 ∈ ሺ0,1ሻ and for a type‐2 firm it is 1 െ 𝜃. If a type‐𝑖 firm, 

with 𝑖 ൌ 1,2, is present, the manager commits fraud with probability 𝛾௜, which is endogenous in the 

model. 

The  AI  tool  analyzes  the  accounting  data  provided  by  the  client  in  order  to  detect  accounting 

anomalies.  Based  on  the  amount  of  anomalies  detected,  it  provides  a  signal  𝑠̂ଵ  or  𝑠̂ଶ  that  either 

classifies the client as type‐1 or type‐2 firm. 

In a  first part of our analysis, we assume  that  the AI  identifies  the client  type correctly with  some 

exogenously given probability. 𝑝ଵ denotes the probability that the strong ICS  firm is identified correctly 

while 𝑝ଶ  refers  to  the weak  type’s  identification.  The  auditor  uses  the  signals  to  revise  his  beliefs 

regarding the client’s type and the related fraud risk, and plans audit effort accordingly. 

In  a  second  step,  we  will  introduce  additional  assumptions  regarding  the  AI  tool’s  procedure. 

Specifically, we allow the auditor to instruct the AI to either focus equally on both types of clients or 

to place relatively more emphasis on one type than on the other.  For instance, the auditor may specify 

the AI procedure in such a way that it detects one type of client correctly with certainty but misspecifies 

the other type with considerable probability. Formally, we endogenize the probabilities 𝑝ଵ and 𝑝ଶ. 

The course of the game is as follows.  In a first step nature determines whether a type‐1 or a type‐2 

client is present. While the type is unobservable for the auditor, the firm’s manager learns the type of 

ICS and decides whether to commit fraud. If an AI‐tool  is available,  it provides a possibly  imperfect 

signal 𝑠̂௝, 𝑗 ൌ 1,2, that either indicates that the internal control system of the firm is strong or weak. 

The auditor decides about audit effort 𝑎௝, given the information 𝑠̂௝ the AI tool has provided. The larger 

the audit effort, the higher the probability to detect fraud during the auditing process. If no fraud has 
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been committed, the auditor never detects fraud (no false detection). After completing the audit, an 

audit opinion is formed and made public. 

 

 

 

 

Figure 1: Game 

tree. 
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We further assume that an undetected fraud provides the manager with a benefit F. If the manager’s 

fraud is detected, that results in a penalty P. In line with the characterization above, committing fraud 

in the presence of a strong ICS causes costs of 𝑥 for the manager. It is costless with a weak ICS. 

The auditor collects some fixed fee for the audit, which we neglect in what follows. AI use is assumed  

to be costless.5 If she fails to detect fraud, this leads to future costs of D, e.g., due to loss in reputation 

if the fraud is detected later on by another party.  

The auditor performs effort 𝑎௝, which increases the probability of detecting fraud. Specifically, 𝑑൫𝑎௝൯ ൌ

1 െ expൣെ𝑏𝑎௝൧ is the probability of detecting fraud conditional on fraud having occurred. 𝑏 ൐ 0 is a 

parameter that reflects the effectivity with which effort increases this probability. Note that the higher 

𝑎௝, the larger the probability to detect fraud for a given 𝑏. If 𝑎௝ ൌ 0, however, 𝑑ሺ0ሻ ൌ 0 follows and 

fraud is never detected. Performing effort causes a disutility from working hard equal to 𝑐𝑎௝, with 𝑐 ൐

0. The course of the game is reflected in the game tree depicted in figure 1. 

To sustain any equilibrium of our model we assume 𝑥 ൏ minሼ𝐹,
ிሺ௣భା௣మିଵሻ

௣మ
,

௉ሺ௣భା௣మିଵሻ

ଵି௣మ
,

௉ሺ௣భା௣మିଵሻమ

ଵି௣మ

ఏ

௣మ
ሽ 

and 

𝑐ሺ𝐹 ൅ 𝑃ሻ ൏ 𝐷𝑏ሺ1 െ 𝜃ሻ min ቐ
𝑃,

ఏு

ሺଵିఏሻሺ௉ఏሺ௣భା௣మିଵሻమି௫ሺଵି௣మሻ௣మሻ
,

ு

௉ሺଵିఏሻሺ௣భା௣మିଵሻమି௫ሺሺ௣భା௣మିଵሻమఏିሺଵି௣భሻሺଵିଶ௣మሻି௣మ
మ

ቑ, 

with 𝐻 ൌ 𝑃ሺሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ െ 𝑥(1 െ 𝑝ଶሻሻሺ𝑃ሺሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ ൅ 𝑥𝑝ଶሻ. 

These regularity conditions ensure that the manager’s fraud probabilities are always between zero and 

one and that the auditor’s effort is non‐negative.  

 

3. Benchmark Case: No AI Available 
 

In a first step, we consider a benchmark setting in which no AI tool is available.  

With  no  AI  in  place,  the  auditor  receives  no  type‐specific  information  so  that  her  effort  (𝑎ሻ  is 

unconditional on any observation.  Accordingly, the auditor needs to decide about audit effort based 

on ex ante expectations regarding the client type. She incurs costs from the audit, which she aims to 

minimize: 

                                                            
5 One might assume that acquisition costs arise for the AI tool, which are sunk later on. 
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E(Π஺ሻ ൌ െ𝜃𝛾ଵ൫1 െ 𝑑ሺ𝑎ሻ൯𝐷 െ ሺ1 െ 𝜃ሻ𝛾ଶ൫1 െ 𝑑ሺ𝑎ሻ൯𝐷 െ 𝑐𝑎 

ൌ ሾെ𝜃𝛾ଵ െ ሺ1 െ 𝜃ሻ𝛾ଶሿ൫1 െ 𝑑ሺ𝑎ሻ൯𝐷 െ 𝑐𝑎    (1) 

As described above, costs arise from reputation damage 𝐷 if the manager does commit fraud and this 

remains undetected by the auditor. In addition costs 𝑐𝑎 arise from auditing effort. 

The manager, in contrast, learns the type of ICS present before he decides about committing fraud. 

If the ICS is strong (𝑡ଵ), expected payoff is 

𝐸ሺΠெ|𝑡ଵሻ ൌ 𝛾ଵൣ𝐹൫1 െ 𝑑ሺ𝑎ሻ൯ െ 𝑃𝑑ሺ𝑎ሻ െ 𝑥൧.              (2) 

If the ICS is weak (𝑡ଶ), expected payoff is 

𝐸ሺΠெ|𝑡ଶሻ ൌ 𝛾ଶൣ𝐹൫1 െ 𝑑ሺ𝑎ሻ൯ െ 𝑃𝑑ሺ𝑎ሻ൧.              (3) 

 

Note  that  there  is  an extra  cost of 𝑥  for  committing  fraud only  if  the  ICS  is  strong. Besides,  if  the 

manager commits fraud he gets 𝐹 if he gets away with it and pays a penalty 𝑃, if he is caught. 

The manager maximizes his payoff by picking his fraud probabilities  𝛾௜,  𝑖 ൌ 1,2, as best responses to 

the  conjectured  auditor  effort.  The  auditor  maximizes  her  payoff  (minimizes  her  cost)  by  picking 

auditing effort 𝑎 optimally. Thus, she maximizes (1), as a best response to the conjectured 𝛾ଵ and 𝛾ଶ. 

Proposition 1: 

There exists a unique equilibrium in which 𝛾ଵ
஻ெ ൌ 0, 𝛾ଶ

஻ெ ൌ
௖ሺிା௉ሻ

௕஽௉ሺଵିఏሻ
, and 𝑎஻ெ ൌ

ଵ

௕
ln ቂிା௉

௉
ቃ holds. 

All proofs are relegated to the appendix. 

Proposition 1 states that the equilibrium consists of a mixed strategy played by the manager if the ICS 

is weak, a pure strategy of no fraud if the ICS is strong, and a pure strategy played by the auditor in 

picking 𝑎.  

Intuitively, the manager is willing to randomize between committing fraud and not to do so, only if his 

expected payoffs are equal. In the absence of fraud, his payoff is zero. In the presence of fraud, the 

manager’s payoffs differ in the type of ICS, as shown in (2) and (3). It follows directly that the manager 

cannot be indifferent between committing fraud and not doing so in both types simultaneously. We 

demonstrate in the proof of Proposition 1 that the only equilibrium contains an effort choice 𝑎 of the 
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auditor that renders the manager indifferent when facing a weak ICS.6 This implies that the manager 

strictly prefers not to commit fraud if the ICS is strong. If the ICS is weak, however, the manager picks 

the probability for committing fraud, 𝛾ଶ, such that the auditor’s effort choice is indeed optimal.  

Corollary 1:  

The ex ante probability for fraud to arise in the benchmark setting equals ሺ1 െ 𝜃ሻ𝛾ଶ
஻ெ ൌ

௖ሺிା௉ሻ

௕஽௉
. The 

conditional probability of fraud to remain undetected in the presence of fraudulent behavior is 1 െ

𝑑ሺ𝑎஻ெሻ ൌ expሾെ𝑏𝑎஻ெሿ ൌ
௉

ிା௉
. Accordingly, the ex  ante probability for fraud to remain undetected is 

ሺ1 െ 𝜃ሻ𝛾ଶ
஻ெ൫1 െ 𝑑ሺ𝑎஻ெሻ൯ ൌ

௖

௕஽
.  

 

Given the equilibrium amounts of 𝛾ଶ
஻ெ  and 𝑎஻ெ as derived in Proposition 1, we can easily calculate 

the  probability  for  fraud  to  arise  and  the  conditional  and  ex  ante  probability  that  fraud  remains 

undetected by  the  auditor. Note  that  the ex  ante probability  for  fraud  increases  in  the manager’s 

benefit from fraud, 𝐹, and the cost of auditor effort, 𝑐. It decreases in the auditor’s detection efficiency 

𝑏, her  reputation costs, 𝐷,  and  the penalty, 𝑃.  In  contrast,  the conditional probability  for  fraud  to 

remain undetected increases in 𝑃 and decreases in 𝐹. Now the ex ante probability for fraud to remain 

undetected,  is  independent of managerial benefits and costs  from committing  fraud.   As, 𝑃  and 𝐹  

affect the probability for fraud to be committed but also the conditional probability that is undetected, 

in  equilibrium  both  effects  cancel  each  other  out,  which  is  important  for  later  reference.  Our 

benchmark result is equivalent to the one in Smith et.al. (2000).7   

 

4. AI-tool is available 
 

If the auditor uses the AI‐tool, she observes the signal from the tool before she chooses her auditing 

effort. The signal either states that the ICS is strong (signal 𝑠̂ଵ), or that it is weak (signal 𝑠̂ଶ). We assume 

that the AI tool’s signals are imperfect but informative8, implying that the following conditions hold for 

𝑝ଵ ൌ Prሺ𝑠̂ଵ|𝑡ଵሻ and 𝑝ଶ ൌ Prሺ𝑠̂ଶ|𝑡ଶሻ:  

                                                            
6 Assuming, in contrast, that he is indifferent if the ICS is strong would result in a violation of or previous 
regularity conditions, see the appendix. 
7 See Smith et.al. (2000), Proposition 1. 
8 See also Kwon (2005).  
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𝑝ଵ ൑ 1, 𝑝ଶ ൑ 1, and 2 ൐ 𝑝ଵ ൅ 𝑝ଶ ൐ 1. 

It follows that at least one signal realization is informative about the underlying type of ICS, i.e., 𝑝௝ ൐

0.5  for 𝑗 ൌ 1 or ൌ 2  ,  it even might be perfect. The other one might be below or above 0.5. Both, 

however, are “on average” informative about the underlying types.  

The respective payoff functions in the presence of the AI‐tool are as follows. The manager’s expected 

payoffs depending on the observed type of ICS, 𝑡௜, are given by 

  

𝐸൫Π௧భ
ெ൯ ൌ 𝛾ଵሾ𝑝ଵሺ𝐹expሾെ𝑏𝑎ଵሿ െ 𝑃ሺ1 െ 𝑒𝑥𝑝ሾെ𝑏𝑎ଵሿሻ ൅ ሺ1 െ 𝑝ଵሻሺ𝐹expሾെ𝑏𝑎ଶሿ െ 𝑃ሺ1 െ

𝑒𝑥𝑝ሾെ𝑏𝑎ଶሿሻሿ െ 𝑥,          ሺ7ሻ 

𝐸൫Π௧మ
ெ൯ ൌ 𝛾ଶሾሺ1 െ 𝑝ଶሻሺ𝐹expሾെ𝑏𝑎ଵሿ െ 𝑃ሺ1 െ expሾെ𝑏𝑎ଵሿሻ ൅ 𝑝ଶሺ𝐹expሾെ𝑏𝑎ଶሿ െ 𝑃ሺ1 െ expሾെ𝑏𝑎ଶሿሻሿ.

            ሺ8ሻ 

Note that 𝑎௝, 𝑗 ൌ 1,2, in (7) and (8) refers to the auditor’s effort choice, given she has observed 𝑠̂௝ from 

the  AI  tool.  As  she  picks  her  effort  only  after  she  has  observed  the  output  from  the  AI  tool,  she 

maximizes her expected payoff conditional on the signal provided. 

𝐸ሺΠ஺|𝑠̂ଵሻ ൌ െ𝐷expሾെ𝑏𝑎ଵሿ൫𝛾ଶ Prሺ𝑡ଶ|𝑠̂ଵሻ ൅ 𝛾ଵ𝑃𝑟ሺ𝑡ଵ|𝑠̂ଵሻ൯ െ 𝑐𝑎ଵ,        (9) 

𝐸ሺΠ஺|𝑠̂ଶሻ ൌ െ𝐷expሾെ𝑏𝑎ଶሿ൫𝛾ଶ Prሺ𝑡ଶ|𝑠̂ଶሻ ൅ 𝛾ଵ𝑃𝑟ሺ𝑡ଵ|𝑠̂ଶሻ൯ െ 𝑐𝑎ଶ,        (10) 

where  Prሺ𝑡ଶ|𝑠̂ଵሻ ൌ
ሺଵିఏሻሺଵି௣మሻ

ሺଵିఏሻሺଵି௣మሻାఏ௣భ
,  Prሺ𝑡ଵ|𝑠̂ଶሻ ൌ

ఏሺଵି௣భሻ

ఏሺଵି௣భሻାሺଵିఏሻ௣మ
,  Prሺ𝑡ଵ|𝑠̂ଵሻ ൌ

ఏ௣భ

ሺଵିఏሻሺଵି௣మሻାఏ௣భ
, 

Prሺ𝑡ଶ|𝑠̂ଶሻ ൌ
ሺଵିఏሻ௣మ

ఏሺଵି௣భሻାሺଵିఏሻ௣మ
. 

In equilibrium ሼ𝛾ଵ
∗, 𝛾ଶ

∗, 𝑎ଵ
∗, 𝑎ଶ

∗ሽ the manager plays a mixed strategy for both types of ICSs and the auditor 

chooses pure‐strategy audit efforts 𝑎௝  conditional on the signal revealed by the AI. More specifically, 

audit efforts are chosen such that the manager is indifferent between committing fraud and not doing 

so, no matter whether the ICS is strong or weak. In addition, the manager picks the probabilities of 

committing fraud  𝛾ଵ and 𝛾ଶ  such that the auditor indeed finds it optimal to pick audit efforts 𝑎ଵ and 

𝑎ଶ as described before. 

The manager is indifferent between committing fraud and refraining from it under both types of ICSs 

if and only if:  

െ𝑃 ൅ expሾെ𝑏𝑎ଶሿሺ𝐹 ൅ 𝑃ሻሺ1 െ 𝑝ଵሻ ൅ expሾെ𝑏𝑎ଵሿሺ𝐹 ൅ 𝑃ሻ𝑝ଵ െ 𝑥 ൌ 0,  

 

െ𝑃 ൅ expሾെ𝑏𝑎ଵሿሺ𝐹 ൅ 𝑃ሻሺ1 െ 𝑝ଶሻ ൅ expሾെ𝑏𝑎ଶሿሺ𝐹 ൅ 𝑃ሻ𝑝ଶ ൌ 0. 



12 
 

 

The first‐order conditions for the optimal auditor efforts are given by:  

 

𝑑𝐸ሺΠ஺|𝑠̂ଵሻ

𝑑𝑎ଵ
ൌ

𝑏𝐷expሾെ𝑏𝑎ଵሿ𝛾ଶሺ1 െ 𝑝ଶሻሺ1 െ 𝜃ሻ
ሺ1 െ 𝑝ଶሻሺ1 െ 𝜃ሻ ൅ 𝑝ଵ𝜃

൅
𝑏𝐷expሾെ𝑏𝑎ଵሿ𝛾ଵ𝑝ଵ𝜃

ሺ1 െ 𝑝ଶሻሺ1 െ 𝜃ሻ ൅ 𝑝ଵ𝜃
െ 𝑐 ൌ 0, 

 

𝑑𝐸ሺΠ஺|𝑠̂ଶሻ

𝑑𝑎ଶ
ൌ

𝑏𝐷expሾെ𝑏𝑎ଶሿ𝛾ଶ𝑝ଶሺ1 െ 𝜃ሻ

𝑝ଶሺ1 െ 𝜃ሻ ൅ ሺ1 െ 𝑝ଵሻ𝜃
൅

𝑏𝐷expሾെ𝑏𝑎ଶሿ𝛾ଵሺ1 െ 𝑝ଵሻ𝜃
𝑝ଶሺ1 െ 𝜃ሻ ൅ ሺ1 െ 𝑝ଵሻ𝜃

െ 𝑐 ൌ 0. 

 

Solving the four equations for ሼ𝛾ଵ, 𝛾ଶ, 𝑎ଵ, 𝑎ଶሽ results in: 

Lemma 1:  

The equilibrium values for fraud and auditor effort are given by: 

𝛾ଵ
∗ ൌ

𝑐ሺ𝐹 ൅ 𝑃ሻሾ𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻଶ𝜃 ൅ ሺ𝑝ଶ െ 1ሻ𝑝ଶ𝑥ሿ
𝑏𝐷𝜃ሾ𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ െ ሺ1 െ 𝑝ଶሻ𝑥ሿሾ𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ ൅ 𝑝ଶ𝑥ሿ

, 

 

𝛾ଶ
∗ ൌ

𝑐ሺ𝐹 ൅ 𝑃ሻሾ𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻଶሺ𝜃 െ 1ሻ ൅ ሺ𝑝ଵ ൅ 2𝑝ଶ െ 1 െ 2𝑝ଵ𝑝ଶ െ 𝑝ଶ
ଶ ൅ ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻଶ𝜃ሻ𝑥ሿ

𝑏𝐷𝑝ሺ𝜃 െ 1ሻሾ𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ െ ሺ1 െ 𝑝ଶሻ𝑥ሿሾ𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ ൅ 𝑝ଶ𝑥ሿ
, 

𝑎ଵ
∗ ൌ

1
𝑏

ln ቆ
ሺ𝐹 ൅ 𝑃ሻሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ

𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ ൅ 𝑝ଶ𝑥
ቇ , 

𝑎ଶ
∗ ൌ

1
𝑏

ln ቆ
ሺ𝐹 ൅ 𝑃ሻሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ

𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ െ ሺ1 െ 𝑝ଶሻ𝑥
ቇ. 

It follows that  

𝐸ሺ𝛾∗ሻ ൌ  𝜃𝛾ଵ
∗ ൅ ሺ1 െ 𝜃ሻ𝛾ଶ

∗

ൌ
𝑐ሺ𝐹 ൅ 𝑃ሻሺ𝑝ଵ ൅ 𝑝ଶ െ 1 ሻൣ𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ ൅ 𝑥൫2𝑝ଶ െ 1 െ 𝜃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ൯൧

𝐷𝑏ሺ𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ ൅ 𝑝ଶ𝑥ሻ൫𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ െ 𝑥ሺ1 െ 𝑝ଶሻ൯
, 

𝐸ሺ𝑎∗ሻ ൌ Prሺ𝑠̂ଵሻ
1
𝑏

ln ቆ
ሺ𝐹 ൅ 𝑃ሻሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ

𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ ൅ 𝑝ଶ𝑥
ቇ ൅ Prሺ𝑠̂ଶሻ

1
𝑏

ln ቆ
ሺ𝐹 ൅ 𝑃ሻሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ

𝑃ሺ𝑝ଵ ൅ 𝑝ଶ െ 1ሻ െ ሺ1 െ 𝑝ଶሻ𝑥
ቇ 

holds. 

Comparing the results from Lemma 1, we observe that 𝑎ଶ
∗ ൐ 𝑎ଵ

∗   and 𝛾ଶ
∗ ൐ 𝛾ଵ

∗. Intuitively, a type‐1 firm 

has weaker incentives to commit fraud  than a type‐2 firm as it is more costly to do so. As the auditor 
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is aware of  this  fact and the signal  received  from the AI  is  informative,  she spends more effort on 

detecting fraud if the AI produces 𝑠̂ଶ then if she observes 𝑠̂ଵ.  

 

Comparing the findings from the benchmark setting and the setting with AI we obtain the results stated 

in Proposition 2. 

Proposition 2: 

(i) The ex ante probability for fraud to arise is lower in the presence of AI than in its absence. 

(ii) The  ex  ante  expected  auditor  effort  is  lower  in  the  presence  of  an  AI  tool  than  in  its 

absence.  

(iii) The conditional probability for fraud to remain undetected increases with AI if the ICS is 

strong, is unaffected if the ICS is weak and increases in expectation. 

(iv) The  ex ante probability for fraud to remain undetected is unaffected by the presence of 

an AI tool. 

The results from Proposition 2 show that (i) an AI tool helps to reduce the ex ante probability for the 

client  firm’s manager  to commit  fraud. At  the same time the AI  tool’s contribution to detect  fraud 

somewhat replaces the auditor’s work, such that (ii) auditor effort decreases in equilibrium. However, 

the  “on average”  reduction  in  the auditor’s effort  also  increases  the probability  that  she does not 

detect  fraud  if  it  is present as  stated  in  (iii).  It  is  in  that  sense  that audit quality  is  reduced  in  the 

presence  of  an  AI.  In  equilibrium  the  decrease  in  the  probability  to  commit  fraud  along  with  an 

increased probability that actual fraud is not detected implies (iv), the ex ante probability of fraud to 

remain undetected is unaffected.  

 

5. Endogenous AI-signal provision 
 

So far we assumed that the conditional probabilities for the AI‐generated signals to be correct, namely 

𝑝௜ ൌ Prሺ𝑠̂௜|𝑡௜ሻ with 𝑖 ൌ 1,2, are exogenously given. In what follows we relax this assumption and rather 

allow the auditor to specify detection probabilities. As we will demonstrate below, the auditor can 

either decide to equally focus on both types of clients, or to put emphasis on one type at the cost of 

the other. E.g., the auditor may consider correct detection of the weak ICS particularly important. In 

that case she can instruct the AI to detect the weak ICS with a large probability, or even with certainty. 
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Doing so, however, comes at the cost that the strong ICS will be classified as a weak one with larger 

probability.  

5.1. Additional structural assumptions   
 

To endogenize detection probabilities, we model the amount9 of accounting anomalies present in the 

financial data as a continuous stochastic variable 𝑠̃ and we denote its realization by 𝑠. We assume that 

the distribution of 𝑠̃ differs in the type of client such that the AI “picks” the actual amount of anomalies  

from one out of two distributions. Specifically, we assume that the amount is uniformly distributed on 

ൣ𝑠, 𝑠ଵ൧ if the ICS is strong, 𝑡 ൌ 𝑡ଵ, and it is uniformly distributed on ൣ𝑠ଶ, 𝑠൧, if the ICS is weak, 𝑡 ൌ 𝑡ଶ. 

Assuming  that  𝑠 ൏ 𝑠ଶ ൏ 𝑠ଵ ൏ 𝑠    ensures  that  a  firm  with  a  strong  (weak)  ICS  exhibits  accounting 

anomalies in a lower (upper) range. This is in line with our previous assumption that anomalies tend 

to be higher with a weak ICS. However, as the distributions overlap, it is not necessarily possible to 

infer  the type of client from the observation of 𝑠. We further assume that 𝑠ଵ െ 𝑠 ൌ 𝑠 െ 𝑠ଶ ൌ 𝛿  for 

simplicity. Hence, the pdf and cdf conditional on 𝑡ଵ and 𝑡ଶ are given by: 

𝑓ଵ ൌ 𝑓ሺ𝑠|𝑡ଵሻ ൌ
1
𝛿

, 𝐹ଵ ൌ 𝐹ሺ𝑠|𝑡ଵሻ ൌ
𝑠 െ 𝑠

𝛿
, 𝑠 ൑ 𝑠 ൑ 𝑠ଵ 

   

𝑓ଶ ൌ 𝑓ሺ𝑠|𝑡ଶሻ ൌ
1
𝛿

, 𝐹ଶ ൌ 𝐹ሺ𝑠|𝑡ଶሻ ൌ
𝑠 െ 𝑠ଶ

𝛿
, 𝑠ଶ ൑ 𝑠 ൑ 𝑠 

 

 

Our distributional assumptions are depicted in figure 2. The dotted line refers to the firm with a strong 

ICS, 𝑡ଵ, and the dashed one to the firm with a weak one, 𝑡ଶ. 

 

 

 

 

 

                                                            
9 The “amount” of accounting anomalies is representative for a score produced by the AI that incorporates 
number and size of the anomalies. 
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Figure 2: Probability distribution functions and cumulative distribution functions of signal s conditional on client type 𝑡௜. 

 

Now the AI detects the amount of anomalies 𝑠 and classifies the firm as either type‐1 or type‐2 client, 

tantamount to a report of either 𝑠̂ଵ or 𝑠̂ଶ. For the AI to make this classification, the auditor needs to 

prescribe a critical  𝑠௖ such that 𝑠̂ଵ is reported if 𝑠 ൑ 𝑠௖ and 𝑠̂ଶ gets reported if 𝑠 ൐ 𝑠௖ holds. 

One way to do this is to specify 𝑠௖ in such a way that the conditional probability for the report to be 

correct is identical for both types of clients. We call this a neutral AI specification. 

It  implies that 𝑠௖ ൌ 𝑠଴, where 𝑠଴  is  implicitly defined by 𝐹ଵሺ𝑠଴ሻ ൌ 1 െ 𝐹ଶሺ𝑠଴ሻ such that 𝑠଴ ൌ
௦̅ା௦

ଶ
ൌ

௦భା௦మ

ଶ
. Defining  𝐹ଵሺ𝑠଴ሻ ൌ 1 െ 𝐹ଶሺ𝑠଴ሻ ൌ 𝑛, we can write the conditional probabilities as  

𝑝ଵ ൌ Prሺ 𝑠̂ଵ|𝑡ଵሻ ൌ 𝑛   and   𝑝ଶ ൌ Prሺ 𝑠̂ଶ|𝑡ଶሻ ൌ 𝑛. 

𝑠ଵ

𝑓ሺ𝑠|𝑡௜ሻ 

𝑠 

𝑠 

𝑠ଶ 𝑠 

1
𝛿
 

𝑠଴

𝑠ଵ 𝑠 𝑠ଶ 𝑠  𝑠଴

1 
𝐹ଵ  𝐹ଶ

𝑠 

𝐹ሺ𝑠|𝑡௜ሻ 
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Alternatively, 𝑠௖ can be shifted in one or other direction such that 𝑠௖ ൌ 𝑠଴ െ ∆. The AI now reports 𝑠̂ଵ 

if 𝑠 ൑ 𝑠଴ െ ∆ holds and  𝑠̂ଶ otherwise. 𝑠௖ is naturally restricted such that 𝑠ଶ ൑ 𝑠௖ ൑ 𝑠ଵ implying that    

𝑠଴ െ 𝑠ଵ ൑ ∆ ൑ 𝑠଴ െ 𝑠ଶ.
10 

As ∆് 0 implies that the probability of correctly identifying one type of firm increases while the one 

for the other type decreases, we refer to this as a non‐neutral AI specification. The resulting detection 

probabilities can be written as follows.   

𝑝ଵ ൌ Prሺ 𝑠̂ଵ|𝑡ଵሻ ൌ 𝐹ଵሺ𝑠଴ െ ∆ሻ ൌ 𝐹ଵሺ𝑠଴ሻᇣᇤᇥ
௡

െ
∆

ఋ⏟
௠

ൌ 𝑛 െ 𝑚     and 

𝑝ଶ ൌ Prሺ 𝑠̂ଶ|𝑡ଶሻ ൌ 1 െ 𝐹ଶሺ𝑠଴ െ ∆ሻ ൌ 1 െ 𝐹ଶሺ𝑠଴ሻᇣᇧᇧᇤᇧᇧᇥ
௡

൅
∆

ఋ⏟
௠

ൌ 𝑛 ൅ 𝑚. 

If the AI is specified such that 𝑠௖ is at its upper bound, 𝑠ଵ, this implies that 

 𝑝ଵ ൌ 𝐹ଵሺ𝑠଴ሻ െ
௦బି௦భ

ఋ
ൌ 1, or, equivalently,  𝑚 ൌ 𝑚ି ൌ

௦బି௦భ

ఋ
, 

so that a type‐1 firm is always correctly identified, while 

 𝑝ଶ ൌ 𝐹ଶሺ𝑠଴ሻ ൅
௦బି௦భ

ఋ
൏ 1.  

In contrast, if 𝑠௖ is at its lower bound, 𝑠ଶ, it follows that 

 𝑝ଶ ൌ 1 െ 𝐹ଶሺ𝑠଴ሻ ൅
௦బି௦మ

ఋ
ൌ 1, or, equivalently, 𝑚 ൌ 𝑚ା ൌ

௦బି௦మ

ఋ
, 

which means that a type‐2 firm is always correctly identified, while 𝑝ଵ ൏ 1 results. (From the lower 

and upper bound for ∆, it follows directly that  𝑚ି ൑ 𝑚 ൑ 𝑚ା must hold.) 

Thus, the higher 𝑚, the more precise signal 𝑠̂ଶ becomes in identifying a type‐2 firm (weak ICS), but at 

the same time the less precise signal  𝑠̂ଵ becomes in identifying a type‐1 firm (strong ICS), and, vice 

versa. Accordingly, if the strong ICS is identified with certainty, 𝑚 ൌ 𝑚ି , 

 𝑝ଵ ൌ 𝑛 െ 𝑚ି ൌ 1 ⇔ 𝑚ି ൌ 𝑛 െ 1  results, 

while, if the weak one is identified with certainty, the principal picks 𝑚 ൌ 𝑚ା such that  

 𝑝ଶ ൌ 𝑛 ൅ 𝑚ା ൌ 1 ⇔ 𝑚ା ൌ 1 െ 𝑛  holds. 

                                                            
10 Doing so ensures that the AI never classifies the firm as a type that arises with zero probability given the 

observed 𝑠. 
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5.2. Optimal AI specification 
 

With the additional structure in place, we can now proceed to identify optimal AI specifications. We 

consider two scenarios below. In the first scenario, we focus on the AI specification that minimizes the 

expected  fraud  level.  Such a  specification might be  considered  as  the one  that  is desirable  from a 

capital  market  or  investors’  perspective.  In  the  second,  we  acknowledge,  however,  that  the 

specification  of  the  AI  is  most  likely  a  choice  of  the  auditor.  Therefore,  we  analyse  the  auditor’s 

incentives to pick a particular AI specification. 

 

5.2.1. AI specification to minimize expected fraud level  
 

Inserting 𝑝ଵ ൌ 𝑛 െ 𝑚 and 𝑝ଶ ൌ 𝑛 ൅ 𝑚 we get the expected level of fraud depending on 𝑚: 

 𝐸ሺ𝛾∗ሺ𝑚ሻሻ ൌ
ସ௖ሺிା௉ሻቀ௡ି

భ
మ

 ቁቂ௉ቀ௡ି
భ
మ

ቁା௫൬௠ାሺଵିఏሻ௡ା
భ
మ

ሺఏିଵሻ൰ቃ

஽௕൫௉ሺଶ௡ିଵሻି௫ሺଵି௡ି௠ሻ൯൫௉ሺଶ௡ିଵሻା௫ሺ௡ା௠ሻ൯
. 

Minimizing  𝐸ሺ𝛾∗ሺ𝑚ሻሻ with respect to 𝑚 and solving the optimality condition 
ௗாሺఊ∗ሻ

ௗ௠
ൌ 0, we obtain 

two candidates for local extrema of 𝐸ሺ𝛾∗ሻ: 

𝑚ଵ ൌ
ඥℎଵℎଶ ൅ ሺ1 െ 2𝑛ሻ൫𝑃 ൅ 𝑥ሺ1 െ 𝜃ሻ൯

2𝑥
, 

𝑚ଶ ൌ
െඥℎଵℎଶ ൅ ሺ1 െ 2𝑛ሻ൫𝑃 ൅ 𝑥ሺ1 െ 𝜃ሻ൯

2𝑥
, 

with ℎଵ ൌ ℎ ൅ 𝑥, ℎଶ ൌ ℎ െ 𝑥 and ℎ ൌ ሺ2𝑛 െ 1ሻሺ𝑃 ൅ 𝑥𝜃ሻ ൐ 0. 

For further analysis we define two critical values for 𝑥: 

𝑥̅ ൌ
െ𝑃ሺ2𝜃 െ 1ሻሺ2𝑛 െ 1ሻ

𝜃ሺ2𝑛 െ 1ሻ െ 1
, 

𝑥̿ ൌ
െ𝑃ሺ2𝑛 െ 1ሻ

𝜃ሺ2𝑛 െ 1ሻ െ 1
, 

with 𝑥̿ ൐ 𝑥̅. 
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Lemma 2: 

(i) If 𝑥 ൏ 𝑥̿, the only stationary point of 𝐸൫𝛾∗ሺ𝑚ሻ൯ within the feasible range is a local maximum. 

Accordingly, the minimum expected fraud is obtained at either the left or the right boundary 

of 𝑚. 

(ii) If 𝑥 ൒ 𝑥̿, 
ௗாሺఊ∗ሻ

ௗ௠
൏ 0 for all (feasible) 𝑚. It follows that the expected fraud level is minimized 

at the upper bound of 𝑚. 

 

In order to figure out whether expected fraud for 𝑥 ൏ 𝑥̿ is minimized at 𝑚ା or 𝑚ି, recall from above 

that 𝑚ା ൌ 1 െ 𝑛 and 𝑚ି ൌ 𝑛 െ 1. Inserting these expressions into ∆𝐸ሺ𝛾∗ሻ ൌ 𝐸ሺ𝛾∗|𝑚ାሻ െ 𝐸ሺ𝛾∗|𝑚ିሻ 

results in 

∆𝐸ሺ𝛾∗ሻ ൌ
2𝑐ሺ𝐹 ൅ 𝑃ሻ𝑥ଶሺ1 െ 𝑛ሻሾ𝑃ሺ2𝜃 െ 1ሻሺ2𝑛 െ 1ሻ ൅ 𝑥ሺ𝜃ሺ2𝑛 െ 1ሻ െ 1ሻሿ

𝑏𝐷𝑃ሺ𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥ሻሺ𝑃 ൅ 𝑥ሻ൫𝑃ሺ2𝑛 െ 1ሻ ൅ 2𝑥ሺ𝑛 െ 1ሻ൯
. 

 

Interestingly, Lemma 2 shows that it is never optimal to pick a neutral specification of the AI when the 

goal  is  to minimize expected  fraud probability. Moreover,  from  Lemma 2  (ii) we observe  that  it  is 

optimal to focus on the weak ICS, whenever the cost of committing fraud in the presence of the strong 

system is sufficiently high, that is 𝑥 ൒ 𝑥̿ holds. If 𝑥 is below 𝑥̿, we observe from (i) that it might either 

be optimal to focus on the strong system or on the weak one. Which alternative is optimal once again 

critically depends on the cost of  fraud,   𝑥, but also on the probability of types, 𝜃.   This  is stated  in 

Proposition 3.  

 

Proposition 3: 

In order to minimize the expected fraud probability 𝐸ሺ𝛾∗ሺ𝑚ሻሻ, 𝑚∗ needs to be chosen as follows. 

𝑚∗ ൌ ൞
𝑚ି ൌ 𝑛 െ 1                             if 𝜃 ൐

1
2

 and 𝑥 ൏ 𝑥̅

 𝑚ା ൌ 1 െ 𝑛                               𝑒𝑙𝑠𝑒                          
 

 

Proposition  3  states  that  𝑚∗ ൌ 𝑚ି  is  optimal  under  specific  conditions.  Otherwise  𝑚∗ ൌ 𝑚ା  is 

optimal.  

Recall that 𝑚∗ ൌ 𝑚ି implies that the AI tool is specified in such a way that it detects the strong system 

with certainty. This  is achieved at  the cost of  reducing  the probability  to  identify  the weak system 

correctly. According to Proposition 3, doing so is only optimal if the strong system is a) more likely than 
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the weak one and b) the additional cost of committing fraud under a strong system is sufficiently low. 

Both aspects combined imply that the auditor not only expects a strong ICS to be present but also that 

management fraud comes with it. It is therefore optimal to specify the AI accordingly.  

In the absence of either a) or b), in contrast, it is optimal to specify the AI to detect the weak ICS with 

certainty and accepting that a strong ICS is classified as weak with positive probability. 

Intuitively, if the extra cost of fraud 𝑥 is sufficiently high, the auditor expects the probability of fraud 

to be present much smaller if the ICS is strong than if it is weak. It is therefore important to identify 

the weak system with certainty to ensure a proper audit, whenever the signal indicates a large audit 

risk. Moreover, classifying a low‐risk client erroneously as the high‐risk type, results in overly high audit 

effort for the type 1 client. Anticipating the possibility of an intense audit as a result of misclassification, 

the manager of a strong ICS firm is further discouraged from committing fraud. It follows that focusing 

on the weak type is the optimal strategy in order to minimize expected fraud. However, even if the 

extra cost 𝑥 is not particularly high, it suffices that the weak ICS is more likely than the strong one, to 

render 𝑚∗ ൌ 𝑚ା. 

 

 

5.2.2. AI specification to maximize auditor utility  
 

From the previous section it turns out that in order to minimize the probability for fraud it is optimal 

in many scenarios to focus on the weak ICS. This implies that the AI produces the signal 𝑠̂ଶ not only if 

the ICS is weak, but also with positive probability if it is strong. Observation of 𝑠̂ଶ, as described above, 

triggers a large audit effort and in turn reduces incentives for fraud. Such an effort intensive approach, 

however, might not be in the best interest of the auditor. Rather than to minimize fraud probability, 

the auditor is interested in maximizing the expected payoff from the audit which, in equilibrium, equals  

 𝐸ሺΠ஺∗ሻ ൌ െ𝑐ሾPrሺ𝑠̂ଵሻ ∙ 𝑎ଵ
∗ ൅ Prሺ𝑠̂ଶሻ ∙ 𝑎ଶ

∗ሿ െ 𝐷 ∙ PrሺFraud undetected with AIሻ.                                   (13) 

From Proposition 2 (iii) we already know that PrሺFraud undetected with AIሻ  is constant and therefore 

unaffected by any specification of 𝑚 (it is equal to 
௖

௕஽
ሻ. The first term in (13) is the auditor’s loss from 

conducting effort.  

Thus, the auditor picks 𝑚 in order to minimize his effort costs 

ECeffort ൌ 𝑐ሾPrሺ𝑠̂ଵሻ∙ 𝑎ଵ
∗ ൅ Prሺ𝑠̂ଶሻ∙ 𝑎ଶ

∗ሿ . 
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Note that Prሺ𝑠̂ଶሻ ൌ 1 െ Prሺ𝑠̂ଵሻ  and that observaƟon of a signal 𝑠̂௜ always triggers the corresponding 

effort choice 𝑎௜
∗ from the auditor, i.e., Prሺ𝑠̂௜ሻ ൌ Prሺ𝑎 ൌ 𝑎௜

∗ሻ.  The equilibrium values of Prሺ𝑠̂௜ሻ and 𝑎௜
∗  

have been derived in ProposiƟon 2 and depend on  𝑚 a via 𝑝ଵ and 𝑝ଶ. Using these equilibrium values, 

expected effort costs can be wriƩen as 

ECeffort ൌ
𝑐
𝑏

ሾωଵ
∗ ln ሺ𝑦ଵ

∗ሻ ൅ ሺ1 െ ωଵ
∗ሻln ሺ𝑦ଶ

∗ሻሿ 

with  

 𝑎ଵ
∗ ൌ ଵ

௕
lnሺ𝑦ଵ

∗ሻ and 𝑦ଵ
∗ ൌ

ሺிା௉ሻሺଶ௡ିଵሻ

௉ሺଶ௡ିଵሻା௫ሺ௠ା௡ሻ
;  𝑎ଶ

∗ ൌ ଵ

௕
lnሺ𝑦ଶ

∗ሻ  and 𝑦ଶ
∗ ൌ

ሺிା௉ሻሺଶ௡ିଵሻ

௉ሺଶ௡ିଵሻା௫ሺ௠ା௡ିଵሻ
; 

ωଵ
∗ ൌ Prሺ𝑠̂ଵሻ ൌ Prሺ𝑎 ൌ 𝑎ଵ

∗ሻ ൌ 1 െ 𝑚 െ 𝑛 െ 𝜃ሺ1 െ 2𝑛ሻ. 

Thus, the auditor’s opƟmizaƟon problem with regard to 𝑚 is  

                        min
௠

ECeffort ൌ
௖

௕
ሾωଵ

∗ ln ሺ𝑦ଵ
∗ሻ ൅ ሺ1 െ ωଵ

∗ሻln ሺ𝑦ଶ
∗ሻሿ                                                                                

(OP) 

                        subject to 𝑚ି ൑ 𝑚 ൑ 𝑚ା. 

 

Minimizing the expected effort costs, the auditor faces a trade‐off between the levels of effort and their 

probabiliƟes of occurrence. If she increases 𝑚 by a marginal unit, both efforts, 𝑎ଵ
∗  and 𝑎ଶ

∗ , decrease; 

with  the  reducƟon being  stronger  for  effort 𝑎ଶ
∗ .  At  the  same Ɵme, an  increase  in 𝑚  decreases  the 

probability that 𝑎ଵ
∗ occurs, ωଵ

∗, and accordingly increases the probability that 𝑎ଶ
∗  occurs, 1 െ ωଵ

∗ . Thus, 

the opƟmal choice of 𝑚 trades off the reducƟon in both efforts against the increase in the probability 

of 𝑎ଶ
∗  (and the corresponding decrease in the probability of 𝑎ଵ

∗ሻ, i.e., the effort for which the reducƟon 

caused by an increase in 𝑚 is stronger.  

To get the intuiƟon for the above results, recall that an increase in 𝑚 is equivalent to specifying the AI 

in  such  a way  that  the  probability  of  correctly  idenƟfying  a weak  ICS  increases.  The  probability  of 

correctly  idenƟfying a strong  ICS  in  turn decreases.  In  terms of our  representaƟon  in secƟon 4  this 

implies  that  the  criƟcal  value  𝑠௖  decreases  and  𝑠̂ଶ    (𝑠̂ଵሻ  is  reported  for  a  larger  (smaller)  range  of 

realizaƟons. Accordingly, the uncondiƟonal signal probability Prሺ𝑠̂ଶ) increases and  Prሺ𝑠̂ଵሻ decreases.  

With regard to the auditor’s effort, we observe that it decreases if the focus shiŌs towards the weak 

ICS, no maƩer which signal is observed. IntuiƟvely the increase in 𝑚 renders 𝑠̂ଵ a more reliable signal, 

indicaƟng  strongly  that  the  strong  ICS  is  indeed  present.  At  the  extreme,  it  even  holds  that 

lim
௠→௠శ

Prሺ𝑡ଵ|𝑠̂ଵሻ ൌ 1. If the auditor is confident that the ICS is indeed strong, however, she reduces her 

effort 𝑎ଵ
∗.  
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With respect to  𝑠̂ଶ  the effect  is somewhat reversed: ShiŌing  the AI  focus  towards the weak system 

implies that not only weak ICSs are detected but also strong ones are erroneously classified as weak. 

From the auditor’s perspecƟve, this renders the signal 𝑠̂ଶ less credible. Formally, this is reflected in the 

fact that Prሺ𝑡ଵ|𝑠̂ଶሻ increases in 𝑚. As a consequence, the auditor cannot be so sure anymore that a 

firm’s  ICS  is  really  weak  and  requires  intense  audit  aŌer  𝑠̂ଶ  is  reported.  Thus,  she  reduces  𝑎ଶ
∗   in 

equilibrium. 

As the opƟmizaƟon program (OP) is different from minimizing expected fraud (see ProposiƟon 3), the 

opƟmal soluƟon for 𝑚  in general does not coincide with the fraud‐minimizing level of 𝑚.  

We state this in ProposiƟon 4 and provide a numerical example below. 

ProposiƟon 4: 

The level of 𝑚 that minimizes the expected probability of fraud does not necessarily coincide with the 

level of 𝑚 that minimizes the auditor’s cost. Accordingly, the auditor may pick 𝑚 differently from the 

socially desired level. 

 

To demonstrate the above result, we consider the following example with the parameter values 

 

𝐹 ൌ 𝑃 ൌ 𝐷 ൌ 10;  𝜃 ൌ 0.8;  𝑛 ൌ 0.7;  𝑥 ൌ 3.6;  𝑐 ൌ 2;  𝑏 ൌ 1. 

As becomes  evident  from Figure 3,  ECeffort  has no  local minimum;  the opƟmal  soluƟon  is  a  corner 

soluƟon as in the case of minimizing expected fraud (Figure 4). However, whereas expected fraud is 

minimized at 𝑚 ൌ 𝑚ା, expected auditor effort cost are minimized at 𝑚 ൌ 𝑚ି, see Table 1. 

 

 𝑚ା ൌ 1 െ 𝑛 ൌ 0.3 𝑚ି ൌ 𝑛 െ 1 ൌ െ0.3 

𝛾ଵ
∗ 0.2105 0.2078 

𝛾ଶ
∗ 0.8547 0.8696 

𝑎ଵ
∗ 0.0513 0.3857 

𝑎ଶ
∗  0.6931 1.4697 

𝜔ଵ
∗ 0.32 0.92 

ECeffort 0.9755 0.9448* 

𝐸ሺ𝛾∗ሻ 0.3394* 0.3402 

 

Table 1: Equilibrium values for the numerical example 
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In the example, we have 𝑥̅ ൌ 3.53 and thus 𝑥 ൐ 𝑥 . It follows directly from ProposiƟon 3 that 𝑚 ൌ 𝑚ା.  

In minimizing expected auditor effort, in contrast, the corresponding opƟmal AI specificaƟon requires 

maximizing the precision of signal 𝑠̂ଵ, i.e., 𝑚 ൌ 𝑚ି. Note that switching from a maximum precise signal 

𝑠̂ଶ to a maximum precise signal 𝑠̂ଵ increases effort levels 𝑎ଵ
∗  and 𝑎ଶ

∗  considerably. However, this increase 

in  effort  levels  is  more  than  offset  by  the  sharp  decline  in  the  probability  of  𝑎ଶ
∗, 

1 െ 𝜔ଵ
∗, from 0.68 to 0.08. 

Given this potenƟal conflict of interest, it might be desirable to implement appropriate incenƟves or 

regulatory measures  to  induce  the auditor  to  align  the AI  specificaƟon with  the objecƟve of  fraud 

minimizaƟon. One possible measure is to require the auditor to disclose the AI specificaƟon process. 

However,  the  problem  is  that  an  external  party  is  unlikely  to  possess  sufficient  (firm‐specific) 

informaƟon to assess whether the auditor has specified the AI in the “right” way. 

 

 

 

Figure 3: Expected effort costs depending on 𝑚 
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Figure 4: Expected probability of fraud depending on  

 

6. Conclusion 
 

In  this  paper we  consider  a  game‐theoretic  interaction  between  an  auditor  and  a  client  firm. We 

assume that the auditor uses an AI tool as part of the auditing process. Specifically, the auditor uses AI 

to  detect  possible  weaknesses  in  the  ICS  of  the  client  firm  and  in  turn  revises  her  expectations 

regarding incentives for managerial fraud.  Based on the results provided by the AI, the auditor plans 

her personal audit effort. We assume that the information provided by the AI is informative and that 

the auditor has the option to customize the AI according to her needs.  

While there is considerable hope that AI tools help to improve audit efficiency and audit effectiveness, 

our findings substantiate this hope only partially (at best). We find that part of the auditor’s effort can 

be  replaced  by AI, which  can be  interpreted  as  an  increase  in  efficiency. We also  find  that AI  use 

reduces ex ante incentives for managerial fraud. This is probably beneficial as we can assume that any 

fraud, whether detected or not, is costly for firms or for capital markets. However, the reduction in 

auditor effort in our model goes along with a reduced probability of detecting actual fraud. It is in that 

sense,  that audit effectiveness, or audit quality, decreases  rather  than to  increase. Moreover, AI  is 

unable to decrease the ex ante probability that fraud remains undetected, such that reliability of audit 
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opinions is not improved. Besides, we state that the auditor cannot be expected to customize the AI in 

the best interest of stakeholders but rather maximizes her own payoff.  

While we believe that our model provides some insights into potential effects of AI use, we also realize 

that we neglect some potentially critical aspects in our parsimonious model. In particular we allow the 

auditor to “customize” or “bias” the AI tool according to her needs, but we do not allow the client firm 

to “customize” the data provided in order to mislead the AI and to keep it from detecting a weak ICS. 

Moreover, we do not  address  in which way  the AI  tool  detects  accounting  anomalies  and what  is 

considered a normal pattern as opposed to abnormal patterns. Thus, problems regarding the training 

data, that are frequently considered important, are ignored in our study. 

 

Appendix 
 

Proof of Proposition 1: 

According to our regularity conditions, 𝑐ሺ𝐹 ൅ 𝑃ሻ ൏ 𝑏𝐷𝑃ሺ1 െ 𝜃ሻ holds. Consider a mixed‐strategy for 

the manager where at least one type randomizes with respect to committing fraud.  

The first order condition for optimal auditor effort derived from (1) equals: 

ௗா൫ஈಲ൯

ௗ௔
ൌ ሺെ𝜃𝛾ଵ െ ሺ1 െ 𝜃ሻ𝛾ଶሻ𝑏𝐷exp ሾെ𝑏𝑎ሿ െ 𝑐 ൌ 0.        (4) 

If both manager types randomize, they must be indifferent between committing fraud and not to do 

so: 

𝐹expሾെ𝑏𝑎ሿ െ 𝑃ሺ1 െ expሾെ𝑏𝑎ሿሻ െ 𝑥 ൌ 0          (5) 

𝐹expሾെ𝑏𝑎ሿ െ 𝑃ሺ1 െ expሾെ𝑏𝑎ሿሻ ൌ 0.            (6) 

Note that (5) and (6) cannot hold simultaneously. If (6) holds, the LHS of (5) is negative.  

We therefore distinguish two cases: 

Case 1: We assume that (6) holds in equilibrium, implying that (5) is strictly negative. In that case the 

manager randomizes over committing fraud if the ICS is weak and optimally refrains from committing 

fraud when the ICS is strong. 

Solving (4) and (6) for 𝑎 and 𝛾ଶ, given that 𝛾ଵ ൌ 0, we obtain 
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𝛾ଶ
஻ெ ൌ

௖ሺிା௉ሻ

ሺଵିఏሻ௕஽௉
      and      𝑎஻ெ ൌ

ଵ

௕
ln ቀிା௉

௉
ቁ. 

Case 2: We assume that (5) holds in equilibrium implying that (6) is strictly positive. In that case the 

manager  randomizes  over  committing  fraud  if  the  ICS  is  strong  and  optimally  commits  fraud with 

certainty when the ICS is weak. 

Solving (4) and (5) for 𝑎 and 𝛾ଵ, given that 𝛾ଶ ൌ 1, we obtain 

𝛾ଵ
஻ெ ൌ

೎ሺಷశುሻ
್ವሺುశೣሻିሺଵିఏሻ

ఏ
      and      𝑎஻ெ ൌ

ଵ

௕
ln ቀிା௉

௉ା௫
ቁ. 

Note, however, that we assumed that 𝑐ሺ𝐹 ൅ 𝑃ሻ ൏ 𝑏𝐷𝑃ሺ1 െ 𝜃ሻ holds, implying that 
௖ሺிା௉ሻ

௕஽௉
൏ 1 െ 𝜃. 

As  
௖ሺிା௉ሻ

௕஽ሺ௉ା௫ሻ
൏

௖ሺிା௉ሻ

௕஽௉
൏ 1 െ 𝜃 this implies that 𝛾ଵ

஻ெ ൏ 0 which is impossible.  

Accordingly, the equilibrium derived in case 1 is the only feasible solution. 

                        ∎ 

Proof of Proposition 2: 

(i) Δఊ ൌ  𝐸ሺ𝛾∗ሻ െ 𝐸ሺ𝛾஻ெሻ ൌ െ
௖ሺிା௉ሻ௫ൣ௉ఏሺ௣భା௣మିଵሻమି௫௣మሺଵି௣మሻ൧

஽௕௉ሺ௉ሺ௣భା௣మିଵሻା௣మ௫ሻ൫௉ሺ௣భା௣మିଵሻି௫ሺଵି௣మሻ൯
൑ 0. 

(ii) Define    𝑎஻ெ ൌ ଵ

௕
lnሺ𝑦஻ெሻ   with  𝑦஻ெ ൌ ிା௉

௉
 

and     𝑎ଵ
∗ ൌ ଵ

௕
lnሺ𝑦ଵ

∗ሻ     with 𝑦ଵ
∗ ൌ

ሺிା௉ሻሺ௣భା௣మିଵሻ

௉ሺ௣భା௣మିଵሻା௣మ௫
, 

𝑎ଶ
∗ ൌ ଵ

௕
lnሺ𝑦ଶ

∗ሻ     with 𝑦ଶ
∗ ൌ

ሺிା௉ሻሺ௣భା௣మିଵሻ

௉ሺ௣భା௣మିଵሻି௫ሺଵି௣మሻ
. 

Then the expected auditor effort under AI is 

𝐸ሺ𝑎∗ሻ ൌ Prሺ𝑠̂ଵሻ
1
𝑏

lnሺ𝑦ଵ
∗ሻ ൅ Prሺ𝑠̂ଶሻ

1
𝑏

lnሺ𝑦ଶ
∗ሻ 

From Jensen’s inequality it follows that  
ଵ

௕
ln൫ 𝐸ሺ𝑦∗ሻ൯ ൐

ଵ

௕
𝐸ሺlnሺ𝑦∗ሻሻ ൌ  𝐸ሺ𝑎∗ሻ.  

Since 𝑎஻ெ ൌ
ଵ

௕
lnሺ𝑦஻ெሻ ൒

ଵ

௕
ln൫ 𝐸ሺ𝑦∗ሻ൯, it follows 𝑎஻ெ ൐  𝐸ሺ𝑎∗ሻ.   

(iii) Prሺundetected fraud with AI|fraud is committed in tଵሻ ൌ ሺ𝑝ଵexpሾെ𝑏𝑎ଵሿ ൅ ሺ1 െ

𝑝ଵሻexpሾെ𝑏𝑎ଶሿሻ ൌ
௉ା௫

௉ାி
.   
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As no fraud is committed with the strong ICS in the benchmark setting, the conditional probability 

for it to be undetected is zero. As  
௉ା௫

௉ାி
൐ 0 it increases with AI. 

Prሺundetected fraud with AI|fraud is committed in tଶሻ ൌ ሺ𝑝ଶexpሾെ𝑏𝑎ଶሿ ൅ ሺ1 െ

𝑝ଶሻexpሾെ𝑏𝑎ଶሿሻ=
௉

௉ାி
, which is equivalent to expሾെ𝑏𝑎஻ெሿ. 

It follows directly that 𝜃
௉ା௫

௉ାி
൅ ሺ1 െ 𝜃ሻ ௉

௉ାி
൐ ሺ1 െ 𝜃ሻ ௉

௉ାி
. 

∎ 

 

(iv) Pr(undetected  fraud  with  AI)ൌ 𝜃𝛾ଵሺ𝑝ଵexpሾെ𝑏𝑎ଵሿ ൅ ሺ1 െ 𝑝ଵሻexpሾെ𝑏𝑎ଶሿሻ ൅ ሺ1 െ

𝜃ሻ𝛾ଶሺ𝑝ଶexpሾെ𝑏𝑎ଶሿ ൅ ሺ1 െ 𝑝ଶሻexpሾെ𝑏𝑎ଵሿሻ ൌ
௖

௕஽
.       

∎ 

 

Proof of Lemma 2: 

Note that our previous assumption of signal informativeness, specifically assuming that 𝑝ଵ ൅ 𝑝ଶ ൐ 1, 

now implies that 2𝑛 ൐ 1 ⟺ 𝑛 ൐ 0.5.  

(i) Assume 𝑥 ൏ 𝑥̿ ⟺ ℎଶ ൐ 0. 

From 

 
ௗாሺఊ∗ሻ

ௗ௠
ൌ

ି଼௖ሺிା௉ሻቀ௡ି
భ
మ

 ቁ௫మሾ௫൬௡మቀ
భ
మ

ିఏቁା௡൬ሺଵିఏሻ௠ାఏି
భ
మ

൰ା
భ
ర

ା
೘మ

మ
ା

೘ሺഇషభሻ
మ

ି
ഇ
ర

൰ା௉ሺ௡ሺଵିଶఏሻା௠ାఏି
భ
మ

ሻሺ௡ି
భ
మ

ሻሿ

஽௕൫௉ሺଶ௡ିଵሻି௫ሺଵି௡ି௠ሻ൯
మ

൫௉ሺଶ௡ିଵሻା௫ሺ௡ା௠ሻ൯
మ ൌ 0,  

we derive the solutions for 𝑚ଵ and 𝑚ଶ as given above.  

From 
ௗమாሺఊ∗ሻ

ௗ௠మ ሺ𝑚ଵሻ ൌ െ
ଵ଴ଶସሺிା௉ሻ௖ቀ௡ି

భ
మ

ቁ
ೣమ

ర
௛భ௛మቆ

ඥ೓భ೓మሻ
మ

ାሺ௉ା௫ఏሻቀ௡ି
భ
మ

ቁቇ

஽௕൫ඥ௛భ௛మା௛మ൯
య

൫ඥ௛భ௛మା௛భ൯
య ൏ 0, we conclude that 𝑚ଵ is a local 

maximizer of 𝐸ሺ𝛾∗ሻ.  

Notice that 𝑚ଶ ൏ 0.  We now show that 𝑚ଶ violates the condition 𝑛 െ 𝑚ଶ ൑ 1: 

𝑛 െ 𝑚ଶ ൌ
ඥℎଵℎଶ ൅ 𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥ሺ𝜃 െ 1ሻ ൅ 2𝑥𝑛ሺ2 െ 𝜃ሻ

2𝑥
൑ 1 

⟺ 
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                                ඥℎଵℎଶ ൅ 𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥൫𝜃 െ 1 ൅ 2ሺ2𝑛 െ 𝑛𝜃 െ 1ሻ൯ ൑ 0.                           (11) 

By  assumption ℎଶ ൌ ሺ2𝑛 െ 1ሻሺ𝑃 ൅ 𝑥𝜃ሻ െ 𝑥 ൌ 𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥ሺെ1 െ 𝜃 ൅ 2𝜃𝑛ሻ ൐ 0.   We  now  show 

that  ℎଶ ൐ 0  implies 𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥൫𝜃 െ 1 ൅ 2ሺ2𝑛 െ 𝑛𝜃 െ 1ሻ൯ ൐ 0  and  in  turn  (11)  is  violated.  To 

demonstrate this, we show that 𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥൫𝜃 െ 1 ൅ 2ሺ2𝑛 െ 𝑛𝜃 െ 1ሻ൯ ൐ ℎଶ: 

𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥൫𝜃 െ 1 ൅ 2ሺ2𝑛 െ 𝑛𝜃 െ 1ሻ൯ ൐  𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥ሺെ1 െ 𝜃 ൅ 2𝜃𝑛ሻ 

⟺ 

𝑥൫𝜃 െ 1 ൅ 2ሺ2𝑛 െ 𝑛𝜃 െ 1ሻ൯ ൐ 𝑥ሺെ1 െ 𝜃 ൅ 2𝜃𝑛ሻ 

⟺ 

𝜃 െ 1 ൅ 2ሺ2𝑛 െ 𝑛𝜃 െ 1ሻ ൐ െ1 െ 𝜃 ൅ 2𝜃𝑛 

⟺ 

4𝑛 െ 2 ൐ 4𝜃𝑛 െ 2𝜃 

⟺ 

4𝑛 െ 2 ൐ 𝜃ሺ4𝑛 െ 2ሻ, 

which is a true statement.  It  follows that (11)  is violated and 𝑚ଵ  is the only stationary point  in the 

feasible range.   

(ii) Assume ൒ 𝑥̿ ⟺ ℎଶ ൑ 0.   

Notice that 
ௗாሺఊ∗ሻ

ௗ௠
 can also be written as  

𝑑𝐸ሺ𝛾∗ሻ

𝑑𝑚
ൌ

െ8𝑐ሺ𝐹 ൅ 𝑃ሻ ቀ𝑛 െ
1
2 ቁ 𝑥ଶ ቂ𝑥

2 𝑚ଶ ൅ 𝜇𝑚 ൅ 𝑣ቃ

𝐷𝑏൫𝑃ሺ2𝑛 െ 1ሻ െ 𝑥ሺ1 െ 𝑛 െ 𝑚ሻ൯
ଶ

൫𝑃ሺ2𝑛 െ 1ሻ ൅ 𝑥ሺ𝑛 ൅ 𝑚ሻ൯
ଶ, 

with        𝜇 ൌ
ሺଶ௡ିଵሻ൫௉ା௫ሺଵିఏሻ൯

ଶ
൐ 0, 

𝑣 ൌ
1
2

ሺ2𝜃 െ 1ሻሺ2𝑃 ൅ 𝑥ሻ𝑛ሺ1 െ 𝑛ሻ ൅
1
4

൫𝑃ሺ1 െ 2𝜃ሻ ൅ 𝑥ሺ1 െ 𝜃ሻ൯, 

such that the two solutions of  
ௗாሺఊ∗ሻ

ௗ௠
ൌ 0 can be written as  

 

𝑚ଵ ൌ
ඥ𝜇ଶ െ 2𝑥𝑣 െ 𝜇

𝑥
, 𝑚ଶ ൌ

െඥ𝜇ଶ െ 2𝑥𝑣 െ 𝜇
𝑥

, 
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where 𝜇ଶ െ 2𝑥𝑣 ൌ
௛భ௛మ

ସ
. 

𝜇ଶ െ 2𝑥𝑣 ൏ 0 ሺ⟺ ℎଶ ൏ 0ሻ implies that the term 
௫

ଶ
𝑚ଶ ൅ 𝜇𝑚 ൅ 𝑣 is always strictly positive, which, in 

turn, implies that 
ௗாሺఊ∗ሻ

ௗ௠
൏ 0. Thus, the fraud‐minimizing value of 𝑚 is at the highest possible value of 

it: 𝑚∗ ൌ 𝑚ା ൌ 1 െ 𝑛. 

Assume now ℎଶ ൌ 0. In this case we have a double null, 𝑚ଵ ൌ 𝑚ଶ ൌ
ሺଵିଶ௡ሻ൫௉ା௫ሺଵିఏሻ൯

ଶ௫
൏ 0. The term 

௫

ଶ
𝑚ଶ ൅ 𝜇𝑚 ൅ 𝑣 is  zero  for    𝑚 ൌ 

ሺଵିଶ௡ሻ൫௉ା௫ሺଵିఏሻ൯

ଶ௫
  and  strictly  positive  otherwise  (upward‐opening 

parabola). However, 𝑚 ൌ 
ሺଵିଶ௡ሻ൫௉ା௫ሺଵିఏሻ൯

ଶ௫
 violates the condition 𝑛 െ 𝑚 ൑ 1. Thus,  

ௗாሺఊ∗ሻ

ௗ௠
൏ 0 in the 

feasible range, which implies again that the fraud‐minimizing value of 𝑚 is at the highest possible value 

of it: 𝑚∗ ൌ 𝑚ା ൌ 1 െ 𝑛. 

∎ 

 

Proof of Proposition 3: 

Note that  

 ∆𝐸ሺ𝛾∗ሻ ൌ 𝐸ሺ𝛾∗|𝑚ାሻ െ 𝐸ሺ𝛾∗|𝑚ିሻ ൌ
ଶ௖ሺிା௉ሻ௫మሺଵି௡ሻሾ௉ሺଶఏିଵሻሺଶ௡ିଵሻା௫ሺఏሺଶ௡ିଵሻିଵሻሿ

௕஽௉ሺ௉ሺଶ௡ିଵሻା௫ሻሺ௉ା௫ሻ൫௉ሺଶ௡ିଵሻାଶ௫ሺ௡ିଵሻ൯
.           (12) 

(12) is positive if and only if 𝜃 ൐
ଵ

ଶ
 and  𝑥 ൏

ି௉ሺଶఏିଵሻሺଶ௡ିଵሻ

ఏሺଶ௡ିଵሻିଵ
ൌ 𝑥̅ , implying that 𝑚∗ ൌ 𝑚ି ൌ 𝑛 െ 1 in 

these cases. 

In all other cases, (12) is negative. Since, according to Lemma 2, the optimal value for 𝑚 for 𝑥 ൏ 𝑥̿ 

lies at the right (𝑚ା) or left (𝑚ି) boundary of 𝑚, and for 𝑥 ൒ 𝑥̿ it is always at the right boundary, it 

follows that 𝑚∗=𝑚ା ൌ 1 െ 𝑛 in all remaining cases.  

∎ 
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