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Availability of Al tools and their effect on the

auditing process

Abstract

In this paper we model the interaction between an auditor and a client firm. The client firm’s manager
can either report truthfully or commit fraud. The auditor needs to plan a two stage audit that allows
to detect fraud. In the first stage an Al tool is employed that provides a signal about the quality of the
client’s internal control system (ICS). Classifying the ICS as weak or strong, the signal alters the auditor’s
expectations regarding the client’s fraud probability. In the second stage, the auditor decides about
her audit effort conditional on the information provided by the Al. Comparing the Al setting to a
benchmark setting without Al use, we find that employing the Al tool reduces the manager’s incentives
to commit fraud. At the same time it reduces the equilibrium effort provided by the auditor. As a
consequence, the probability that actual fraud is detected remains unchanged. We extend our model
and allow the Al tool to be customized such that it can either focus on detection of the weak ICS, the
strong ICS, or on both equally. We find that the Al specification that minimizes ex ante probability for
fraud not necessarily coincides with the specification that minimizes auditing costs. It follows that the
auditor in charge of customizing the Al cannot necessarily be expected to do so in a fraud minimizing
way.

Keywords: Artificial Intelligence, Auditing, Game Theory, Fraud detection



1. Introduction

Recent advances in Al seem to affect almost all types of professions including the auditing profession.
In particular, Al tools are either expected to replace standardized but labor intensive tasks or they do
so already.! As such, Al is supposed to increase labor efficiency but also changes the job descriptions

for many employees.

With regard to the auditing profession, practitioners as well as scientists envision that Al use will not
only increase audit efficiency as it relieves auditors from time consuming tasks, but might also help to
improve audit effectiveness as it increases audit quality and/or reduces fraud. Empirical evidence that
hints in this direction has been presented in a recent study by Law and Shen (2024), who find that Al
use reduces the number of misspecified going concern opinions and also achieves more accurate
assessments of internal controls in audits. In an earlier contribution Issa et. al. (2016) argue that the
availability of Al facilitates the automation of routine tasks in auditing but may also be used as an
assistant for non-routine tasks, leaving the decision authority with the auditor. Kokina and Davenport
(2017) emphasize that Al may be particularly relevant in auditing with respect to identifying anomalies.
On a broader level, Al use might even be considered as a means to restore market participants’ trust

in financial statements that allegedly suffered as a result of several high profile audit failures.?

In this paper, we analyze a game-theoretic interaction between an auditor and a client firm in order to
shed some light on the effects of Al use in auditing. In particular, we consider a client firm, whose
financial statements need to be audited, and an auditor. The manager of the client firm can set up the
financial statements correctly or commit fraud. The auditor, in turn, needs to plan her audit including
the use of Al In line with Eisikovits et.al. (2024) Al is perceived as “a group of statistical machine
learning technologies which recognize patterns in large data sets and offer predictions based on those

patterns” in what follows.

In our model Al is used to assess the client firm’s internal control system (ICS), which can be either
strong or weak. Specifically, we assume that the Al detects discrepancies from expected patterns in
the data known as accounting anomalies. A large amount of anomalies hints towards a weak ICS.
Accordingly, the Al tool predicts the ICS to be wealk, if it detects a sufficiently high amount of anomalies

and to be strong otherwise.? If the ICS is weak, however, it is easier for the client firm’s manager to

1 See, Webb (2020).
2See e.g. Blake (2024).
3 See Kokina and Davenport (2017) and Law and Shen (2004) from above but also, e.g. the German
Wirtschaftspriferkammer (2025).
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override the controls and to commit fraud.* Once the auditor has observed the ICS classification

provided by Al, she decides upon any follow up auditing activities.

We consider two different settings. In the first setting we assume that the classification, or signal, the

Al tool provides is informative but imperfect and that its precision is given exogenously.

We find that the additional information provided by the Al results in a decrease in audit effort. This is

pretty much in line with the idea that Al replaces some of the auditor’s tasks and enhances efficiency.

However, we also find that the probability for actual fraud to remain undetected increases with Al,
rather than to decrease. Simultaneously, the probability that a client firm’s manager commits fraud
decreases. Finally, the two effects, namely the increase in undetected fraud and decrease in the
probability that fraud is committed, compensate each other in equilibrium. As a result, the ex ante
probability that fraud is not detected remains unaffected by Al use. Accordingly, our model suggests
that audit quality, at least if defined as the probability that actual fraud is detected, suffers in the
presence of an Al tool. However, Al makes up for this outcome by discouraging fraudulent behavior in

the first place.

In the second setting we consider a more sophisticated Al tool. We assume that the auditor can
“customize” the tool and specify a critical amount of anomalies that suffices for the ICS to be classified
as weak. That way, she can focus on identifying a weak control system or on identifying a strong control
system or she can specify the Al to be “neutral” and to focus evenly on both. However, if the tool
focuses on detecting the weak system, it will inevitably misspecify a strong system as weak with

considerable positive probability and v.v.

In a first step of our analysis, we aim at minimizing the probability for fraudulent behavior. We find
that it is either optimal to fully focus on the weak system or on the strong one. It is never optimal to
focus on both evenly. If the strong system is more likely than the weak one and additional costs for
committing fraud in the presence of a strong system are sufficiently small, it is optimal to focus on the

strong system. Otherwise focusing on the weak one minimizes the probability that fraud is committed.

However, while reducing fraud is probably desirable from an investor’s or capital market’s perspective,
the actual choice about the Al specification is made by the auditor. Therefore, we investigate in a
second step which Al specification maximizes the auditor’s payoff. It turns out that the choice that

maximizes the auditor payoff does not always coincide with the one that minimizes expected fraud. It

4 See Smith et.al. (2000) for a similar argument.



follows that we cannot necessarily expect that Al applied in auditing is used in the most desirable way

from a capital market or even general public perspective.

Our paper is closely related and somewhat builds on Smith et al. (2000). They consider a setting in
which an auditor can split his effort between two tasks. The first task aims at identifying a possibly
weak control system. Given the system has been identified as weak or not, the auditor decides about
additional audit effort referred to as substantive testing. While the benchmark case in their setting and
ours is similar, the subsequent analysis differs in various respects. Most important, Smith et.al. assume
that the auditor spends effort to detect a weak ICS while we assume that an Al tool is present that
replaces the auditor. Accordingly, in their model effort costs arise for identifying a weak system and
the auditor might decide not to spend any effort in doing so, if e.g. costs are too high. In our paper, we
assume that using the Al is costless or, at most, caused an up-front investment expenditure which is
sunk. Moreover, Smith et.al. (2000) assume that the auditor either detects a weak system or fails to
detect it. The probability to classify a strong system as weak is zero by assumption. In our setting, the
Al produces a signal that classifies the ICS as strong or weak, while both classifications can possibly be
wrong. In addition, and in order to reflect typical Al attributes, we assume that the auditor can
customize the Al tool such that detection probabilities become endogenous. Overall, Smith et.al.
(2000) focus on optimal effort allocation and resulting reductions in audit costs. In our paper, the main
focus is on whether Al reduces auditor effort and on its effect on incentives for managerial fraud and

fraud detection.

Our analysis is also inspired by Kwon (2005). Investigating the effect of accounting conservatism on
management incentives, he assumes that an accounting signal is observed that needs to be converted
in the financial statements to either state a high or a low result. Depending on the threshold that needs
to be exceeded to justify a high report, he classifies the accounting system as liberal, neutral, and
conservative. In a somewhat similar approach we assume that the Al tool is customized to either detect
a weak and a strong ICS with identical probability (neutral), or to focus either on the weak or the strong

system.

The rest of the paper is organized as follows. The next section presents the model. In section three we
consider a benchmark case in which no Al tool is available. Section four analyses the setting in which
an Al tool is available that detects the client’s type of control system with exogenous probability. We
extend the model to allow for endogenous Al specification in section five and subsequently present

optimal Al specification in order to minimize fraud probability and auditing costs. Section six concludes.



2. Model

We consider a client firm, whose financial statements need to be audited, and an auditor or audit firm.
The auditor can use an Al tool that offers insights with regard to the client firm’s internal control

system.

There are two types of client firms: Firms that have a strong internal control system (ICS) implemented
and firms with a weak one. If the ICS is weak, the number and size of irregularities and discrepancies
from expected patterns in the financial data, so called accounting anomalies, tends to be higher than
with a strong ICS. Therefore, a weak ICS makes it relatively easy for the manager of the client firm to
commit and hide fraud, while doing so is costly if the controls are strong. We denote the firm with the
strong ICS a type-1 firm (t;) and the weak ICS firm a type-2 firm (t,) in what follows. The ex ante
probability for a type-1 firm to be presentis 8 € (0,1) and for a type-2 firm itis 1 — 0. If a type-i firm,
with i = 1,2, is present, the manager commits fraud with probability y;, which is endogenous in the

model.

The Al tool analyzes the accounting data provided by the client in order to detect accounting
anomalies. Based on the amount of anomalies detected, it provides a signal §; or §, that either

classifies the client as type-1 or type-2 firm.

In a first part of our analysis, we assume that the Al identifies the client type correctly with some
exogenously given probability. p; denotes the probability that the strong ICS firm is identified correctly
while p, refers to the weak type’s identification. The auditor uses the signals to revise his beliefs

regarding the client’s type and the related fraud risk, and plans audit effort accordingly.

In a second step, we will introduce additional assumptions regarding the Al tool’s procedure.
Specifically, we allow the auditor to instruct the Al to either focus equally on both types of clients or
to place relatively more emphasis on one type than on the other. Forinstance, the auditor may specify
the Al procedure in such a way that it detects one type of client correctly with certainty but misspecifies

the other type with considerable probability. Formally, we endogenize the probabilities p; and p,.

The course of the game is as follows. In a first step nature determines whether a type-1 or a type-2
client is present. While the type is unobservable for the auditor, the firm’s manager learns the type of
ICS and decides whether to commit fraud. If an Al-tool is available, it provides a possibly imperfect
signal §;, j = 1,2, that either indicates that the internal control system of the firm is strong or weak.
The auditor decides about audit effort a;, given the information §j the Al tool has provided. The larger

the audit effort, the higher the probability to detect fraud during the auditing process. If no fraud has



been committed, the auditor never detects fraud (no false detection). After completing the audit, an

audit opinion is formed and made public.

Payoffs
M A
Auditor
é,k_‘)‘) —P—x —ca,
F—x —D —cay
Al

O _Ca,l

—P —x —ca,

Nature

F—x —D —ca,

0 —ca,

—-P —cay

F -D —caq

0 —cay

0 —ca,

§etected d(a,) -P —ca,

<) F —D —ca,

Figure 1: Game tree.



We further assume that an undetected fraud provides the manager with a benefit F. If the manager’s
fraud is detected, that results in a penalty P. In line with the characterization above, committing fraud

in the presence of a strong ICS causes costs of x for the manager. It is costless with a weak ICS.

The auditor collects some fixed fee for the audit, which we neglect in what follows. Al use is assumed
to be costless.® If she fails to detect fraud, this leads to future costs of D, e.g., due to loss in reputation

if the fraud is detected later on by another party.

The auditor performs effort a;, which increases the probability of detecting fraud. Specifically, d(aj) =
1-—- exp[—baj] is the probability of detecting fraud conditional on fraud having occurred. b > 0 is a
parameter that reflects the effectivity with which effort increases this probability. Note that the higher
a;, the larger the probability to detect fraud for a given b. If a; = 0, however, d(0) = 0 follows and
fraud is never detected. Performing effort causes a disutility from working hard equal to ca;, with ¢ >

0. The course of the game is reflected in the game tree depicted in figure 1.

. . ¢ F(p1+p2—-1) P(p1+p2—-1) P(p1+p2—-1)? 0
To sustain any equilibrium of our model we assume x < min{F, (P17, ), (P1+pz=1) P(pitps )_}

Pz S A
and
p OH
c(F + P) < Db(1 — 6) min ,(1_6)(P6(p1+1912-1—1)2—x(1—p2)p2)' ’

P(1-0)(p1+P2—-1)2—x((p1+Pp2—1)20—(1-p1) (1-2p;) —p2
withH = P((p1 + p2 — 1) —x(1 — p2))(P((p1 + p2 — 1) + xp3).

These regularity conditions ensure that the manager’s fraud probabilities are always between zero and

one and that the auditor’s effort is non-negative.

3. Benchmark Case: No Al Available

In a first step, we consider a benchmark setting in which no Al tool is available.

With no Al in place, the auditor receives no type-specific information so that her effort (a) is
unconditional on any observation. Accordingly, the auditor needs to decide about audit effort based
on ex ante expectations regarding the client type. She incurs costs from the audit, which she aims to

minimize:

> One might assume that acquisition costs arise for the Al tool, which are sunk later on.
8



E(M4) = —0y,(1 —d(@))D — (1 — 0)y,(1 — d(a))D — ca
=[-0y, —(1 - 9)}’2](1 - d(a))D —ca (1)

As described above, costs arise from reputation damage D if the manager does commit fraud and this

remains undetected by the auditor. In addition costs ca arise from auditing effort.

The manager, in contrast, learns the type of ICS present before he decides about committing fraud.
If the ICS is strong (t;), expected payoff is

E(M|ty) = y1[F(1 - d(a)) — Pd(a) — x|. (2)
If the ICS is weak (t,), expected payoff is

E(MM|t,) = y,[F(1 — d(a)) — Pd(a)]. (3)

Note that there is an extra cost of x for committing fraud only if the ICS is strong. Besides, if the

manager commits fraud he gets F if he gets away with it and pays a penalty P, if he is caught.

The manager maximizes his payoff by picking his fraud probabilities y;, i = 1,2, as best responses to
the conjectured auditor effort. The auditor maximizes her payoff (minimizes her cost) by picking

auditing effort a optimally. Thus, she maximizes (1), as a best response to the conjectured y; and y,.
Proposition 1:

_ c(F+P) d aBM _ lln [F+P]
b

There exists a unique equilibrium in which y2M = 0, yBM = SDPI=0) ——| holds.

All proofs are relegated to the appendix.

Proposition 1 states that the equilibrium consists of a mixed strategy played by the manager if the ICS
is weak, a pure strategy of no fraud if the ICS is strong, and a pure strategy played by the auditor in

picking a.

Intuitively, the manager is willing to randomize between committing fraud and not to do so, only if his
expected payoffs are equal. In the absence of fraud, his payoff is zero. In the presence of fraud, the
manager’s payoffs differ in the type of ICS, as shown in (2) and (3). It follows directly that the manager
cannot be indifferent between committing fraud and not doing so in both types simultaneously. We

demonstrate in the proof of Proposition 1 that the only equilibrium contains an effort choice a of the



auditor that renders the manager indifferent when facing a weak 1CS.® This implies that the manager
strictly prefers not to commit fraud if the ICS is strong. If the ICS is weak, however, the manager picks

the probability for committing fraud, y,, such that the auditor’s effort choice is indeed optimal.

Corollary 1:

c(F+P). T
bDP

The ex ante probability for fraud to arise in the benchmark setting equals (1 — 8)yZM = he

conditional probability of fraud to remain undetected in the presence of fraudulent behavior is 1 —

d(aB®M) = exp[—baBM] = F%. Accordingly, the ex ante probability for fraud to remain undetected is

(1-0)yM(1-d@@™) = =

Given the equilibrium amounts of Y™ and a®M as derived in Proposition 1, we can easily calculate
the probability for fraud to arise and the conditional and ex ante probability that fraud remains
undetected by the auditor. Note that the ex ante probability for fraud increases in the manager’s
benefit from fraud, F, and the cost of auditor effort, c. It decreases in the auditor’s detection efficiency
b, her reputation costs, D, and the penalty, P. In contrast, the conditional probability for fraud to
remain undetected increases in P and decreases in F. Now the ex ante probability for fraud to remain
undetected, is independent of managerial benefits and costs from committing fraud. As, P and F
affect the probability for fraud to be committed but also the conditional probability that is undetected,
in equilibrium both effects cancel each other out, which is important for later reference. Our

benchmark result is equivalent to the one in Smith et.al. (2000).”

4. Al-tool is available

If the auditor uses the Al-tool, she observes the signal from the tool before she chooses her auditing
effort. The signal either states that the ICS is strong (signal §;), or that it is weak (signal $,). We assume

that the Al tool’s signals are imperfect but informative?®, implying that the following conditions hold for

p1 = Pr(3;1t;) and p, = Pr(3,[t,):

& Assuming, in contrast, that he is indifferent if the ICS is strong would result in a violation of or previous
regularity conditions, see the appendix.
7 See Smith et.al. (2000), Proposition 1.
8 See also Kwon (2005).
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Prn<<1L,p,<1,and2 >p; +p, > 1.

It follows that at least one signal realization is informative about the underlying type of ICS, i.e., p; >
0.5 for j =1 or = 2, it even might be perfect. The other one might be below or above 0.5. Both,

however, are “on average” informative about the underlying types.

The respective payoff functions in the presence of the Al-tool are as follows. The manager’s expected

payoffs depending on the observed type of ICS, t;, are given by

E(I) = y1[p, (Fexp[—bay] — P(1 — exp[—ba,]) + (1 — p;) (Fexp[—ba,] — P(1 —
exp[—ba,])] — x, )

E(T1Y) = 72[(1 = p,) (Fexp[~bay] — P(1 — exp[~ba]) + p,(Fexp[~ba,] — P(1 — exp[~ba,])].
®)
Note that a;, j = 1,2,in (7) and (8) refers to the auditor’s effort choice, given she has observed $; from

the Al tool. As she picks her effort only after she has observed the output from the Al tool, she

maximizes her expected payoff conditional on the signal provided.

E(HA|§1) = _DeXp[_ba1](Y2 Pr(t,18,) + ler(t1|§1)) —Cay, (9)

E(M4]38;) = —Dexp[—baz](yz Pr(t,|$;) + Y1P7'(t1|§2)) — Cday, (10)
Ay (1-0)1-py) 8. — 0(1-p4) 2\ — 0p1

where  Pritl$1) = G vy DTG = ga i ey P = Gt ey
(1-8)p,

Pr(t132) = g, nrazamy

In equilibrium {y7, v, aj, a3} the manager plays a mixed strategy for both types of ICSs and the auditor
chooses pure-strategy audit efforts a; conditional on the signal revealed by the Al. More specifically,
audit efforts are chosen such that the manager is indifferent between committing fraud and not doing
so, no matter whether the ICS is strong or weak. In addition, the manager picks the probabilities of
committing fraud y; and y, such that the auditor indeed finds it optimal to pick audit efforts a; and

a, as described before.

The manager is indifferent between committing fraud and refraining from it under both types of ICSs

if and only if:

—P + exp[—ba,](F + P)(1 — p;) + exp[—ba,|(F + P)p; —x =0,

—P + exp[—ba,]|(F + P)(1 — p,) + exp[—ba,|(F + P)p, = 0.
11



The first-order conditions for the optimal auditor efforts are given by:

dE(HA|§1) _ bDexp[—bay]y,(1 —p,)(1 —0) + bDexp[—ba,ly,p,6 —c
day 1-p)(1—-6)+p,6 1-p)(1—-6)+p,6

=0,

dE(HA|§2) _ bDexp[—ba,ly,p,(1 —6) bDexp[—ba,ly;(1—p,)6 _
da, p,(1—6)+ (1 —py)0 p,(1—6)+ (1 —py)0

Solving the four equations for {y;,v,, a;, a,} results in:
Lemma 1:

The equilibrium values for fraud and auditor effort are given by:

, _ c(F + P)[P(p1 + pz — 1?6 + (p2 — Dp,x]
n bDO[P(py +p; —1) — (1 — p)x][P(py + p2 — 1) + pox]’

. _CF+P)P{@:+p, — 1)2(60 — 1) + (py + 2p; — 1 — 2p1p, — 03 + (p1 + p2 — 1)?6)x]
vz bDp(0 — DIP(p1 + ps — 1) — (1 — p)A[P(1 + P2 — 1) + pox] '

a; =

((F + P)(py +p2 — 1))
P(py +p; —1) +pox)’

*

a, =

1 < (F+P)pi+tp2—1) )
El’l .

P(p1 +p2—1) — (1 —p)x

It follows that

E(y") = 0y; +(1—-0)y;
_ c(F+P)(py+ps — 1)[P(P1 +p,— 1) +x(2p2 -1-0(p; +p2— 1))]
Db(P(py +p2 — 1) + p2x)(P(py + p, — 1) —x(1 — py))

)

o L (F+P)pitp,— 1) L F+P)pitpa-1)
E(a’) = Pr(8)) b n (P(P1 +p,— 1D+ P2x> +Pris) bln <P(P1 +p, -1 —-(1- Pz)x>

holds.
Comparing the results from Lemma 1, we observe that a; > aj and y; > y5. Intuitively, a type-1 firm

has weaker incentives to commit fraud than a type-2 firm as it is more costly to do so. As the auditor

12



is aware of this fact and the signal received from the Al is informative, she spends more effort on

detecting fraud if the Al produces $, then if she observes 3;.

Comparing the findings from the benchmark setting and the setting with Al we obtain the results stated

in Proposition 2.

Proposition 2:

(i) The ex ante probability for fraud to arise is lower in the presence of Al than in its absence.

(ii) The ex ante expected auditor effort is lower in the presence of an Al tool than in its
absence.

(iii) The conditional probability for fraud to remain undetected increases with Al if the ICS is

strong, is unaffected if the ICS is weak and increases in expectation.
(iv) The ex ante probability for fraud to remain undetected is unaffected by the presence of

an Al tool.

The results from Proposition 2 show that (i) an Al tool helps to reduce the ex ante probability for the
client firm’s manager to commit fraud. At the same time the Al tool’s contribution to detect fraud
somewhat replaces the auditor’s work, such that (ii) auditor effort decreases in equilibrium. However,
the “on average” reduction in the auditor’s effort also increases the probability that she does not
detect fraud if it is present as stated in (iii). It is in that sense that audit quality is reduced in the
presence of an Al. In equilibrium the decrease in the probability to commit fraud along with an
increased probability that actual fraud is not detected implies (iv), the ex ante probability of fraud to

remain undetected is unaffected.

5. Endogenous Al-signal provision

So far we assumed that the conditional probabilities for the Al-generated signals to be correct, namely
p; = Pr(§;|t;) with i = 1,2, are exogenously given. In what follows we relax this assumption and rather
allow the auditor to specify detection probabilities. As we will demonstrate below, the auditor can
either decide to equally focus on both types of clients, or to put emphasis on one type at the cost of
the other. E.g., the auditor may consider correct detection of the weak ICS particularly important. In

that case she can instruct the Al to detect the weak ICS with a large probability, or even with certainty.

13



Doing so, however, comes at the cost that the strong ICS will be classified as a weak one with larger

probability.

5.1. Additional structural assumptions

To endogenize detection probabilities, we model the amount® of accounting anomalies present in the
financial data as a continuous stochastic variable § and we denote its realization by s. We assume that
the distribution of § differs in the type of client such that the Al “picks” the actual amount of anomalies
from one out of two distributions. Specifically, we assume that the amount is uniformly distributed on
[g, El] if the ICS is strong, t = t;, and it is uniformly distributed on [EZ,E], if the ICS is weak, t = t,.
Assuming that s < s, <5; <5 ensures that a firm with a strong (weak) ICS exhibits accounting
anomalies in a lower (upper) range. This is in line with our previous assumption that anomalies tend
to be higher with a weak ICS. However, as the distributions overlap, it is not necessarily possible to
infer the type of client from the observation of s. We further assume that s; —s =s—s, = ¢ for

simplicity. Hence, the pdf and cdf conditional on t; and t, are given by:

1 s—s _
f1=f(slt1)=glF1=F(S|t1)= 6_’§SSS51

S =S
5

1 —
fz=f(SItz)=§,Fz=F(SItz)= ,S; <S5

Our distributional assumptions are depicted in figure 2. The dotted line refers to the firm with a strong

ICS, t1, and the dashed one to the firm with a weak one, ¢,.

® The “amount” of accounting anomalies is representative for a score produced by the Al that incorporates
number and size of the anomalies.
14
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Figure 2: Probability distribution functions and cumulative distribution functions of signal s conditional on client type t;.

Now the Al detects the amount of anomalies s and classifies the firm as either type-1 or type-2 client,
tantamount to a report of either §; or §,. For the Al to make this classification, the auditor needs to

prescribe a critical s€ such that $; is reported if s < s€ and §, gets reported if s > s€ holds.

One way to do this is to specify s€ in such a way that the conditional probability for the report to be

correct is identical for both types of clients. We call this a neutral Al specification.

It implies that s¢ = s°, where s° is implicitly defined by F;(s°) = 1 — F,(s°) such that s = Szi =

§1+£2

. Defining F;(s%) = 1 — F,(s%) = n, we can write the conditional probabilities as

p1 = Pr($;|t;) =n  and p2 = Pr(3;|t;) = n.

15



Alternatively, s¢ can be shifted in one or other direction such that s¢ = s° — A. The Al now reports §;
if s < 5% — A holds and $, otherwise. s€ is naturally restricted such that s, < s¢ < 5, implying that

sO—5, <A<s%—s,.10

As A= 0 implies that the probability of correctly identifying one type of firm increases while the one
for the other type decreases, we refer to this as a non-neutral Al specification. The resulting detection

probabilities can be written as follows.

pr=Pr($|t) =F(s°—A) =F(GY)->~=n-m and

|

P2 = Pr(5alty) = 1= F,(° = 8) = 1= Fy(s) + 5 =n+m
S —— 9,
n m

If the Al is specified such that s€ is at its upper bound, 54, this implies that

50_51

s0—5 . _
P = F,(s%) — Tl = 1, or, equivalently, m = m™ = —,

so that a type-1 firm is always correctly identified, while
0 50—51
p2=F2(S)+T<1

In contrast, if s€ is at its lower bound, s, it follows that

s%-s,

6 ’

0_
P, =1—F,(s%) + % =1, or, equivalently, m = m* =

which means that a type-2 firm is always correctly identified, while p; < 1 results. (From the lower

and upper bound for A, it follows directly that m~ < m < m™ must hold.)

Thus, the higher m, the more precise signal §, becomes in identifying a type-2 firm (weak ICS), but at
the same time the less precise signal §; becomes in identifying a type-1 firm (strong ICS), and, vice

versa. Accordingly, if the strong ICS is identified with certainty, m = m™,
pp=n—m =1&m =n-—1 results,
while, if the weak one is identified with certainty, the principal picks m = m* such that

p,=n+mt =1 m*=1-n holds.

10 Doing so ensures that the Al never classifies the firm as a type that arises with zero probability given the
observed s.
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5.2. Optimal Al specification

With the additional structure in place, we can now proceed to identify optimal Al specifications. We
consider two scenarios below. In the first scenario, we focus on the Al specification that minimizes the
expected fraud level. Such a specification might be considered as the one that is desirable from a
capital market or investors’ perspective. In the second, we acknowledge, however, that the
specification of the Al is most likely a choice of the auditor. Therefore, we analyse the auditor’s

incentives to pick a particular Al specification.

5.2.1. Al specification to minimize expected fraud level

Inserting p; = n —m and p, = n + m we get the expected level of fraud depending on m:

4c(F+P) (n—% )[P(n—§)+x<m+(1—9)n+%(9—1))]
pb(P(2n-1)-x(1-n-m))(P2n—-1)+x(n+m)) *

E(y*(m)) =

dE(y*
Minimizing E(y*(m)) with respect to m and solving the optimality condition (:r/l ) _ 0, we obtain

two candidates for local extrema of E(y*):

i Jhihy + (1= 2n)(P +x(1 - 6))

1 2x

_ —yhihy + (1 = 2n)(P + x(1 - 6))
= o )

m;
withh; =h+x,h, =h—xandh = (2n—1)(P + x6) > 0.

For further analysis we define two critical values for x:

_ —PR6-1)(2n-1)
X = )

62n—1)—1
__ —P@2n-1)
*Ton—1D -1

with X > x.
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Lemma 2:

(i) If x < X, the only stationary point of E(y*(m)) within the feasible range is a local maximum.
Accordingly, the minimum expected fraud is obtained at either the left or the right boundary
of m.

(ii) If x > 7, 2£90
dm

< 0 for all (feasible) m. It follows that the expected fraud level is minimized

at the upper bound of m.

In order to figure out whether expected fraud for x < X is minimized at m* or m~, recall from above
thatm™ = 1 —nandm™ = n — 1. Inserting these expressionsinto AE(y*) = E(y*|m*) — E(y*|m™)

results in

2c(F+P)x*(1—-n)[P26 —1)2n—1) +x(6(2n — 1) — 1)]
bDP(P(2n — 1) + x)(P + x)(P(2n — 1) + 2x(n — 1))

AE(y*) =

Interestingly, Lemma 2 shows that it is never optimal to pick a neutral specification of the Al when the
goal is to minimize expected fraud probability. Moreover, from Lemma 2 (ii) we observe that it is
optimal to focus on the weak ICS, whenever the cost of committing fraud in the presence of the strong
system is sufficiently high, that is x = X holds. If x is below X, we observe from (i) that it might either
be optimal to focus on the strong system or on the weak one. Which alternative is optimal once again
critically depends on the cost of fraud, x, but also on the probability of types, 8. This is stated in

Proposition 3.

Proposition 3:

In order to minimize the expected fraud probability E (y*(m)), m* needs to be chosen as follows.

1
m =n-—1 if9>§andx<f

mt=1-n else

Proposition 3 states that m* = m™ is optimal under specific conditions. Otherwise m* = m™ is

optimal.

Recall that m* = m™ implies that the Al tool is specified in such a way that it detects the strong system
with certainty. This is achieved at the cost of reducing the probability to identify the weak system

correctly. According to Proposition 3, doing so is only optimal if the strong system is a) more likely than
18



the weak one and b) the additional cost of committing fraud under a strong system is sufficiently low.
Both aspects combined imply that the auditor not only expects a strong ICS to be present but also that

management fraud comes with it. It is therefore optimal to specify the Al accordingly.

In the absence of either a) or b), in contrast, it is optimal to specify the Al to detect the weak ICS with

certainty and accepting that a strong ICS is classified as weak with positive probability.

Intuitively, if the extra cost of fraud x is sufficiently high, the auditor expects the probability of fraud
to be present much smaller if the ICS is strong than if it is weak. It is therefore important to identify
the weak system with certainty to ensure a proper audit, whenever the signal indicates a large audit
risk. Moreover, classifying a low-risk client erroneously as the high-risk type, results in overly high audit
effort for the type 1 client. Anticipating the possibility of an intense audit as a result of misclassification,
the manager of a strong ICS firm is further discouraged from committing fraud. It follows that focusing
on the weak type is the optimal strategy in order to minimize expected fraud. However, even if the
extra cost x is not particularly high, it suffices that the weak ICS is more likely than the strong one, to

render m* = mt.

5.2.2. Al specification to maximize auditor utility

From the previous section it turns out that in order to minimize the probability for fraud it is optimal
in many scenarios to focus on the weak ICS. This implies that the Al produces the signal $, not only if
the ICS is weak, but also with positive probability if it is strong. Observation of §,, as described above,
triggers a large audit effort and in turn reduces incentives for fraud. Such an effort intensive approach,
however, might not be in the best interest of the auditor. Rather than to minimize fraud probability,

the auditor is interested in maximizing the expected payoff from the audit which, in equilibrium, equals
E(M#4*) = —c[Pr(8;) - aj + Pr(8;) - a5] — D - Pr(Fraud undetected with Al). (13)

From Proposition 2 (iii) we already know that Pr(Fraud undetected with Al) is constant and therefore
unaffected by any specification of m (it is equal to biD). The first term in (13) is the auditor’s loss from

conducting effort.
Thus, the auditor picks m in order to minimize his effort costs

ECetort = C[PI‘(§1)' a; + PI‘(§2)' a;] .
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Note that Pr(8,) = 1 — Pr(§;) and that observation of a signal §; always triggers the corresponding
effort choice a; from the auditor, i.e., Pr($;) = Pr(a = a;). The equilibrium values of Pr(§;) and a;
have been derived in Proposition 2 and depend on m a via p; and p,. Using these equilibrium values,

expected effort costs can be written as

ECefort = 7 [w1 In(y1) + (1 — wD)In(y)]

S O

with

(F+P)(2n-1)
P(2n—-1)+x(m+n-1)

(F+P)(2n-1) ., & 1 * ¥
"D g5 =1in(y3) andy; =

« _ 1 * . _
a1 = bln(yl) and 1= P2n-1)+x(m+n)’

w; =Pr(8;))=Pr(a=aj)=1—-m—-n—-6(1—-2n).

Thus, the auditor’s optimization problem with regard to m is

min ECefore = 3 [07 In(y}) + (1 — 0DIn(y3)]

subjecttom™ <m < m*.

Minimizing the expected effort costs, the auditor faces a trade-off between the levels of effort and their
probabilities of occurrence. If she increases m by a marginal unit, both efforts, aj and a3, decrease;
with the reduction being stronger for effort a;. At the same time, an increase in m decreases the
probability that aj occurs, w], and accordingly increases the probability that a; occurs, 1 — wj. Thus,
the optimal choice of m trades off the reduction in both efforts against the increase in the probability
of a; (and the corresponding decrease in the probability of ay), i.e., the effort for which the reduction

caused by an increase in m is stronger.

To get the intuition for the above results, recall that an increase in m is equivalent to specifying the Al
in such a way that the probability of correctly identifying a weak ICS increases. The probability of
correctly identifying a strong ICS in turn decreases. In terms of our representation in section 4 this
implies that the critical value s¢ decreases and §, (8;) is reported for a larger (smaller) range of

realizations. Accordingly, the unconditional signal probability Pr($,) increases and Pr($;) decreases.

With regard to the auditor’s effort, we observe that it decreases if the focus shifts towards the weak
ICS, no matter which signal is observed. Intuitively the increase in m renders §; a more reliable signal,
indicating strongly that the strong ICS is indeed present. At the extreme, it even holds that

lim Pr(t,|8;) = 1. If the auditor is confident that the ICS is indeed strong, however, she reduces her
m-m

effort a;.
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With respect to §, the effect is somewhat reversed: Shifting the Al focus towards the weak system
implies that not only weak ICSs are detected but also strong ones are erroneously classified as weak.
From the auditor’s perspective, this renders the signal §, less credible. Formally, this is reflected in the
fact that Pr(t,|3,) increases in m. As a consequence, the auditor cannot be so sure anymore that a
firm’s ICS is really weak and requires intense audit after $, is reported. Thus, she reduces a; in

equilibrium.

As the optimization program (OP) is different from minimizing expected fraud (see Proposition 3), the

optimal solution for m in general does not coincide with the fraud-minimizing level of m.
We state this in Proposition 4 and provide a numerical example below.
Proposition 4:

The level of m that minimizes the expected probability of fraud does not necessarily coincide with the
level of m that minimizes the auditor’s cost. Accordingly, the auditor may pick m differently from the

socially desired level.

To demonstrate the above result, we consider the following example with the parameter values

F=P=D=10;0=08,n=07,x=36;c=2; b=1.

As becomes evident from Figure 3, ECgforc has no local minimum; the optimal solution is a corner
solution as in the case of minimizing expected fraud (Figure 4). However, whereas expected fraud is

minimized at m = m™, expected auditor effort cost are minimized at m = m™, see Table 1.

mt=1-n=03 m-=n—1=-0.3

Y1 0.2105 0.2078

Vi 0.8547 0.8696

aj 0.0513 0.3857

a; 0.6931 1.4697

Wl 0.32 0.92
ECotrort 0.9755 0.9448*
EG) 0.3394* 0.3402

Table 1: Equilibrium values for the numerical example
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In the example, we have ¥ = 3.53 and thus x > X . It follows directly from Proposition 3 that m = m*.

In minimizing expected auditor effort, in contrast, the corresponding optimal Al specification requires
maximizing the precision of signal §;, i.e., m = m™. Note that switching from a maximum precise signal
$, to a maximum precise signal §; increases effort levels a and a5 considerably. However, this increase
in effort levels is more than offset by the sharp decline in the probability of a3,

1 — wj, from 0.68 to 0.08.

Given this potential conflict of interest, it might be desirable to implement appropriate incentives or
regulatory measures to induce the auditor to align the Al specification with the objective of fraud
minimization. One possible measure is to require the auditor to disclose the Al specification process.
However, the problem is that an external party is unlikely to possess sufficient (firm-specific)

information to assess whether the auditor has specified the Al in the “right” way.

EC s

099

098+

097+

095+

m

Figure 3: Expected effort costs depending on m
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Figure 4: Expected probability of fraud depending on

6. Conclusion

In this paper we consider a game-theoretic interaction between an auditor and a client firm. We
assume that the auditor uses an Al tool as part of the auditing process. Specifically, the auditor uses Al
to detect possible weaknesses in the ICS of the client firm and in turn revises her expectations
regarding incentives for managerial fraud. Based on the results provided by the Al, the auditor plans
her personal audit effort. We assume that the information provided by the Al is informative and that

the auditor has the option to customize the Al according to her needs.

While there is considerable hope that Al tools help to improve audit efficiency and audit effectiveness,
our findings substantiate this hope only partially (at best). We find that part of the auditor’s effort can
be replaced by Al, which can be interpreted as an increase in efficiency. We also find that Al use
reduces ex ante incentives for managerial fraud. This is probably beneficial as we can assume that any
fraud, whether detected or not, is costly for firms or for capital markets. However, the reduction in
auditor effort in our model goes along with a reduced probability of detecting actual fraud. It is in that
sense, that audit effectiveness, or audit quality, decreases rather than to increase. Moreover, Al is

unable to decrease the ex ante probability that fraud remains undetected, such that reliability of audit
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opinions is not improved. Besides, we state that the auditor cannot be expected to customize the Al in

the best interest of stakeholders but rather maximizes her own payoff.

While we believe that our model provides some insights into potential effects of Al use, we also realize
that we neglect some potentially critical aspects in our parsimonious model. In particular we allow the
auditor to “customize” or “bias” the Al tool according to her needs, but we do not allow the client firm
to “customize” the data provided in order to mislead the Al and to keep it from detecting a weak ICS.
Moreover, we do not address in which way the Al tool detects accounting anomalies and what is
considered a normal pattern as opposed to abnormal patterns. Thus, problems regarding the training

data, that are frequently considered important, are ignored in our study.

Appendix

Proof of Proposition 1:

According to our regularity conditions, c(F + P) < bDP(1 — 0) holds. Consider a mixed-strategy for

the manager where at least one type randomizes with respect to committing fraud.
The first order condition for optimal auditor effort derived from (1) equals:

ae(n?) _

— = (=0y1 = (1 = 6)y;)bDexp [-ba] — ¢ = 0. (4)

If both manager types randomize, they must be indifferent between committing fraud and not to do

s0:
Fexp[—ba] — P(1 —exp[—ba]) —x =0 (5)
Fexp[—ba] — P(1 — exp[—ba]) = 0. (6)

Note that (5) and (6) cannot hold simultaneously. If (6) holds, the LHS of (5) is negative.
We therefore distinguish two cases:

Case 1: We assume that (6) holds in equilibrium, implying that (5) is strictly negative. In that case the
manager randomizes over committing fraud if the ICS is weak and optimally refrains from committing

fraud when the ICS is strong.

Solving (4) and (6) for a and y, given that y; = 0, we obtain
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BM _ _C(F+P) BM _ 1y (F+P
&) ~ (1-8)bDP and a _bln(P)'

Case 2: We assume that (5) holds in equilibrium implying that (6) is strictly positive. In that case the
manager randomizes over committing fraud if the ICS is strong and optimally commits fraud with

certainty when the ICS is weak.

Solving (4) and (5) for a and y4, given that y, = 1, we obtain

c(F+P)

o (170 1, (F+P
yEBM PP~ gnd gBM =-]p (—)
0 b P+x

c(F+pP)
bDP

<1-86.

Note, however, that we assumed that c¢(F + P) < bDP(1 — 0) holds, implying that

c(F+pP) c(F+P)

As
bD(P+x) bDP

< 1 — 6 this implies that Y2 < 0 which is impossible.

Accordingly, the equilibrium derived in case 1 is the only feasible solution.

Proof of Proposition 2:

, _ WY _ p(yBMY — _ _ CE+PIX[PO1+p2-1)?—xpr(1-p2)]
M by = EQ) = EG) = — o tmim-tpan (P tpe-n-r(-p7) =

(ii) Define afM = %ln(yBM) with yBM = F:fp

* l * . * (F+P)(p1+p2_1)
and G = b InCyr)  withy; = P(p1+p2—1)+pax’
(F+P)(p1+p2-1)
P(p1+p2—1)-x(1-p2)’

a5 =In(y;)  withy; =

Then the expected auditor effort under Al is
B(@) = Pr(s) 5 In(y) + Pr(s,) 3 Inys)

From Jensen’s inequality it follows that %ln( E(y*)) > %E(ln(y*)) = E(a").

Since aBM = %ln(yBM) > %ln( E(y")), it follows a®M > E(a").

(iii) Pr(undetected fraud with Al|fraud is committed in t;) = (p;exp[—ba,] + (1 —

p)exp[—bay]) = .
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As no fraud is committed with the strong ICS in the benchmark setting, the conditional probability

. . P . .
for it to be undetected is zero. As ﬁ > 0 it increases with Al.

Pr(undetected fraud with Al|fraud is committed in t,) = (p,exp[—ba,] + (1 —

which is equivalent to exp[—ba®M].

Pz)eXP[_baz])=$,

It follows directly that 9— +(1- 9)— >(1-6) m

(iv) Pr(undetected fraud with Al)= 0y;(p,exp[—ba,] + (1 — p)exp[—ba,]) + (1 —

0)v2(p2expl—bay] + (1 — py)exp[—ba;]) = -

Proof of Lemma 2:

Note that our previous assumption of signal informativeness, specifically assuming that p; + p, > 1,

now implies that 2n > 1 & n > 0.5.
(i) Assume x < X © h, > 0.
From

A —86(F+P)(n—%)x2[X( ( )+n((1 0)m+9——)+1+m—+m(i n_6

dm Db(P(2n-1)-x(1-n— m)) (P(2n- 1)+x(n+m))

)+P(n(1 29)+m+9——)(n——)]

we derive the solutions for m; and m, as given above.

1024(F+P)c(n—%)§h1h2(—VhthZ)+(P+x9)(n—%)>
Db(w/hlhz+h2)3(,/h1h2+h1)3

dzE(V)( ) _
my) =

From < 0, we conclude that m; is a local
maximizer of E(y*).

Notice that m, < 0. We now show that m, violates the conditionn —m, < 1:

Jhihy, + P2n—1) +x(6 — 1) + 2xn(2 — 9)
2x

n—m, =
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Jhih, + P2n—1) +x(6 —1+2(2n—-n — 1)) < 0. (11)

By assumption h, = 2n—1)(P+x0) —x =P(2n—1) + x(—1 — 6 + 26n) > 0. We now show
that h, > 0 implies P(2n —1) + x(G —1+2(2n—nb — 1)) > 0 and in turn (11) is violated. To

demonstrate this, we show that P(2n — 1) + x(9 —14+22n—nb — 1)) > hy:
PCn—1D+x(6-1+2@2n—-nf-1))> P2n—1) +x(—1—6 + 26n)
=
x(6—1+22n—nb—1)) > x(—1—6 + 26n)
=
8-1+22n-no—1)>—-1—6+ 206n
s
4n—2>46n— 20
=
in—2>60(4n—2),

which is a true statement. It follows that (11) is violated and m, is the only stationary point in the

feasible range.

(ii) Assume = X & h, < 0.

Notice that di(::) can also be written as
1 x
dE(y") —8¢(F + P) (n—i)xz [Emz +um+v]
dm Db(P2n—-1)—x(1—-n-— m))z(P(Zn - D +x(n+ m))Z'
with u= @2n-1)(P+x(1-6)) >0,

2
v = %(29 - D@P +x)n(1 —n) +%(P(1 —20) +x(1-6)),

such that the two solutions of % = 0 can be written as

Uz = 2xv — —JU% =2xv—pu
e s
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hihs

where u? — 2xv = "

u? — 2xv < 0 (& h, < 0) implies that the term gmz + um + v is always strictly positive, which, in

turn, implies that % < 0. Thus, the fraud-minimizing value of m is at the highest possible value of

itm*=mt=1-n.

- -
Assume now h, = 0. In this case we have a double null, m; = m, = a Zn)(};x(l ) < 0. The term

(1-2n)(P+x(1-0))
2x

gmz +um+vis zero for m= and strictly positive otherwise (upward-opening

(1_2n)(};x(1_9)) violates the condition n — m < 1. Thus, dig;*)

parabola). However, m = < 0in the

feasible range, which implies again that the fraud-minimizing value of m is at the highest possible value

ofitm*=mt=1-n.

[
Proof of Proposition 3:
Note that
. % +\ " -~ _ 2¢(F+P)x%(1-n)[P(26-1)(2n-1)+x(0(2n—-1)-1)]
AE(y™) = E(y*|m™) — E(y"|m™) = bDP(P(2n—1)+x)(P+x)(P(2n—1)+2x(n—1)) (12)
. e . 1 -P(20-1)(2n-1) _ _ . . o — o a4
(12) is positive if and only if 8 > 3 and x < —e@nD1 X, implyingthat m*=m~ =n—11n

these cases.

In all other cases, (12) is negative. Since, according to Lemma 2, the optimal value for m for x < X
lies at the right (m™) or left (m™) boundary of m, and for x > X it is always at the right boundary, it

follows that m*=m* = 1 — n in all remaining cases.
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