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Abstract

In this note, we propose a method for efficient simulation of paths of latent Markovian
state processes in a Markov Chain Monte Carlo setting. Our method harnesses available
parallel computing power by breaking the sequential nature of commonly encountered
state simulation routines. We offer a worked example that highlights the computational
merits of our approach.
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In this note, we propose a novel method for efficient simulation of posterior densities of
Markov processes that dominates the commonly employed sequential methods when paral-
lel computing power is available.

To fix our idea, let X ≡ {Xt}t=1...T be an unobservable N-dimensional state process, Xt ∈
R

N equipped with the Markov property, i.e. the transition probability p(Xt → Xt+1) of X de-
pends only on its current state. Further, let Y ≡ {Yt}t=1...T denote the set of noisy observations
on R

Kemitted by the state process, where the observation Yt depends only on the current state,
Yt = G(Xt ,ωt), where G is a linear or non-linear function of Xt and some random (not nec-
essarily Gaussian) noise ωt . Without loss of generality, assume that the set of parameters Θ
describing the state transition density and the observation densities are known with certainty,
so that we will suppress them in our analysis.1 Bayesian inference aims at estimating the pos-
terior density of the latent state variable given a stream of observable information. The Markov
property implies that the observation Yt at time t is exclusively generated by Xt , the level of the
states at time t. In a Bayesian framework, we are interested in the posterior density of X given
all available information,

f (X |Y ).
1Our method will usually be embedded in a larger MCMC framework, seeking inference not only on the latent

states X but also on the full set of parameters Θ. As we are only considering state simulation here, we can keep
Θ fixed and thus assume it to be known.
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In an asset pricing context, the researcher might want to examine the level of the (latent) vari-
ance process given her model assumptions and observed option prices, or she might want to
infer the level of risk neutral default intensities from observed prices of Credit Default Swaps.
Usually, very large data sets are considered, and even if the state space is one-dimensional, the
posterior density of X would be highly multidimensional rendering maximum likelihood infer-
ence hardly feasible. We must thus resort to simulation based methods. In a Markovian setup
with linear state transition and observation equations, combined with Gaussian randomness,
we can make use of the widely employed Kalman filter methods that incorporate the full set
of observations such as the Forward Filter Backward Sampling (FFBS) algorithm of Früwirth-
Schnatter (1994) and Carter and Kohn (1994). Here, a forward sweep of the Kalman filter es-
timates conditional means and covariances of X given the history of observations, f (Xt |Y1...t),
whereas a backward sampler then creates a simulated path of X given all observed information,
f (X1...T |Y1...T ). The FFBS algorithm is thus able to directly – and swiftly – sample a random
path of the latent process given posterior means and covariances. In cases where the transition
equation or the observation equation are slightly nonlinear, extended Kalman filtering methods
might be considered.

If the transition equation or the observation equation are highly nonlinear or very computa-
tionally intensive to evaluate, or if the process innovations are nonnormal, one must usually re-
sort to MCMC methods such as the Metropolis Hastings (MH) sampling algorithm (Metropo-
lis et al. (1953)). In a nutshell, the MH-algorithm draws proposals for the variables of interest
from a distribution that allows for fast sampling and rejects or accepts these proposals with a
certain probability. Let g(x∗|xm) denote the (simple) proposal density that samples x∗ given its
level obtained from previous simulation sweep, xm. The algorithm accepts this proposal with
probability:

α = min
(

f (x∗|Y )g(xm|x∗)
f (xm|Y )g(x∗|xm)

,1
)

If the sample is rejected by the MH-algorithm, set xm+1 = xm, else set xm+1 = x∗. This al-
gorithm assures that the samples xm form a Markov chain which converges to the stationary
distribution f (X |Y ) after a sufficient iteration count M0 has been reached. All iterations from
M0 +1 onward can be regarded as samples from the posterior density, and inference about the
posterior distribution of X can then be drawn from them.

A further milestone in posterior analysis is the theorem of Clifford and Hammersley (Ham-
mersley and Clifford (1971), Besag (1974)) who show that it is possible to break the highly
multivariate joint posterior f (X |Y ) into the complete set of conditional distributions

f (X1|X∼1,Y )
f (X2|X∼2,Y )

. . .

f (XT |X∼T ,Y ),

where X∼s denotes the set of all latent states except for Xs, i.e. X∼s={Xt}t=1...s−1,s+1...T .
When we combine the Metropolis-Hastings algorithm with the theorem of Clifford and

Hammersley, we can infer the posterior density f (X |Y ) by iteratively sampling the state in
each point in time and holding all other states and observations constant. In the extreme case,
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this means sampling each state variable at each point in time, which requires N ×T MH-steps
per sweep of the main MCMC algorithm.

We have so far only encountered the naive sequential fragmentation of the state space in the
literature (Carlin et al. (1992), Kim et al. (1998), Kitagawa (1996), Eraker (2001)). Here, each
single iteration of the MCMC algorithm consecutively simulates the state variable for each
observation point in time, i.e. T consecutive MH-steps are considered. When the posterior
density is highly complicated, this approach requires plenty of computation time and offers no
leeway for parallelization as it is inherently sequential in nature.2

To remedy this weakness, we propose a different application of the Clifford Hammersley
theorem which is particularly advantageous when applied to Markovian systems. The next
section states the decomposition of the conditional posteriors f (Xt |X∼t ,Y ) and presents our
method. Section 2 presents a worked example.

1 The method
Given the Markovian nature of our state and observation processes, the following lemma holds:

Lemma 1. Let X ≡ {Xt}t=1...T be an unobservable N-dimensional Markovian state process
that emits the stream of K-dimensional observations Y ≡ {Yt}t=1...T , where Yt only depends on
Xt. Then, for the posterior density of Xt , t = 2 . . .T −1, given all information Y and all other
latent states X∼t it holds

f (Xt |X∼t ,Y ) ∝ f (Yt |Xt) f (Xt+1|Xt) f (Xt |Xt−1)

where ∝ denotes proportionality, f (Y |X) = f (Y,X)
f (X) ∝ f (Y,X).

Further, f (X1|X∼1,Y ) ∝ f (Y1|X1) f (X2|X1), and f (XT |X∼T ,Y ) ∝ f (YT |XT ) f (XT |XT−1).

Proof. By repeatedly invoking Bayes’ theorem and the Markovian, conditional independence
nature of the state space, we obtain

f (Xt |X∼t ,Y ) ∝ f (Yt |Xt ,X∼t ,Y∼t) f (Xt |X∼t ,Y∼t)

∝ f (Yt |Xt ,X∼t) f (Xt |X∼t)

∝ f (Yt |Xt) f (Xt |X∼t)

= f (Yt |Xt) f (Xt |X1...t−1,t+1...T )

∝ f (Yt |Xt) f (Xt+2...T |X1...t+1) f (Xt |X1...t−1,Xt+1)

= f (Yt |Xt) f (Xt+2...T |Xt+1) f (Xt |X1...t−1,Xt+1)

∝ f (Yt |Xt) f (Xt |X1...t−1,Xt+1)

= f (Yt |Xt) f (Xt |Xt−1,Xt+1)

∝ f (Yt |Xt) f (Xt+1|Xt−1,Xt) f (Xt |Xt−1)

= f (Yt |Xt) f (Xt+1|Xt) f (Xt |Xt−1)

By analogous derivation, we obtain f (X1|X∼1,Y ) and f (XT |X∼T ,Y ). �
2At t = τ , simulate xm

τ given xm
1...τ−1,x

m−1
τ+1...T and Y . Thus, this algorithm requires consecutive results of the

MH-steps, prohibiting parallelization.
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The standard route to sampling a path of X is to iteratively propose x∗t , t = 1 . . .T , and
reject or accept the proposals given the proposal and the posterior densities stated in lemma
1. As the lemma holds irrespective of the choice of how we apply the theorem of Clifford
and Hammersley, we suggest the following sampling method. During the (m+ 1)th iteration
sweep of the MCMC algorithm, do the following:

Sampling algorithm
Given the simulation xm ≡ {xm

t }t=1...T obtained from the current, mth iteration of the
MCMC chain

1. Simultaneously, propose draws x∗t for all even dates, t = 2,4, . . . ,T , from independent
candidate densities gt(x∗t |xm

t ).

2. Accept or reject each single proposal using the Metropolis Hastings algorithm and the
conditional densities stated in lemma 1, with probability

αt = min
(

f (Yt |x∗t ) f (x∗t |xm
t−1) f (xm

t+1|x∗t )g(xm
t |x∗t )

f (Yt |xm
t ) f (xm

t |xm
t−1) f (xm

t+1|xm
t )g(x∗t |xm

t )
,1
)

If the draw gets accepted, set xm+1
t = x∗t , else set xm+1

t = xm
t .

3. Simultaneously, propose draws x∗t for all odd dates, t = 1,3, . . . ,T −1, from independent
candidate densities gt(x∗t |xm

t )

4. Accept or reject each single proposal using the Metropolis Hastings algorithm and the
conditional densities stated in lemma 1 with probability

αt = min

(
f (Yt |x∗t ) f (x∗t |xm+1

t−1 ) f (xm+1
t+1 |x∗t )g(xm

t |x∗t )
f (Yt |xm

t ) f (xm
t |xm+1

t−1 ) f (xm+1
t+1 |xm

t )g(x∗t |xm
t )

,1

)

This algorithm breaks the serial nature of standard approaches and allows for efficient
use of parallel computing power: Given the Markovian setup, the time t posterior of each
state only depends on its immediate neighbors as well as the observation made in time t.
Thus, it is feasible to simulate the state process in two sequential computations, where each
computation is inherently parallel in nature. The total number of simulations required per
iteration is still N ×T , but it can now be distributed on several CPUs as the simulations are
not of sequential nature anymore. For example, if the observation equation is computationally
intensive, the Markovian setup in combination with our algorithm allows for computing the
observation likelihoods in parallel, thereby dramatically decreasing total CPU time required,
as the example in the next section shows.

2 Example
To give an example, we consider a linear state transition model with nonlinear observations and
Gaussian innovations. The nonlinearity of the system implies that we must resort to MCMC
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methods. We compare our parallel approach to the naive sequential fragmentation found in the
literature.

To add tangibility to our example, consider the inverse problem of Credit Default Swap
(CDS) pricing: Given the set of observed CDS spread quotes for a period t = 1 . . .T , we want
to find the posterior distribution of the latent default intensities in X , where we have discretized
the state evolution equations.3 As the CDS pricing equation is highly nonlinear, we cannot
resort to linear, i.e. Kalman like, methods. Even linearization of the observation equation is
not feasible, as the linearization coefficients have to be obtained repeatedly for every single
observation date. The requried computational time would still be prohibitive. When we apply
our method, on the other hand, the computational time can be reduced considerably.

Figure 2.1: Comparison of computational time required
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This figure depicts the time requirements of both, a serial and our par-
allel simulation algorithm for posterior state inference in latent state
Markov models. Each point represents the median time requirement
for one sweep through T = 1000 time points in a model with Gaus-
sian linear state transitions and Gaussian, nonlinear, observation equa-
tions. Each median is computed from 100 sweeps. The algorithms ran
on workstation equipped with twelve Intel Xeon E5-2630 CPUs, 2.30
GHz each, and a maximum of 20 possible instances, 64 GB RAM.

Our toy model is as follows. We consider a two-dimensional linear state process model on
R

2 with T = 1000 time points. At each point in time, the state emits a noisy, three-dimensional

3In a Credit Default Swap contract two parties exchange cash flows contingent on the occurrence of a credit
event. The contract consists of a premium and a protection leg. See Duffie and Singleton (2003) for details.
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observation Yt . As stated above, we can consider the coefficients in the transition and obser-
vation equations fixed and known. As the transition is linear and Gaussian, the state evolution
densities are easy to evaluate. The observation equation, on the other hand, is assumed compu-
tationally intensive, i.e. we assume that the computation of the time-t observation likelihood
given state Xt takes 0.0005 seconds each.

Employing one up to 20 instances on a multi-CPU machine with Mathworks’ Matlab dis-
tributed computing toolbox installed, we run the mth MCMC sweep for 100 times and evaluate
the median time required per sweep. Figure 2 compares the time requirement of our algorithm
compared with the standard sequential simulation routine. We clearly find that our algorithm
dominates the standard approach as soon as two CPU instances can be linked, and for a suffi-
cient number of instances (i.e. cores), the time can be reduced by approximately 90% in our
example and on this particular workstation. In a companion paper, Held and Omachel (2014)
apply this method and are thus able to reduce the required simulation time by over 92%. We
thus urge researchers using MCMC methods to seriously consider parallelization possibilities,
especially the method we propose.

3 Conclusion
In this note, we present a novel state simulation method to be applied within a larger MCMC
framework. Our method harnesses the power of parallel computing, thus enabling research
in latent state dynamics to break the curse of sequential algorithms and employ a parallel
method instead. In an example, we show that this approach can save a substantial amount
of computational (calendar) time, where a reduction factor of 90% can be obtained without
further ado.
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