
WORKING PAPER SERIES

The Multi-Compartment Vehicle Routing Problem 
with Flexible Compartment Sizes

Tino Henke/M. Grazia Speranza/Gerhard Wäscher

Working Paper No. 6/2014



 

Impressum (§ 5 TMG)  
Herausgeber:  
Otto-von-Guericke-Universität Magdeburg  
Fakultät für Wirtschaftswissenschaft  
D  Dekan  
 

Verantwortlich für diese Ausgabe:  

Otto-von-Guericke-Universität Magdeburg 
Fakultät für Wirtschaftswissenschaft 
Postfach 4120  
39016 Magdeburg  
Germany  

http://www. ww. /femm

Bezug über den Herausgeber 
ISSN 1615-4274 

Tino Henke, M. Grazia Speranza, Gerhard Wäscher



1 

 

The Multi-Compartment Vehicle Routing Problem  

with Flexible Compartment Sizes 

 

Tino Henke 

Department of Management Science, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany 

tino.henke@ovgu.de 

M. Grazia Speranza 

Department of Quantitative Methods, University of Brescia, 25122 Brescia, Italy 

speranza@eco.unibs.it 

Gerhard Wäscher 

Department of Management Science, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany 

gerhard.waescher@ovgu.de 

Abstract 

In this paper, a capacitated vehicle routing problem is discussed which occurs in the context of glass 

waste collection. Supplies of several different product types (glass of different colors) are available at 

customer locations. The supplies have to be picked up at their locations and moved to a central depot at 

minimum cost. Different product types may be transported on the same vehicle, however, while being 

transported they must not be mixed. Technically this is enabled by a specific device, which allows for 

separating the capacity of each vehicle individually into a limited number of compartments where each 

compartment can accommodate one or several supplies of the same product type. For this problem, a 

model formulation and a variable neighborhood search algorithm for its solution are presented. The 

performance of the proposed heuristic is evaluated by means of extensive numerical experiments. 

Furthermore, the economic benefits of introducing compartments on the vehicles are investigated. 

 

Keywords: vehicle routing, multiple compartments, glass waste collection, variable neighborhood 

search, heuristics 

 

1 Introduction 

The vehicle routing problem, which will be discussed in this paper, is a variant of the classic capacitated 

vehicle routing problem (CVRP; for surveys see Golden et al., 2008, Laporte, 2009, or Toth and Vigo, 

2002) and occurs in the context of glass waste collection in Germany. Glass waste has to be recycled 

by law and is used as a raw material for the production of new glass products. It has to be taken to 

recycling stations by the consumers where it is disposed into different containers according to the color 
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of the waste (usually colorless, green and brown glass). Colors are kept separated because the 

production of new glass products is less cost-intensive if the glass waste is not too inhomogeneous with 

respect to its color. Trucks, which are located at a depot of a recycling company, pick up the glass waste 

from the recycling stations. Since they possess a relatively large loading capacity, they can call at 

several recycling stations before they have to return to the depot. Recent truck models are equipped 

with a special device which allows for introducing bulkheads in predefined positions of the loading 

space such that it can be split into different compartments and, thus, enabling transportation of glass 

waste with different colors on the same truck without mixing the colors on the tour. This gives rise to 

the question how the tours of the trucks should be designed given the availability of a device of this 

kind.  

The problem under discussion can be classified as a multi-compartment vehicle routing problem 

(MCVRP). However, it is different from the ones previously discussed in the literature with respect to 

the following properties: 

� The size of each compartment is not fixed in advance but can be determined individually for 

each vehicle/each tour. 

� The size of the compartments can only be varied discretely, i.e. the walls separating the 

compartments from each other can only be introduced in specific, predefined positions. 

� The number of compartments, into which the capacity of a vehicle is divided, can be identical 

to the number of product types (glass waste types) but can also be smaller. 

Consequently, not only the vehicle tours have to be determined, but it has also to be decided for each 

vehicle/tour (i) into how many compartments the vehicle capacity should be divided, (ii) what the size 

of each compartment should be, and (iii) which product type should be assigned to each compartment.  

The problem is NP-hard, since it is a generalization of the CVRP (see, for example, Toth and Vigo, 

2002). By application of a mathematical model-based exact solution approach, we were only able to 

solve problem instances with a limited size to optimality. Therefore, a heuristic, namely a variable 

neighborhood search (VNS), has been developed and will be presented. According to the best of our 

knowledge, this is the first method which has been proposed for this problem so far. We will further 

analyze what the economic benefits are which stem from the introduction of flexibly sizable 

compartments. 

The remainder of this paper is organized as follows. Section 2 presents a formal definition and a 

mathematical formulation of the problem. The relevant literature related to the MCVRP is discussed in 

Section 3. In Section 4, the proposed variable neighborhood search algorithm is introduced. Extensive 

numerical experiments have been performed in order to evaluate the mathematical model and the VNS. 

The design of these experiments and the corresponding results are presented in Section 5. Finally, the 

main findings are summarized and an outlook on future research is given in Section 6. 
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2 Problem Description and Formulation 

The multi-compartment vehicle routing problem with flexible compartment sizes (MCVRP-FCS) can 

be formulated as follows: Let an undirected, weighted graph  be given which consists of a 

vertex set , representing the location of the depot (  and the locations of  customers 

, and an edge set , representing the edges which can be travelled 

between the different locations. To each of these edges, a non-negative cost , is assigned.  

Further, let a set  of product types be given. At each vertex (except for the depot) exists a non-negative 

supply  of each of the product types. The supplies have to be collected at their 

locations and transported to the depot without the product types being mixed. A location may be visited 

several times in order to pick up different product types. However, if being picked up, each supply has 

to be loaded in total. In other words, a split collection of a single supply is not permitted.  

For the purpose of transportation, a set  of homogeneous vehicles is available, each equipped with a 

total capacity . Individually for each vehicle , the total capacity Q can be divided into a limited 

number  of compartments, , which allows for loading products of different types on a single 

vehicle while keeping them separated during transportation. The size of the compartments can be varied 

discretely in equal step sizes, i.e. each compartment size, but also the total vehicle capacity Q, is a 

integer multiple of a basic compartment unit size qunit. Let the set of these multiples be denoted by     

 where  = Q/qunit. Then  denotes a compartment 

size relative to the total capacity Q which consists of m  multiples of the basic compartment 

unit size qunit. 

What has to be determined is a set of vehicle tours, an assignment of product types to the vehicles and 

the sizes of the corresponding compartments such that all supplies are collected, that the capacity of 

none of the used vehicles is exceeded, and that the total cost of all edges to be travelled is minimized. 

This problem involves the following partial decisions to be made simultaneously: 

� assignment of product types to each of the vehicles 

(this decision determines which product types can be collected by each vehicles); 

� determination of the size of each compartment 

(this decision fixes for each vehicle how its total capacity is split into compartments); 

� assignment of supplies to each of the vehicles 

(this decision implicitly includes an assignment of locations to vehicles); 

� sequencing of the locations for each of the vehicles 

(this decision determines for each vehicle in which sequence the assigned locations are to be 

visited). 

We note that every vehicle routing problem involves decisions of the last two types, while the first and 

the second one define the uniqueness of the MCVRP-FCS. 
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In order to formulate a mathematical model for the MCVRP-FCS, we introduce the following four types 

of variables: 

 if supply of product type p at location i is collected by vehicle k

otherwise
 

if i=0 and edge i,j  is used twice by vehicle k

 if edge i,j  is used once by vehicle k

 otherw se

 

 if  is selected for product type p in vehicle k

otherwise
 

if location i is visited by vehicle k

otherwise
 

The objective function and the constraints of the model can then be formulated as follows: 
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The objective function (1) defines the total cost of all tours, which has to be minimized. Constraints (2) 

guarantee that each positive supply is assigned to exactly one vehicle, while constraints (3) ensure that 

a supply may only be satisfied by a vehicle if the corresponding customer location is visited by this 

vehicle. Constraints (4) make sure that the depot is included in each tour. According to constraints (5), 

the number of tours is limited by the number of available vehicles. Constraints (6) represent the vehicle 

flow constraints. Constraints (7) ensure that the number of product types assigned to a vehicle may not 

exceed the maximum number of compartments. Constraints (8) assert for each vehicle that the sum of 

the compartment sizes must be smaller than or equal to the vehicle capacity. In addition to that, 

constraints (9) guarantee for each compartment that its capacity is not exceeded by the assigned 

supplies. Constraints (10) represent the subtour-elimination constraints. Finally, constraints (11) – (15) 

characterize the variable domains.  

3 Literature Review 

Some variants of the MCVRP have been discussed in the literature already. El Fallahi et al. (2008) 

describe a MCVRP arising in the context of distribution of animal food to farms where the sizes of the 

compartments and the corresponding assignment of product types to the compartments are fixed in 

advance. They propose a memetic algorithm and a tabu search algorithm for solving this problem. 

Muyldermans and Pang (2010) consider a similar problem and develop a guided local search algorithm. 

Furthermore, they identify problem characteristics under which transportation of several product types 

on vehicles with multiple (a priori fixed) compartments outperforms separate transportation of the 

different product types on vehicles with a single compartment. Chajakis and Guignard (2003) present a 

similar problem in the context of deliveries to convenience stores. For their problem, they develop 

heuristics based on Lagrangian Relaxations. In contrast to these contributions, in this paper a MCVRP 

with flexible compartment sizes and no a priori assignment of product types to compartments is 

considered. 

Avella et al. (2004) and Brown and Graves (1981) describe applications of the MCVRP in the context 

of petrol replenishment. In these problems, the compartment sizes are fixed in advance, while the 

assignment of product types to compartments is not. In contrast to the MCVRP-FCS, only one supply 

can be assigned to each compartment, because petrol tanks must be emptied completely during the visit 

of one customer. Morever, Cornillier et al. (2008) extend the problem to multiple periods with inventory 

components. 

Derigs et al. (2011) introduce and examine two variants of the MCVRP: The first variant is, in general, 

similar to the problem described by El Fallhi et al. (2008), Muyldermans and Pang (2010), and Chajakis 

and Guignard (2003), whereas the second variant is characterized by continuous flexible compartment 

sizes, while the assignment of product types to compartments is not fixed. However, in contrast to the 

MCVRP-FCS, each customer may have multiple demands for the same product type. The case in which 

the number of compartments may be smaller than the number of product types is not explicitly 
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considered. The authors introduce a general mathematical model, i.e. one which covers both problem 

variants, and a large neighborhood search algorithm which solves their variants of the MCVRP.  

A problem similar to the MCVRP-FCS is presented by Caramia and Guerriero (2010). They present a 

case study-oriented MCVRP with heterogeneous vehicles in milk collection with fixed compartment 

sizes but no a priori assignment of product types to vehicles. Also, the number of product types (four in 

the case study) may be smaller than the number of compartments per vehicle (three or more 

compartments). In contrast to the MCVRP-FCS, they also consider trailers which can be added to a 

vehicle. For their problem, they present a model-oriented heuristic procedure which assigns demands 

to vehicles in a first step and determines specific routes for these vehicles in a second step.  

Finally, Mendoza et al. (2010, 2011) discuss the multi-compartment vehicle routing problem with 

stochastic demands for which they propose several construction procedures and a memetic algorithm.  

Apart from the mentioned applications, multi-compartment routing problems also occur in maritime 

transportation (Fagerholt and Christiansen, 2000). Only recently, Archetti et al. (2013) presented 

theoretical comparisons between multi-commodity and single-commodity vehicle routing problems, 

where they provide theoretical and empirical insights on relationships between the split delivery vehicle 

routing problem, the multi-compartment vehicle routing problem, and a combined split delivery and 

multi-compartment vehicle routing problem. 

Our paper attends to additional aspects which – according to the best of our knowledge – have not been 

considered in detail in the literature before. These aspects include the case of discretely flexible 

compartment sizes and the case in which the number of compartments per vehicle is smaller than the 

number of products types. Especially the second aspect defines a new, unique problem structure for 

which we suggest a heuristic solution approach. 

4 Variable Neighborhood Search 

4.1 Overview 

In order to determine good solutions for large problem instances of the MCVRP-FCS, a variable 

neighborhood search approach with multiple starts (MS-VNS) has been developed. The concept of VNS 

was first proposed by Mladenović and Hansen (1997) and Hansen and Mladenović (2001). VNS is a 

local search-based metaheuristic which explores the solution space by means of multiple neighborhood 

structures.  

The general VNS framework can be described as follows: Given a set of different neighborhood 

structures which are sequenced in a specific order, VNS starts from an initial solution x (also first 

incumbent solution) and randomly selects a neighbor x' of x according to the first neighborhood 

structure (shaking). The neighbor is subsequently improved by application of a local search algorithm, 

providing a solution   (improvement phase #1). If this solution does not satisfy a given acceptance 

criterion, another neighbor  of the incumbent x solution is selected randomly, this time, however, 
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from the neighborhood defined by the next neighborhood structure in the sequence, and the above-

described process is repeated. Otherwise, if  satisfies the acceptance criterion, it is updated as the new 

incumbent solution, i.e. x :=  , and the index of the neighborhood structure is set back to 1, i.e. for 

the next pass of the improvement phase #1, a neighbor x' of the new incumbent solution of x is selected 

from the neighborhood defined by the first neighborhood structure. Should no new incumbent solution 

be determined over a run through all neighborhood structures, the procedure restarts from the first 

neighborhood structure in the sequence. The procedure continues until a predefined termination 

criterion is attained. In the following, the execution of a shaking step and the subsequent improvement 

phase will be referred to as one iteration. 

Usually the sequence of the neighborhood structures is chosen in a way that the size of the 

neighborhoods increases as the VNS proceeds. As a consequence, initially the procedure explores 

neighbors from the incumbent solution, which can be obtained by small changes, while it only moves 

on to explore larger changes if the search for better solutions was unsuccessful in such “close” 

neighborhoods.  

As we have mentioned before, an important aspect of the MCVRP-FCS are the four different types of 

partial decisions which have to be made (see Section 2). The usage of a single neighborhood structure 

may revise several of these decisions simultaneously. However, the combination of decisions is often 

identical. By the usage of more than one neighborhood structure, VNS is able to revise different 

combinations of problem decisions, which permits a more diverse exploration of the solution space.  

One of the disadvantages of this algorithm is that it often tends to get stuck in a local optimum. In order 

to overcome this drawback, we implemented our VNS in connection with a multi-start approach. The 

VNS restarts several times from different initial solutions, which are generated by a randomized 

construction procedure. The number of starts (in the following called loops) is also limited by a 

termination criterion (ms termination criterion). Furthermore, each time a new best solution has been 

found, it is attempted to improve this solution by a second improvement phase (improvement phase #2). 

A pseudo-code of our VNS procedure is presented in Fig. 4.1. Zbest denotes the objective function value 

of the best solution found over all loops and Z(x) denotes the objective function value of an arbitrary 

solution x. Details of the randomized construction procedure, the solution space, the neighborhood 

structures and improvement phases, and on the acceptance and termination criteria will be explained in 

detail in the following subsections.  

input: problem data, number of neighborhood structures kmax; 
 
Zbest:= ∞; 
do 
 generate an initial solution x with objective function value Z(x) randomly; 
 set neighborhood structure index k to k:= 1; 
 do 
  select a neighbor x’ from neighborhood structure k of x randomly (shaking); 
  apply local search to x’ and determine a solution x’’ (improvement phase #1); 
  if Z(x’’) satisfies the acceptance criterion then 
   x:= x’’; k:= 1;  
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   if Z(x) < Zbest then  
    xbest:= x; 
    apply local search procedure to xbest (improvement phase #2); 
    Zbest:= Z(xbest); 
   endif 
  else 
   k:= k + 1;  
   if k = kmax + 1 then  
    k:= 1;  
   endif 
  endif 
 until vns termination criterion is satisfied 
until ms termination criterion is satisfied 
output: xbest; 

Figure 4.1: Pseudo-code of a VNS for the MCVRP-FCS 

4.2 A Randomized Construction Procedure for the Generation of Initial Solutions 

Each initial solution is generated by means of the following randomized construction procedure. At the 

beginning, all (positive) supplies are sequenced randomly. According to this sequence, one supply after 

another is assigned to a vehicle. Starting from the vehicle with the lowest index, it is checked whether 

the supply can (still) be accommodated by the respective vehicle. This is the case if (i) a compartment 

has already been opened for the respective product type (because a supply of this product type has 

already been assigned to the vehicle) or it still can be opened for this product type (because there is still 

enough vehicle capacity available and the maximum number of compartments is not exceeded) and (ii) 

the size of the compartment is at least as large as the supply. If the conditions (i) and (ii) hold, then the 

supply is assigned to the vehicle; otherwise the next vehicle will be checked. The procedure stops when 

all supplies have been assigned. We remark that the assignment of supplies to vehicles also constitutes 

an assignment of locations to vehicles. The latter is used as a basis for the determination of an initial set 

of routes by application of the Lin-Kernighan Heuristic (Lin and Kernighan, 1973). 

We further note that the described procedure of assigning supplies to vehicles may result in an 

assignment, which contains more vehicles than actually available. In this case, a large penalty is added 

to the objective function for each additional vehicle. Consequently, the algorithm is directed to finding 

solutions with a feasible number of vehicles during the improvement phases. Once a solution with a 

feasible number of vehicles has been found, then only solutions feasible with respect to the number of 

available vehicles will be generated. 

4.3 Solution Space 

Throughout the search of the solution space, not only feasible solutions but also solutions which are 

infeasible with regard to the vehicle capacity can be accepted as incumbent solutions. In order to deal 

with these infeasibilities, a penalty term is added to the total cost of a solution within the objective 

function (Gendreau et al., 1994). This penalty term is dependent on the extent according to which the 

vehicle capacities are violated (excess capacity utilization) and a penalty factor . For the determination 
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of the excess capacity utilization  of a vehicle , the selected compartment sizes are considered 

instead of the actual supplies transported in these compartments:  

 

The modified objective function value  is then obtained by adding the weighted sum of the total 

excess capacity utilization of all vehicles to the original objective function value : 

 

The value of the penalty factor  is adjusted dynamically. At the beginning of each loop, the factor is 

set to an identical initial value. If no feasible solution was determined for a certain number of 

consecutive iterations, the factor is increased. If a feasible solution has eventually been found, the factor 

is reset to its initial value. In this manner, infeasibilities get penalized only lightly during the early stages 

of the application of the algorithm. However, the longer the solutions remain infeasible, the stronger 

the violation gets. Consequently, the algorithm is directed to move to a feasible region of the solution 

space. 

4.4 Neighborhood Structures 

The crucial part of the design of a VNS approach consists in defining the neighborhood structures from 

which the solutions are to be selected randomly in the shaking step. Ten different neighborhood 

structures have been implemented in order to deal with the various decisions, which have to be made 

when solving the MCVRP-FCS. They can be distinguished into supply-related, location-related, and 

product type-related neighborhood structures, focusing on changes of supply-vehicle-assignments, 

location-vehicle-assignments, and product-vehicle-assignments, respectively. 

Two supply-related neighborhood structures are used, of which the first one is based on supply shifts, 

while the second one is based on supply swaps. A supply shift selects a single supply randomly, deletes 

it from its current vehicle and inserts it into another, randomly selected, vehicle. A supply swap selects 

two individual supplies randomly from two different vehicles and exchanges both supplies.  

Four different location-related neighborhood structures have been implemented, based on complete 

location shifts, partial location shifts, location splits, and location swaps. For a complete location shift, 

one location-vehicle-assignment from the incumbent solution is randomly selected. Then, all supplies 

related to this specific location, which are currently assigned to the vehicle, are moved collectively to 

another vehicle. In a partial location shift, only a randomly determined subset of these supplies is 

shifted. A location split operator works in a similar way as a complete location shift operator except for 

the difference that each supply may be shifted to a different vehicle. In a location swap, two location-

vehicle-assignments are selected randomly and the corresponding supplies of the locations are 

exchanged between the vehicles. Pretests have also shown that it is sensible to change more than one 
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location-vehicle-assignment simultaneously, e.g. for a complete location shift not only one location but 

two locations are shifted to other vehicles. 

Four different options for the product type-related neighborhood structures have been implemented. 

Analogously to the location-related neighborhood structures, they are established by complete product 

shifts, partial product shifts, product splits, and product swaps. In contrast to location-related operators, 

product-vehicle-assignments instead of location-vehicle-assignments are selected randomly. As for a 

product shift, the supplies of the selected product type are moved either completely (complete shift) or 

partially (partial shift) to another vehicle. For the product split, the supplies may be assigned to different 

vehicles. In a product swap, two product-vehicle-assignments are selected randomly and the 

corresponding total supplies are exchanged between the two vehicles. 

In the VNS algorithm for the MCVRP-FCS, the described neighborhood structures have been 

implemented in the following sequence: demand shift, demand swap, partial location shift, complete 

location shift, location swap, location split, partial product shift, complete product shift, product swap, 

and product split. Only such moves are considered which neither violate the maximum number of 

product types per vehicle nor the number of available vehicles. 

4.5 Improvement Phases 

During the improvement phase immediately following the shaking step (improvement phase #1), all 

routes of a solution which have been changed by the shaking step are improved by a local search 

procedure. This procedure uses the 3-edge neighborhood structure proposed by Lin (1965), where the 

neighborhood is established by an operator, according to which three edges are eliminated from a route 

and three new edges are inserted. The search applies the first improvement principle, i.e. the first route 

is accepted from a neighborhood which has smaller route costs than the current one. The improvement 

phase terminates when no further improved route can be identified in the neighborhood of the currently 

considered route. 

In the improvement phase, which follows the identification of a new best solution (improvement phase 

#2), the well-known Lin-Kernighan Heuristic (Lin and Kernighan, 1973) is applied to each of the routes 

in the solution. For our implementation we used the code provided by Helsgaun (2000). 

4.6 Acceptance Criterion 

VNS algorithms tend to get stuck in local optima (cf. Hansen and Mladenović 2001). In order to avoid 

this drawback, we do not only use several starts of the heuristic but also an acceptance criterion which 

allows for accepting solutions with objective function values worse than those of the best solution found 

in a loop. The acceptance criterion used for this algorithm is based on threshold accepting (Dueck and 

Scheuer, 1990) with a dynamically self-adjusting threshold factor.  

The dynamic self-adjustment principle is similar to the adjustment procedure for the penalty factor 

described in Section 4.2. The factor starts with an initial value of 1. After a certain number of 
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consecutive iterations in which no new incumbent solution was accepted, this factor is increased by a 

certain value. If a solution is eventually accepted as incumbent solution, the factor is reset to 1 again. 

In this way, the threshold increases slowly if the algorithm is not able to find a better solution in the 

region of the solution space which is currently explored, enabling the algorithm to overcome local 

optima.  

4.7 Termination Criteria 

A loop terminates after a certain number of iterations without finding a new best solution. The algorithm 

terminates after a certain number of loops without finding a new globally best solution.   

5 Numerical Experiments 

5.1 Overview 

The above-presented model of the MCVRP-FCS was implemented – with a separation procedure for 

the subtour elimination constraints – in Microsoft Visual C++ 2012 using CPLEX 12.5. For the MS-

VNS algorithm, Microsoft Visual C++ 2012 has been used.  

Three sets of numerical experiments were performed in order to evaluate the two approaches. In the 

first set, the exact solution approach and the VNS algorithm have been applied to relatively small, 

randomly generated problem instances. These experiments serve two purposes. Firstly, they provide an 

impression of the limits of the problem size up to which the MCVRP-FCS can be solved optimally by 

means of a standard LP solver in reasonable computing time. Secondly, by comparing the results from 

the MS-VNS approach to the results obtained by the exact approach, the solution quality of the MS-

VNS approach can be assessed.  

In a second set of experiments, large, randomly generated instances of the MCVRP-FCS were 

considered, to which the MS-VNS algorithm was applied. These experiments have been performed in 

order to study the behavior of the algorithm in greater detail. They were meant to provide insights into 

how different problem parameters affect solution quality and computing times and, in particular, which 

parameters make the problem difficult to solve. 

In the third set of experiments, the MS-VNS algorithm was applied to problem instances from practice. 

These experiments were meant to assess the benefits from introducing vehicles with compartments of 

flexible size in comparison to the utilization of vehicles with a single compartment only.  

All experiments were performed on a 3.2 GHz and 8GB RAM personal computer.  

5.2 Problem Generation 

As we have explained above, the MCVRP-FCS is different from other multi-compartment vehicle 

routing problems described in the literature so far. Therefore, we could not use benchmark instances 

from the literature in our experiments. Instead, we randomly generated new problem instances. 
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In order to establish different classes of problem instances, the parameters of the MCVRP-FCS have 

been dealt with in the following way. The number of locations n, the number of product types |P|, and 

the number of compartments  have been taken as controllable parameters. The respective values 

chosen for the experiments are given below. Concerning the number  of product types of which 

supplies are available at each location (number of supplies), three options were considered: small, 

medium, and large. A small number of supplies corresponds to a situation in which each location 

provides supplies for at least one product type and at most for one third of the product types (s = 1, 

small number of supplies). A medium number of supplies represents a situation where supplies of at 

least more than one third and at most two thirds of the product types are available at each location (s = 2, 

medium number of supplies). Finally, for a large number of supplies, supplies are available at each 

location of at least more than two thirds of the product types up to  (i.e. all) product types (s = 3, 

large number of supplies). 

The actual supplies for all product types at all locations sip were generated by means of the following 

procedure. At first, an initial total supply ( ) for all product types across all locations was randomly 

generated from the integer interval . This total supply was then split into individual 

supplies at the locations in several steps. Firstly, based on the respective value of the parameter , a 

number for the supplied product types ( , ) was generated randomly for each location i from 

the corresponding parameter interval for . In order to determine which specific product types at a 

specific location have an actual supply, i.e. , a random number out of the interval  for the 

first third of product types,  for the second third of product types, and  for the last third of 

product types was drawn. For each location i, these random numbers were sorted in decreasing order, 

whereas the first  product types in this sequence were selected to have a supply greater than zero. 

Then, the total supply quantities for each product type ( ) were determined in such a manner 

that 50% of the total supply  was assigned to the first third of the product types, 30% of the total 

supply to the second third, and 20% of the total supply to the last third of the product types. Finally, the 

actual supplies ( ) were generated by drawing a random number for each 

supply, which were subsequently normalized according to the total supply of the corresponding product 

type . The biased distribution of product type supplies was used in order to generate realistic 

instances, since in the glass collection problem the different glass types are more and less frequently 

disposed.  

Finally, the vehicle capacity was set to 1,000 for each instance and the number of vehicles was 

determined by solving a corresponding bin-packing problem exactly in order to guarantee a feasible 

solution to the problem instance. 

All instances can be found online at http://www.mansci.ovgu.de/mansci/en/Research/Materials/2014-

p-394.html. 
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5.3 Experiments with Small, Randomly-Generated Instances 

The following parameter values were used for the generation of instances for the first set of experiments:  

� number of customer locations n = 10;  

� number of products types P  3, 6, 9 ; 

� number of compartments m 2, 3  for P = 3, m 2, 4, 6  for P = 6, m 2, 4, 7, 9  for 

P = 9; 

� number of supplies s .  

The number of locations considered in this set of experiments may appear to be small at first sight, but 

it has to be emphasized that, apart from the number of locations, also the total number of supplies 

determines the problem size. Since the number of different supplies at each location and the maximum 

number of compartments per vehicle make the MCVRP-FCS special, we have chosen to explore these 

parameters in the first place at the expense of considering not more than 10 customer locations. This 

confinement was necessary in order to limit the respective optimization models to sizes which were still 

manageable by CPLEX. 

The parameter settings resulted in 27 problem classes, for each of which 50 instances have been 

generated. To all 1,350 instances, the exact approach and the MS-VNS algorithm have been applied. 

500n P  iterations without improvement (vns termination criterion; cf. Fig. 4.1) and n P /6 loops 

without improvement (ms termination criterion) were used as termination criteria for the MS-VNS 

algorithm.  

For each problem class, Table 5.1 presents the number of instances, which have been solved to a proven 

optimum by the exact approach (#opt.exact) and by the MS-VNS algorithm (#opt.vns), the average 

objective function value (total cost) per problem instance obtained by the exact approach (tc.exact) and 

by the MS-VNS algorithm (tc.vns), and computing times per problem instance in seconds for the exact 

approach (cpu.exact) and the MS-VNS algorithm (cpu.vns). For the exact approach, also the maximal 

computing time (cpu.exactmax) needed for an instance is reported for each problem class. Furthermore, 

the average per-instance deviation (aver.error) of the objective function value obtained by the MS-VNS 

algorithm from the objective function value obtained by the exact approach, and the corresponding 

maximum deviation (max.error) across all instances in a class are presented. 
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The exact approach managed to solve all of the 1,350 instances with a maximal computing time of 21 

hours. It appears that the MCVR-FCS becomes more difficult to solve (i.e. the respective computing 

times increase) with an increasing number of product types, with an increasing number of supplies and 

with a decreasing number of compartments. Especially the latter observation demonstrates that the 

specific (partial) decision of this problem, namely the assignment of product types to vehicles, has a 

significant impact on the complexity of the problem and makes it different from other vehicle routing 

problems. We further note that – with respect to the computing times – the exact approach presented 

here cannot be expected to be competitive for large, real-world instances. 

Regarding the solution quality, it can be observed that the MS-VNS algorithm performs very well on 

the instances from these problem classes. From the 1,350 instances, the MS-VNS algorithm solves 

1,338 (99.1%) optimally. The average deviation from the optimal objective function value (across all 

instances) only amounted to 0.02%. This is particularly remarkable since the average computing time 

per problem instance needed by the MS-VNS algorithm (25.97s) represents only 6.0% of the average 

computing time needed by the exact approach (431.31s). Regarding the maximal computing times, this 

observation is even more considerable, since the maximal computing time for the exact approach is 21 

hours whereas the maximal computing time for the MS-VNS is only 113 seconds.  

As for the computing times of the MS-VNS algorithm, it can be observed that they increase with the 

number of product types and the number of demands. In contrast to the exact approach, the impact of 

the maximum number of compartments on the computing time is inconsistent. For instances with three 

or six product types, no pattern is observable; for instances with nine product types, the computing 

times decrease with increasing number of available compartments.  

5.4 Experiments with Large, Randomly-Generated Instances 

For the second set of experiments, a set of large instances was generated. These instances consider 50 

locations and up to 9 product types, which results in a maximum of 450 demands. For the number of 

product types, the number of compartments, and the number of demands, the same combinations of 

parameters as in the first set of experiments were used. For each combination, one instance was 

randomly generated. Based on these experiments, the solution quality of the MS-VNS was evaluated.  

Since we were neither able to use benchmarks from the literature nor to solve any large instance to 

optimality, we adopted the following approach. Each instance was solved for 360 minutes by the MS-

VNS. The best solutions obtained after 10, 20, 30, 40, 50, and 60, 120, 180, 240, 300, and 360 minutes 

were recorded and the respective objective function values were compared to the best solution found 

after 360 minutes. Again, 500n P  iterations without improvement per loop were used. 

Table 5.2 shows for each instance the total costs of the solutions found (tc) during the first hour of 

computation in steps of 10 minutes and the corresponding deviations to the best solution found (dev). 

Moreover, Table 5.3 lists similar results for the six hours of computation in steps of 60 minutes. 
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Table 5.2 shows that, on average, solutions found after 10 minutes have an objective function value 

which deviates 5.62% from the best solution found after 360 minutes. After 60 minutes of running time, 

this deviation is decreased to 2.03% on average. Furthermore, one can observe a decrease in the change 

of the deviations: Whereas the solutions were improved by 1.63% and 1.04% on average during the 

second and third 10-minute intervals, respectively, this change decreased to 0.19%, 0.27%, and 0.45% 

for the remaining three 10-minute intervals. Similar results are shown by Table 5.3: During the second 

and third 60-minute interval, the average deviation is reduced by 0.64% and 0.61%, respectively. In 

contrast to this development, the decrease during the last three intervals is only 0.25%, 0.29%, and 

0.24%. Figure 5.1 illustrates these findings, showing a decreasing average improvement with increasing 

computing time. Therefore, we cautiously conclude that the objective function values converge. 

Regarding different problem parameters, no significant impact on the solution quality can be observed. 

Therefore, the MS-VNS seems to perform with similar quality for all problem settings. 

 

Figure 5.1: Average deviation plotted against computing time 

5.5 Experiments with Instances from Practice 

In the third set of experiments, we investigated the benefits of introducing vehicles with multiple 

compartments over vehicles with a single compartment only. For these experiments, we generated 

instances based on data from practice, which we obtained from a recycling company based in the City 

of Magdeburg, Germany. The company is responsible for picking up glass waste from containers, 

serving 127 containers at 44 different locations. Up to three different containers are available at each 

location, provided for the collection of colorless, green and brown glass. The trucks, which are used for 

picking up the glass waste at the container locations, possess a single flexible wall that can be introduced 

at predefined positions such that the total capacity of the truck can be divided into at most two 

compartments. The position of the wall can be rearranged for each vehicle tour.  
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The company provided us with a list which – over a period of several weeks – documented for each day 

which location was visited, which product type (glass color) was picked up, and what the respective 

supplies were. From this data we were able to estimate the so-called fill rates, i.e. the amount of glass 

by which a container is filled per day.  

Over a planning horizon of 25 days we then deterministically simulated the development of the supplies 

for each container at each location, assuming that a container is always emptied on the last day before 

its capacity would be exceeded. The data (i.e. the supplies for each container at each location) that has 

been obtained by the simulation for each day has then been considered as the basic data for the definition 

of a specific routing problem instance. These 25 days have been selected for our numerical experiments, 

giving rise to 25 different problem instances. The distances between the locations and between the depot 

and the locations were determined by means of a commercial navigation system and taken as the costs 

of the corresponding edges.  

The procedure resulted in instances where the number of container locations varies between 26 and 34 

and the number of demands between 34 and 54. The number of product types is three for all instances. 

The MS-VNS approach was applied to the 25 instances allowing either one or up to two compartments 

for each vehicle. For both scenarios, all algorithm settings were identical. As termination criteria, 

500n P  iterations without improvement and n P /6 loops without improvement were used. The average 

computing times amounted to 261 seconds for the CVRP-scenario and 452 seconds for the MCVRP-

scenario. 

Table 5.4 presents the characteristics of each problem instance and the corresponding results from the 

experiment, namely the number of locations (n) and the total number of supplies ( ), the total costs of 

the solutions in case only one compartment can be used on each vehicle (tc.cvrp), the total costs of the 

solutions if up to two (flexible-sized) compartments can be introduced (tc.mcvrp) and the improvement 

(impr; in percent) which can be obtained by the latter. Finally, the corresponding number of tours for 

vehicles with one compartment (tours.cvrp) and with up to two compartments (tours.mcvrp) are shown.  
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The results of this set of experiments demonstrate the economic benefits of using vehicles with multiple, 

flexible-size compartments over vehicles with single compartments. For these problem instances, the 

costs of the tours could be reduced by 34.8 % on average. Furthermore, the number of tours (or vehicles) 

necessary on average to pick up all supplies was reduced by one, from 3.2 tours to 2.0 tours.  

6 Conclusions 

In this paper, a variant of the multi-compartment vehicle routing problem was introduced and studied. 

This problem is different from the ones previously discussed in the literature. In particular, it includes 

compartments of flexible sizes, allowing for the number of compartments being smaller than the number 

of product types, which have to be transported separately. Because of this aspect, an additional question 

arises concerning the assignment of product types to vehicles. 

The main contributions of this paper include (1) a presentation of this new variant of the MCVRP which 

is inspired by a real-world application; (2) the development of an exact and a heuristic solution 

procedure for this problem; and (3) extensive numerical experiments investigating the problem itself as 

well as the performance of both suggested algorithms.  

Concerning the exact approach, the results of the experiments have shown that only problem instances 

of limited size can be solved to optimality in reasonable computing time. Detailed analysis of the results 

from these experiments provided insights into the impact of different problem parameters: The problem 

becomes – not unexpectedly – harder to solve with an increasing number of customer locations, product 

types and supplies. However, it was also shown that the maximum number of compartments, which 

determines the number of product types per vehicles, has a significant impact on the complexity of the 

problem. The smaller the number of available compartments is, the harder the problem becomes to 

solve. This result particularly emphasizes the relevance of the additional assignment decision 

encountered in this problem, namely the assignment of product types to be transported by each vehicle. 

Concerning the heuristic approach, we were able to show that it performs well – producing optimal or 

near-optimal solutions for small problem instances. For large instances with up to 450 demands, the 

heuristic finds presumably good quality solutions in reasonable time.  

In a third experiment, based on instances from practice, the benefits of using vehicles with multiple 

compartments of flexible sizes over using vehicles with a single compartment were investigated. The 

results for this specific application have shown that – if multiple, flexible-size compartments can be 

introduced – the total costs of the tours necessary for collecting all supplies can be reduced drastically. 

These results indicate the necessity of dealing with and developing effective solutions approaches for 

multi-compartment vehicle routing problems.  
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