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Unilateral Climate Policy: Harmful or even

Disastrous?*

Hendrik Ritter’ - Mark Schopf!
July 23, 2013

Abstract This paper deals with possible foreign reactions to unilateral carbon de-
mand reducing policies. It differentiates between demand side and supply side reac-
tions as well as between intra- and intertemporal shifts in greenhouse gas emissions.
In our model, we integrate a stock-dependent marginal physical cost of extracting
fossil fuels into Eichner & Pethig’s (2011) general equilibrium carbon leakage model.
The results are as follows: Under similar but somewhat tighter conditions than those
derived by Eichner & Pethig (2011), a weak green paradox arises. Furthermore, a
strong green parador can arise in our model under supplementary constraints. That
means a “green” policy measure might not only lead to a harmful acceleration of
fossil fuel extraction but to an increase in the cumulative climate damages at the
same time. In some of these cases there is even a cumulative extraction expansion,

which we consider disastrous.
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1 Introduction

There is currently a lively debate in the literature on the relevance and economic sig-
nificance of the so called green paradox, which was initially identified by Sinn (2008).
The concept of this paradox was expanded on significantly by Gerlagh (2011), who dis-
tinguishes between a weak and a strong green paradox. Following him, we consider it
a weak green paradox if the announcement of a “greener” policy leads to an increase of
near-term emissions and consider it a strong green paradox if such policy increases the

! The aim of our paper is to discuss

net present value of cumulative climate damages.
conditions for the emergence of a weak or strong green paradox in a setting we consider
appropriate for the task, i.e. in a general equilibrium world market setting in which
intra- and intertemporal carbon leakage as well as changes in the cumulative emissions
may occur.

In relation to our model, the current literature on intra- and intertemporal carbon
leakage can be grouped along several lines: They either apply partial? or general® equi-
librium settings, have multiple countries and thereby allow for intratemporal leakage,?
differ in the number of periods,® etc.® Given the focus of this paper, the emphasis is
mainly on those models that differentiate between a weak and a strong form of the green
paradox. As we will see, the interpretation of these terms may differ between the papers.
A broader discussion of the green paradox literature and on the channels through which
it might emerge is carried out by van der Werf & Di Maria (2012).

In Sinn’s (2008) initial contribution he discusses the green paradox basically as a timing

problem. He uses a one country model in continuous time and an infinite time horizon

1See Gerlagh (2011, 82).

2These are among others Fischer & Salant (2012), Fischer & Salant (2013), Harstad (2012), Hoel (2011),
Hoel (2012), Hoel (2013), and Hoel & Jensen (2012).

3This is particularly the case for Eichner & Pethig (2011), Eichner & Pethig (2013), and van der Ploeg
& Withagen (2012).

“Intratemporal or spatial leakage is discussed e. g. in Eichner & Pethig (2011), Eichner & Pethig (2013),
Fischer & Salant (2013), Grafton et al. (2012), and Hoel (2011).

5Discrete or continuous, finite or infinite models.

SWhere these groups are of course not exclusive, depending on its properties each model fits one or

more of them.



to analyze the fossil fuel supply side reactions to several demand reducing policies and
demonstrates that these can have adverse effects, i.e. accelerating instead of postponing
global resource extraction. The phenomenon leads to an shift of the fossil fuel extraction
to the present and thus to higher current greenhouse gas emissions. A precondition for
this green paradox is the existence of a resource rent. As Sinn (2008) puts (reasonable)
bounds on the price elasticity of demand for fossil fuel and the marginal extraction cost,”
there is neither full depletion in finite time nor a break off of supply with stock left in
situ in his model.® Given this structure, the movements of the extraction path are always
monotonous.” Therefore, second best situations with intermediate acceleration but a
decrease in long-run cumulative emissions do not occur.

While Sinn (2008) rightfully emphasizes the usual absence of supply side considerations
in environmental policy analyses, he was of course not the first to do so. What can be
considered a special case or application of the green paradox was already highlighted
by Sinclair (1992). He finds that under perfect competition, with the global warming
externality and costless extraction, carbon taxes should be steadily falling. The author
states that the level of taxation is irrelevant and that an over time increasing carbon tax
accelerates the extraction. In reply to Uplh & Ulph’s (1994) critical review of the driving
assumptions in Sinclair (1992), Sinclair (1994) adds the intuition that a decrease in the
market interest rate postpones extraction. Two more reasons for a decreasing carbon tax
over time are mentioned: One being the irreversibility of burned fossil fuel and the other
the possible emergence of backstop technologies.

In reaction to Sinn’s (2008) findings, several papers have tried to assess the robustness
of the green paradox and evaluate conditions for its emergence. The single country (or
world economy) setting is also used by Gerlagh (2011), who introduces the distinction
between the weak and the strong green paradox. He considers the first to be a situation
which leads to a short-run acceleration with possible medium-run deceleration and the
latter to be a situation in which climate policy actually increases the net present value of

cumulative climate damages.!® Gerlagh (2011, 87) measures cumulative climate damages

"See Sinn (2008, 374).
8See Sinn (2008, 390).
9See Sinn (2008, 375f.).
10See Gerlagh (2011, 82).



by assigning a time dependent shadow price to timestamped emission quantities. We
adopt this formulation to our two period setting by a lifetime damage function, dependent
on near-term and cumulative emissions, which is additive to consumption utility.

The conditions for the emergence of both kinds of paradoxes in a single country economy
are extensively discussed by van der Ploeg & Withagen (2012). They consider the strong
green paradox a case of a fall in green welfare.*! Green welfare is modeled as the reverse of
the present value of discounted damages, with instantaneous damages being dependent
on COy stock. This is qualitatively similar to Gerlagh’s (2011) net present value of
cumulative climate damages.'> They show that a stock-dependent extraction cost may
reduce the set of cases where a strong green paradox arises, especially if the cost of
extracting the last drop of oil is sufficiently high compared to the price of the backstop
technology.'® But even in a situation with a strong green paradox, overall welfare may
increase as a result of subsidizing a green backstop.!*

The effect of biofuel subsidies in a two country setting is analyzed by Grafton et al.
(2012). They differentiate between a weak green paradox in the sense of Gerlagh (2011)%
and a green paradoz in the long run.'® In line with van der Ploeg & Withagen (2012),
they show that the extraction cost’s sensitivity with respect to the stock level plays a
crucial role in regards to the postponement of the depletion’s point in time.!”

Other ways to endogenize the cumulative emissions are: carbon capture and storage,
breaking up the proportionality between extraction and emission,'® a sufficiently high
9

carbon tax which reduces the fossil fuel demand to zero at some finite time,'® or “elimi-

nating” part of the resource stock.?°

HGee van der Ploeg & Withagen (2012, 343).

( )
12See van der Ploeg & Withagen (2012, 345).
13See van der Ploeg & Withagen (2012, 348).
14See van der Ploeg & Withagen (2012, 353).
15See Grafton et al. (2012, 338).
16See Grafton et al. (2012, 338).
17See Grafton et al. (2012, 338).
18See e.g. Hoel & Jensen (2012).

9This case assumes, at least implicitly, that fossil fuel is not essential in producing consumption com-

modities. See e.g. Hoel (2012).

20This strategy is analyzed by Harstad (2012) and Hoel (2013).



While the literature on the green paradox is already very broad, none of the models
that we have mentioned, nor any other model that we are aware of, analyzes the prob-
lem without neglecting at least one of the following three features. (1) Income effects
resulting from redistributed revenues are neglected by partial equilibrium models. These
effects result from revenues (budget losses) generated by carbon taxes or permit trading
systems (backstop subsidies). It is unclear whether the additional (or reduced) consump-
tion induced by the redistribution alters the conditions under which a mitigation policy
becomes beneficial or harmful. Additionally, feedback effects arising from the interaction
with other sectors of the economy, like terms-of-trade and relative price effects discussed
by Di Maria & van der Werf (2008) and van der Werf & Di Maria (2012), are often ne-
glected by partial equilibrium approaches. (2) One-country-models rule out intratemporal
(spatial) carbon leakage. (3) The intertemporal general equilibrium models with multiple
countries typically assume costless extraction, which implies definite full depletion of the
resource stock in finite time.

Our aim is to close this gap by endogenizing cumulative emissions in Eichner & Pethig’s
(2011) model. Eichner & Pethig (2011) are able to assess both intra- and intertemporal
carbon leakage by choosing a three-country-two-period-model?! to analyze the effect of
reducing the size of a binding emissions cap. By neglecting the cost of extraction, the
sum of emissions over both periods is exogenously determined and equal to the initial
stock. We will change this by introducing a stock-dependent marginal extraction cost.
This extends the former key determinants for the occurrence of a green paradox, the price
elasticities of demand for fossil fuel and the intertemporal elasticities of substitution in
consumption, by the elasticities of supply and the user cost in real terms.

The remainder of this paper is organized as follows: Section 2 presents the basic as-
sumptions of the model, with a focus on the extension made to Eichner & Pethig (2011),
and derives an initial market equilibrium. In Section 3 we analyze the effects of the
tightening of an emissions cap in the present (period one), while Section 4 presents the
results of an emission reduction in the future (period two). As our paper draws heavily
on Eichner & Pethig’s (2011) model, we occasionally remark how and where our model

and results are distinct from their analysis. Section 5 discusses the results and concludes.

21 Fossil fuel supply side (i = F), abating fossil fuel demand side (i = A), non-abating fossil fuel demand
side (i = N), time up to the medium term (¢ = 1), and time up to the very long term (¢t = 2).



2 The Model

The basic structure of the model follows that of Eichner & Pethig (2011). We adopt
their setting with three countries i = A, F, N and two periods t = 1,2. Specifically, the
world consists of the fossil fuel exporter F', the emissions abating country A, and the
non-abating country N.??

In order to integrate the idea of the strong green paradox into Eichner & Pethig’s
(2011) model, we modify the assumptions regarding the fossil fuel supply. To be con-
crete, we introduce material cost functions (see equation (1) and equation (2)).22 We
consider the marginal material extraction cost to be negatively correlated with remaining
stock. Formally, we assume that in each period the marginal physical cost is positive and
increases with that period’s extraction (see equation (3)). Furthermore, the physical cost
in the second period increases disproportionately with the first period’s extraction; the
physical user cost is positive and increases with each period’s extraction (see equation
(4)). For a given cumulative extraction, we assume that the total physical cost measured
in commodity units is the higher the less balanced the extraction path is (see equation

(5)).24 Formally, this can be represented as follows:

g =X (epy), (1)
TE2 :XEQ(th €F2)> (2)
Et Et
XBFt >O’ XCFtEFt > O’ (3)
E2 E2 E2 v E2
X€F1 >0’ X€F1€F1 > 0’ X6F16F2 - X€F2€F1 > O’ (4)
E2 Pzl 1 E2 E2 E2
(XeFleFl + ZEXeFleFl) 'Xemem >X6F16F2 'Xemem’ (5>

where xp, is the commodity demand of the firm in country F in period ¢, X** is the

material cost function of the firm in country F' in period ¢, eg; is the fossil fuel supply

22To assure traceability, we try to follow Eichner & Pethig’s (2011) nomenclature wherever this is
appropriate. This includes terming the only available policy, namely tightening an emissions cap, as
“abatement”, although there is no actual abatement technology or the like in the model.

23These “material cost” functions can also be interpreted as “inverse production” or rather “extraction”
functions. In each period, their outputs were then actual extraction quantity while their inputs were
“material good” (the unique commodity of the world economy) and “current resource stock” (better
tapping possibilities).

24X FE2(epy, eps) being strictly convex is a sufficient condition for this to hold.



in period ¢, X gt is the marginal physical cost of the firm in country F in period ¢, X 521
is the physical user cost of the firm in country F,?® and p,; is the commodity price in
period t.

There is a representative price taking (on its input and output markets) resource ex-
tractor in the fossil fuel exporting country. As in Eichner & Pethig (2011), the market
rate of interest is normalized to zero. The firm has a profit function based on the prior
considerations (see equation (6)) which is maximized with respect to present and future
fossil fuel supply (see equation (7) and equation (8)). The perfectly competitive fossil fuel

world market has to be cleared in each period (see equation (9)). The cumulative emis-

sions are endogenously determined (see equation (10)). Formally, this can be represented

as follows:
I .= Z[peteFt - pactXEt(th €F2)]7 (6)
t
Pe1 :paleeEl;ll +px2X£7217 (7)
Pez =Pa2 X2 (8)
ert =€ar + ent, 9)
Erxy =€p1 + €era, (10)

where II7 is the profit function of the firm in country F, p. is the fossil fuel price in
period t, e; is the fossil fuel demand of the firm in ¢ = A, N in period ¢, and epy is the
endogenously determined cumulative fossil fuel extraction.

As the aim of this paper is to analyze changes in the timing of emissions and the
quantity of cumulative emissions, we limit our analysis to cases in which the cumulative
extraction is strictly less than the world’s physical fossil fuel stock. This means we
implicitly assume that the intratemporal marginal extraction cost rises faster when the
remaining stock reaches depletion, than marginal production rises when resource input
falls to zero.

In what follows, the elasticities of supply for fossil fuel play an important role. Formally,

these can be represented as follows:

El E2
px1X€F1 +px2XeF1 (11>
porem XEL A+ poem XE2,

€F1€Fr1 €F1€Fr1

NrF11 =

25Since we only consider interior solutions in which the resource stock is not fully depleted, this in-

tertemporal cross effect is the key dynamic of the model.



p:chEl + prXE2

€Fr1 €r1
NF21 = 12
px26F2X£,2leF2 ’ (12)
prXeEFi
NF1,2 :T’ (13)
Pe2€r1 A g en,
px2X£:22
NF22 =50 (14)
Pu2€F2 X e,
where nps; = %Z: . % > 0 is for s # t the intertemporal and for s = ¢ the intratemporal

price elasticity of supply for fossil fuel of the firm in country F' in period s.

The policy tools we analyze in the subsequent sections are marginal changes in the
emissions cap of the abating country today and tomorrow. We only discuss situations
in which an emissions trading scheme exists (in period one) and is assumed to persist
(in period two), like e.g. the Furopean Union Emission Trading Scheme. Formally, this

represents as follows:
€Al :EAI and € A2 :EAQ’ (15)

where €4, is the exogenously given (politically determined) fossil fuel demand of the firm
in country A in period t.

Apart from the existence of the emissions cap, the fossil fuel demanding countries
are considered to be symmetric. There are representative price taking (on its input
and output markets) commodity producers with identical production functions in each
country and period. These functions are increasing and strictly concave in fossil fuel
demand (see equation (16) and equation (17)). A permit price has to be paid for each
unit of fossil fuel consumed in the abating country in each period. Each firm has a profit
function based on the above considerations (see equation (18) and equation (19)) which
is maximized with respect to present and future commodity consumption (see equation
(20) and equation (21)). The perfectly competitive commodity world market has to be

cleared in each period (see equation (22)). Formally, this can be represented as follows:

x,sqt :XAt(EAt)a (16)

i =X (en), (17)

I := Z[PmtXAt(éAt) — (Det + 7)€, (18)
¢

Y .= Z[patiNt(eNt) - peteNt]a (19)
¢

T =paXil —per >0 and  m = ppXil — pe >0, (20)



p:legvll =Pel and p:v?Xg\i = Pe2, <21)

Ty + Ty =Tar + e + Tpe+ Tps (22)

where 7%, is the commodity supply of the firm in ¢ = A, N in period ¢, X*(ey) is the
production function of the firm in ¢ = A, N in period ¢, II? is the profit function of the
firm in ¢ = A, N, 7; is the permit price in period t, X;_t is the marginal physical product
of the firm in ¢ = A, N in period ¢, and z;; is the commodity demand of the households
ini= A, I, N and the resource extractor F in period t.

In contrast to Eichner & Pethig’s (2011) model,?® in our model the initial equilibrium
on the fossil fuel market is characterized by the fossil fuel prices being determined by the
demand side’s and the supply side’s optimality conditions and an extraction of all fossil

fuel reserves,®”

meaning those fossil fuel resources which are worthwhile extracting given
their extraction cost.

The model is closed by the commodity demand of the households. There are represen-
tative lifetime utility maximizing households with identical lifetime utility functions in
each country (see equation (23)). Lifetime utility is considered to be increasing, quasi-
concave, and homothetic in present and future commodity consumption. In each country,
the lifetime income, consisting of the maximized profit of the firm and the permit rev-
enues in the case of the abating fossil fuel demand side, is considered as lump sum and
used to finance lifetime consumption (see equation (24)). The straightforward analytical
result is that each intertemporal marginal rate of substitution has to be equal to the
intertemporal price ratio in equilibrium (see equation (25)). Formally, this represents as

follows:

Uz‘:U(%‘hxm), i=AF,N, (23)
— [14* + €A1 + T2€ a9
prtxit = ) Z - F7 N7 (24)
t — Hz*

26Where the initial equilibrium on the fossil fuel market is characterized by a determination of the
intertemporal fossil fuel price by the demand side’s optimality conditions and an extraction of all

fossil fuel resources.

27“Reserves are those quantities of hydrocarbons which are anticipated to be commercially recovered

from known accumulations from a given date forward” (Society of Petroleum Engineers 2005, 11).



ss _ P i=AF,N, (25)

Uzin  Da2
where u; is the lifetime utility of the households, U(z;1, z;2) is its lifetime utility function,
[1* is the maximized profit of the firm in i = A, F, N, and U,,, is the marginal utility of
the households in period t.

To better understand the relationship between changes in commodity prices and com-
modity demands induced by tightening the emissions caps, we limit our analysis to life-
time utility functions with constant intertemporal elasticities of substitution (see equation
(26)). Applying them in the optimality conditions (see equation (25)), the relative com-
modity demand of the households can be derived (see equation (27)). Formally, this

represents as follows:

U(xir, xi0) = (06155;11) + 04236;2{))7%, i=AF N, (26)
@:<%@), i=AFN, (27)
X2 Q1 P2

where o := 1/(—b — 1) is the intertemporal elasticity of substitution.
In order to derive conditions under which the strong green paradox occurs due to a
“oreen” policy, we weight changes of present and cumulative emissions with the following

climate damage function:

L

D(eFl, 6F2) = (Cle%l + 626%‘2> ! s (28)
dD(eFl,eFE) z 0 <~ deFl + )\depg z O, (29)
d—1
where A = 2 - (%) > ( is the relative weight attached to changes in cumulative

emissions.

3 Acting Today

Tightening the cap in the first period (de4; < 0) causes carbon leakage (dey;/des; < 0)
and can even lead to the weak green paradox (dep;/dés; < 0). A cumulative extraction
expansion (depy/des; < 0) and the strong green paradox (dD/des; < 0) can emerge,
depending on the occurrence of the weak green paradox. The solution strategy for the
comparative statics in both periods is as follows: We start with analyzing the changes on

the fossil fuel market, proceed with observing the effects on the commodity market, and



close by combining our results.?® On the former market, tightening the cap in the first

period has an impact on the fossil fuel extraction in period one:?"

E E E
deps —deg — Lo — peilpez + XE2 . ena|nnal] Qe — XE2eni|nna] [pe2 + XE2 . enzalnna|] dpes
——— FO F0 ’
(1]
2] (3]
(30a)
E E E
_Pe1 [pe2 + X22 . enalnnal] deq — XE2 eni|nna| [pe2 + X22. . enalnne|] dpus (30b)
FO FO €Tz
Whel"e F — p62€N2|nN2‘peleN1‘nN1| . EF1MF1,2 + EF1MF1,2 . EF2MNF2,1 _I_ EF2MNF2,1 _ 1 > 0 and
0 eF1MF1,2€F2MF2,1 en2nNa] eF2NF2,2 eninn1| er1MF1,1
Nt
NNt = EMWNJ < 0 is the price elasticity of demand for fossil fuel of the firm in country
ENtENt

N in period t.

PROPOSITION 1. If (26) holds and the abating country A tightens its emissions cap
(déAl < 0),

e the commodity price in period two falls (dpys < 0),

o the emissions in the first period either decline by less than de 4, (321 €]o0, 1[) or
they increase (% < O),

e and the present fossil fuel price falls (dpey < 0).
ProoF. See appendix A.3, equation (A.36); appendix A.3, equation (A.28); appendix
A 3, equation (A.38). |
It can be shown that the commodity price in period two decreases relative to the
commodity price in period one (dp,2 < 0). The intuition is that due to the demand
reduction of the abating country, fossil fuel and thus the commodity which is produced
using fossil fuel becomes scarcer in the first period. This means that the demand for and
the supply of the commodity fall apart, resulting in a higher present and a lower future
commodity price. Therefore, the commodity producer in the non-abating country shifts
his commodity supply and thus his fossil fuel demand from the second to the first period.
Furthermore, it can be shown that the present fossil fuel price decreases (dpe; < 0). On
the one hand, the demand for fossil fuel in period one declines (caused by dés; < 0). On

the other hand, its supply decreases if and only if the potential rise in the physical user cost

outweighs the fall in the commodity price in period two (if and only if d<px2X E2> > 0).

€r1

28This method is also adopted from Eichner & Pethig (2011).

29See appendix A.1, equation (A.19). Throughout the rest of the article the commodity in period one is

chosen as numeraire.
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Nevertheless, the demand reduction is always greater than the potential supply reduction.
Whether the future fossil fuel price increases or decreases is ambiguous (dpes z 0). On
the one hand, the demand for fossil fuel in period two declines (caused by dp,, < 0).
On the other hand, its supply increases if and only if the fall in the commodity price
outweighs the potential rise in the marginal physical cost in period two (if and only if
d(p2X2) <0).

In conclusion, the demand reduction of the abating country in the first period (term
[1] of equation (30a)) is accompanied by two effects, which counteract its effectiveness.

Firstly, there is a carbon price effect equal to term [2]| of equation (30a). This reflects
the fossil fuel demand increase of the firm in the non-abating country due to the fall in
the fossil fuel price in period one. The carbon price effect causes positive carbon leakage
([2] > 0) but cannot cause the weak green paradox on its own ([2] < 1).

Secondly, there is a relative price effect of carbon intensive goods equal to term [3] of
equation (30a). This reflects the relative fossil fuel demand decrease of the firm in the
non-abating country due to the fall in the relative price of the commodity in period two.
In conjunction with the carbon price effect the relative price effect of carbon intensive
goods can cause the weak green paradox. The impact on the cumulative extraction can

be represented as follows:3°

Pl I X ent|nv| T
r, ™ o

dng = dpx27 (31)

_ pe2enalnnz| | <6F177F1,2 EF1MF1,2 1)

where I’
1 EF1MF1,2 6N2|77N2\ EF2MF2,2

PROPOSITION 2. If (26) holds and the abating country A tightens its emissions cap

(dear < 0), the cumulative emissions either decline by less than de 4, (deﬂ €]0, 1[) or

deay
they increase (% < 0) if I'y > 0.

Proor. The second term of (31) is greater than or equal to zero if 'y > 0 since
dpze < 0. The first term of (31) is greater than minus one since

_Pe2€N2\77N2! €F1TF1,2 EF1TF1,2
Perl't = . + — 1] pa
eF1TF1,2 enz2|nn2|  eranFo

e (& e e e e
<Ty :pez N2|77N2|pe1 N1|77N1| ] ( F11F1,2 n F177F1,2> ] ( F2TF2,1 4 F277F2,1> 1

er1NF1,2€F2NF2,1 ena2|nNe|  eranF22 eni|nni|  erinFia

30See appendix A.1, equation (A.21).
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e e (& e e e
=0 <p62 N2|77N2!pe1 N1\77N1! ] F17F1,2 n F1F1.2 | F27F2,1 i < FQT}F2,1> 1
eF1NF1,2€F2NF2,1 en2|nn2|  eranra er1NF 1 ent|nn1|
>1
Therefore, depy is greater than dey; if I'y > 0. [ |

It can be shown that the cumulative emissions will not decline by more than de,; if

the reciprocal of the intertemporal price semi-elasticity of supply for fossil fuel in period

one <6F1$F12> is less than the sum of the reciprocals of the intratemporal price semi-

elasticities of demand and supply for fossil fuel in period two ( 1 1 > (if
en2nNa] eF2NF2,2

[y > 0).31 On the contrary, in this case they will increase if the positive effect due to

the fall in the commodity price in period two outweighs the negative effect due to the

dsz
deaq

tightening of the emissions cap (

Pel
> .
XfﬁleNﬂ??Nl\

Whether the weak and the strong green paradox occur or not depends on the change
in the future commodity price (dp,2). In order to derive the change in the future com-
modity price following the demand reductions and the changes in fossil fuel supply
(dpyo(d€ar, d€as, depr, ders)), the commodity market is now taken into account. The
resulting changes do not only depend on the households’ preferences, but also on the
resource owner’s material cost function. It can be shown that the relative change in
the future commodity price depends: on the intertemporal elasticity of substitution, the
permit prices, the future commodity price, the commodity demand of the households,
the physical user cost, the demand reductions, and the change in the present fossil fuel

supply. Formally, this can be represented as follows:3?

Pa2 ™ _ T2 _
dpmg = — d€A1 — d€A2 -+ @ d€F1 (32)
s s s s )
o \ i + Ty —Zm Pa2(Thy + T3y — Tp2)
D 2xE2 D 2XE2
where @ = —<F1__ —CF1 )
oty —TEr - pe2(Ti, TN, —TE2)

Finally, combining the results from the fossil fuel market with the results from the
commodity market (for déso = 0), the change in fossil fuel supply in the first period
(dep1/ deay), the change in fossil fuel supply in the second period (degs/ d€41), the change

in the cumulative extraction (depsx/de4;), and the change in the cumulative climate

31These terms are semi-elasticities in the following sense: They measure absolute changes in quantities

in relation to relative changes in prices.

32Gee appendix A.2, equation (A.27).
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damages (dD/ de4;) with respect to the demand reduction in the present can be deduced
and analyzed for algebraic signs.?3

Thereby, conditions for the occurrence of the weak (deg;/des; < 0) and the strong
green paradox (dD/des; < 0) in response to tightening the emissions cap in the first

period can be simplified to the following inequalities:

E2
dep1 > 0 > P2 Xel ment|nn| 33
A & o0Zo= - - , (33)
€Al Pei TY1 + TN — TEL
E2
> _ P2 Xol mienynN| : D
dD = 0 & o <77 Pe1 THFay —TE if Fl >0 (34)
deq; < YE2 )
< g = P2ty _meninn if TP <0
> Pel $f41+-1’?\/1—$E1 1

€ e
where FlD _ pe2enalnne| | (14X | €R1MFL2 + L+X | €FIFL2 g >T,.
EF1MF1,2 A enannz| A EF2NF2,2

From equation (33) and (34) we infer the following proposition:

PROPOSITION 3. If (26) holds and the abating country A tightens its emissions cap
(dea; < 0), the weak and the strong green paradox occur under the following conditions:

depy >0 depr <0
dD>0| o< andTP >0 | 0 >7 and TP <0
dD<0| o<o andTP <0 | 6> and TP >0

Our condition for the occurrence of the weak green paradox is stronger but closely
related to Eichner & Pethig’s (2011). With the marginal extraction cost, the physical
user cost in real terms complement the equation (p,2X eEF% /Pe1 < 1). The inequality sign
and the rest of the condition are the same as in Eichner & Pethig’s (2011) model. If
the elasticity of demand and the intratemporal (intertemporal) elasticity of supply for
fossil fuel in the second (first) period are relatively small (large) and if the relative weight
attached to changes in cumulative emissions is relatively small (if 'Y > 0), the occurrence
of the weak will coincide with the occurrence of the strong green paradox (first and forth
quadrant of the matrix). Otherwise, the cumulative climate damages will either change
contrarily to the emissions in the first period (if 'Y < 0, second and third quadrant of the
matrix) or remain unaltered (if 'Y = 0). Present and cumulative emissions will increase

simultaneously if and only if ¢ < & and I'; > 0.34

33See appendix A.3, equations (A.28), (A.29), (A.30), and (A.31).

34Gee equation (33) and appendix A.3, equation (A.30).
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4 Acting Tomorrow

In what follows, the effects of a change in the future emissions cap are analyzed. This
action is announced credibly today and thus influences consumption and production deci-
sions in the first period. Analogously to the demand reduction in the present, tightening
the cap in the second period (déss < 0) can cause carbon leakage (dey;/dess < 0) and
can even lead to the weak green paradox (dep;/deso < 0). Contrary to the analysis in
the previous section, there can be negative cumulative carbon leakage (depy/dess > 1).
A cumulative extraction expansion (depsx/dess < 0) and the strong green paradox
(dD/déss < 0) can still emerge, but no longer depends on the occurrence of the weak
green paradox. We start again by analyzing the changes on the fossil fuel market. Tight-

ening the cap in the second period has an impact on the fossil fuel extraction in period

one:??
Lo — peapua XP? . entlnni] XE2 en1nni| [pe2 + XE2, . enalnnel]
d =_—de F1€F2 de _ €F1 €F2€F2 d
er1 €A2 + T, €A2 T, D2
(1]
(2] 3]
(35a)
. Pe2pz2 XE2 . entlnnil dBan — XE2 enilnni| [pe2 + XE2 ., enainnel] q (35D)
= Ty A2 o Px2-

PROPOSITION 4. If (26) holds and the abating country A tightens its emissions cap
(dEAQ < 0),

e the commodity price in period two rises (dpye > 0),

<d€§1 < O> if and only if the present fossil fuel
2

e and the weak green paradox occurs
price falls (dpey < 0).

de

Proor. See appendix A.3, equation (A.37); appendix A.3, equation (A.32) and (A.40).
|

It can be shown that the commodity price in period two increases relative to the com-
modity price in period one (dp2 > 0). The intuition is the same as in the previous
section. Therefore, the commodity producer in the non-abating country shifts his com-
modity supply and thus his fossil fuel demand from the first to the second period.

Furthermore, it can be shown that the weak green paradox occurs if and only if the
present fossil fuel price decreases (dep1/dpe; < 0). With given demand for fossil fuel in

period one, its supply thus has to increase. This is the case if and only if the potential

35See appendix A.1, equation (A.19).
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fall in the physical user cost outweighs the rise in the commodity price in period two (if
and only if d<pm2X fg) < 0). Whether the future fossil fuel price increases or decreases is
ambiguous (dpes z 0). On the one hand, the demand for fossil fuel in the abating country
in period two declines (caused by dess < 0). On the other hand, the demand for fossil
fuel in the non-abating country in period two rises (caused by dp,2 > 0). Furthermore, its
supply increases if and only if the potential fall in the marginal physical cost outweighs
the rise in the commodity price in period two (if and only if d<p$2X522> < 0).

Analogously to the previous section, the demand reduction of the abating country
in the second period (term [1] of equation (35a)) is accompanied by two effects, which
counteract its effectiveness in regards to increasing present emissions.

Firstly, there is a carbon price effect equal to term [2]| of equation (35a). The carbon
price effect causes negative carbon leakage (|2] > 0) but cannot prevent the weak green
paradox on its own ([2] < 1).

Secondly, there is a relative price effect of carbon intensive goods equal to term |[3]
of equation (35a). In conjunction with the carbon price effect the relative price effect
of carbon intensive goods can prevent the weak green paradox. The impact on the

cumulative extraction can be represented as follows:3¢

Peal' ey — XE2enq|nn| Ty

dpa2, 36
T, T, Pr2 (36)

dGFE =

where 'y, = pereniuna| | ( €F2nF2 + eranF21
2 eF2NF2,1 eninn1| er1F1L L .

PROPOSITION 5. If (26) holds and the abating country A tightens its emissions cap
(deas < 0), the cumulative emissions

e cither decline by less than deé s (cé%iz €0, 1[> or they increase (‘é‘;% < 0) if 'y <
2 2
0

e and they decline (deﬂ > O) if 'y >0 and T'y > 0.

de 4,

ProOOF. The second term of (36) is greater than or equal to zero if I'y < 0 since
dpz2 > 0. The first term of (36) is greater than minus one since

Pel1€N1 |77N1 ! €F2Mr2;1 EF2MF2,1
peQFQ - . + -1]- De2
eranF2,1 eni|lnni|  erinria

< Ty

_ pe2enz2|nnz| perent|nni| CFINF12 | CFIF12 eralF21 | EF2F2LY
eF1NF1,2€F2NF2,1 en2|nn2|  eranpap eni|nni|  erinri

36See appendix A.1, equation (A.21).
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Pe2en2|NN2| Perent [Nt eranF21  EF21F2,1 eF1MF1,2 er1nF1,2
o o <Peenaliva| peaenilnn| P21 €F2l] , n n n .
eF1NF1,26F21F2,1 eni|nni|  erinFLL eranF2,2 enz2|nna|

>1

Therefore, depy is greater than deys if I'y < 0.

The second term of (36) is less than zero if I'y > 0 since dp,2 > 0. The first term of (36)
is less than or equal to zero if I'y > 0. Therefore, depy; is less than zero if I'y > 0 and
'y >0.

It can be shown that the cumulative emissions will not decline by more than de,
if I'y is less than zero. On the contrary, in this case they will increase if either the

reciprocal of the intertemporal price semi-elasticity of supply for fossil fuel in period two

(6F2$F2 1) is greater than or equal to the sum of the reciprocals of the intratemporal price

semi-elasticities of demand and supply for fossil fuel in period one (€N1;7N1| + 6F1;F1 1)

(if I'y < 0) or I'y is greater than zero and the positive effect due to the tightening of

the emissions cap outweighs the negative effect due to the rise in the commodity price in

Iy

I'1

dpz2
deay

Pe2
XEZ eninnil

period two (

). Furthermore, the cumulative emissions will not
increase if ['; and I'y are greater than or equal to zero.

Analogously to the analysis in the previous section, the commodity market is now
taken into account. Equation (32) is applied again; however, this time today’s cap is hold
constant (des; = 0).

Finally, combining the results from the fossil fuel market with the results from the
commodity market, the change in fossil fuel supply in the first period (dep;/d€42), the
change in fossil fuel supply in the second period (degs/ d€42), the change in the cumulative
extraction (depy/ d€4s), and the change in the cumulative climate damages (dD/ des),
following the demand reduction in the future, can be deduced and analyzed for algebraic
signs.37

Similar to the demand reduction in the present, conditions for the occurrence of the
weak (depi/dess < 0) and the strong green paradox (dD/ dess < 0) induced by tighten-

ing the emissions cap in the second period can be derived:

deF1

XEZ e e
~ :pr er1 7'['2€N2|77N2| ( F27F2,1 + F27F2,1 7 (37)

— z 0 & o ; o1 5 S
déas Pet  Da2(x5y + %9 —xE2) \ en2lnn2|  eranr22

37See appendix A.3, equations (A.32), (A.33), (A.34), and (A.35).
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E2
Pr2Xep, maeN2| N2
S S
>~ Pel P12($A2+$N2—xE2) . D
=9D = if IT'y >0
D
Iy
Perent|nni|
ry e
Pe2€EN2|TIN2 moen2nN2|
| | Pa2(29y T2, —TE2)
dD
— 20 o )
deAQ
E2
px2X€F1 7726N2|77N2|
> De1 D225y + %9 — TE2) _
D
oIy
perent|nni]
ry 0
Pe2eN2|nN2| maenalnNal
\ Pa2 (T80T —TE2)
where '} = perenilina| - (epalEzL | eraliEzi 14N} T,
EF21F2,1 eninn| EF1MF1,1 A

From equation (37) and (38) we infer the following proposition:

PROPOSITION 6. If (26) holds and the abating country A tightens its emissions cap
(deas < 0), the weak and the strong green paradox occur under the following conditions:

dGFl >0

d6F1 <0

dD >0 o>op and TP <0 o<opand TP >0
4D < 0 op>c>0, and? <0 | 6p<o <o and TP >0
orc >0, and TP >0 oro <o, and TP <0

PROOF. 0 % op is equivalent to I'Y ; 0 since

AV

~ ~ EF2MF2,1
o1 z op & nE2,
6N2\77N2!

€Er27F2,1
_l’_
Er21F22

D
Iy ¢}
Pe2eN2NN2] maenalnNa]
Pg2 (:’322 +93}S\]2 —z[2)
D
F2

 perenilnnal

- L = if T9 >0
> peieniini|pezenanna] W38N2\2N2\
o 0 €F2;F2,1 P2 (@0 +To—TE2)
> 0 © if TP <o
< perenilnnilpezenalnne] maeng1Na|
epanpFa 1 Pr2 (x5 o tei s —2E2)

Our condition for the occurrence of the weak green paradox is again closely related
to Eichner & Pethig’s (2011). With marginal extraction cost, the physical user cost
in real terms weaken the condition (pmgXeb;Ql /per < 1). If the elasticity of demand and

the intratemporal (intertemporal) elasticity of supply for fossil fuel in the second period

are relatively large (small) (last term of equation (37) < 1), it will be weakened further.
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Otherwise, the condition will either be strengthened (last term of equation (37) > 1)
or remain unaltered (last term of equation (37) = 1). The inequality sign and the rest
of the condition are the same as in Eichner & Pethig’s (2011) model. If the elasticity
of demand and the intratemporal (intertemporal) elasticity of supply for fossil fuel in
the first (second) period are relatively large (small) and if the relative weight attached
to changes in cumulative emissions is relatively small (if T'Y < 0), the occurrence of
the strong will induce the occurrence of the weak green paradox (first quadrant of the
matrix). Otherwise, the emissions in the first period will decrease if the cumulative

38

climate damages increase (if T'Y > 0, second quadrant of the matrix).?® Present and

cumulative emissions will increase simultaneously if and only if ¢ > &y and I'; < 0. 3°

5 Concluding Remarks

There are several reasons why public policies against global warming can have effects con-
trary to their intended aims. Carbon leakage can lead to intratemporal and intertemporal
shifts in greenhouse gas emissions from the abating countries to the non-abating coun-
tries. Even within the abating countries, emissions might only be shifted intertemporally
rather than there being an actual emission reduction for any abatement policies other
than binding and persistent quantity restrictions. Resource owners may feel threatened
by ambitious climate objectives and shift their extraction to the present so as not to be
left with the bulk of their mineral deposits. Furthermore, previously untouched resources
may become valuable reserves and may be extracted sooner or later due to possible price
rises in coal, oil, and other fossil fuels.

We integrate a marginal extraction cost which is increasing in present, future, and
cumulative supply into Eichner & Pethig’s (2011) model. Through this, the cumulative
fossil fuel extraction becomes endogenously determined. In our model, the qualitative
results concerning the weak green paradox remain unaltered and the elasticities of demand

still play an important role (see equations (33) and (37)). But if the emissions cap is

38This is never fulfilled if FlD > 0.

xE2 —1
39Where s — 2220cr1 moenalnNa| ) r, + &) N r, See
z Pel Pa2(x5 4T3 —TE2) De2enN2|nN2| moenalnna| DPereni|nnt| '
pr2(@hotelo—TE2)

appendix A.3, equation (A.34). o1 < oy if and only if T's < 0 whereby the proof is equivalent to that

above. See also equation (37).
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tightened in the first period, the condition for its occurrence is strengthened due to the
physical user cost in real terms (see equation (33); these are smaller than one). And if
the emissions cap is tightened in the second period, not only the user cost but also the
elasticities of supply in the second period play an important role for the condition for the
occurrence of the weak green paradox (see equation (37)).

Furthermore, we derive conditions under which the cumulative climate damages in-
crease due to a “green” policy. The results crucially depend on the elasticities of supply
and the relative weight attached to changes in cumulative emissions (see equations (34)
and (38)). If the elasticity of demand and the intratemporal (intertemporal) elasticity of
supply for fossil fuel in the second (first) period are relatively small (large) and if the rela-
tive weight attached to changes in cumulative emissions is relatively small (I'? > 0), then
the strong green paradox will occur due to a tightening of the emissions cap in the first
period if the intertemporal elasticity of substitution is smaller than some threshold level
(0 < 7). Otherwise (I'Y < 0), it will occur if the intertemporal elasticity of substitution
is larger than this threshold level (o > 7). Following a tightening of the emissions cap
in the second period, if the elasticity of demand and the intratemporal (intertemporal)
elasticity of supply for fossil fuel in the first (second) period are relatively large (small)
and if the relative weight attached to changes in cumulative emissions is relatively small
(I'P < 0), then the cumulative climate damages will increase if the intertemporal elastic-
ity of substitution is larger than some threshold level (¢ > 7p). Otherwise (I'Y > 0), they
will increase if the intertemporal elasticity of substitution is smaller than this threshold
level (o < ap).

Comparing our results to those derived in the literature, two features stand out. First,
adopted from Eichner & Pethig (2011), we show that both paradoxes can not only arise as
a result of announcing future actions (Section 4), but can also be induced by immediate
actions (Section 3). Second, in the literature which considers increasing marginal ex-
traction cost (or multiple resource pools with constant but different marginal extraction
costs) and carbon demand reducing policies, enhancing climate engagements do not lead
to increasing cumulative emissions.’® An exception are Hoel & Jensen (2012, 689ff.) who

state that total emissions could increase; however, the net present value of cumulative

10Gee Fischer & Salant (2012, 17ff.), Gerlagh (2011, 89ff.), Grafton et al. (2012, 337ff.), Hoel (2012,
210ff.), and van der Ploeg & Withagen (2012, 351{1.).
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climate damages would decrease in their setting. Even Fischer & Salant (2013, 9ff.), who
consider demand and supply side reactions, find decreasing cumulative emissions due to
carbon demand reducing policies in the case that the emissions per unit output are the
same for all resources. In our model, cumulative emissions can increase and be carried
out earlier simultaneously as a reaction to a policy measure, thus inducing a very strong
form of the green paradox. This stems from our formulation of the extraction cost, which
differs from the existing literature on the strong green paradox. Given this formulation,
the relative price effect of carbon intensive goods*! may alter the resource extraction path
since the unique commodity serves as input in the resource extraction process. This leads
to supply side reactions that are absent from the existing literature on the strong green

paradox.

A Appendix

A.1 The Fossil Fuel Market

Throughout the appendix the commodity in period one is chosen as numeraire. Rearranging of

(7)-(9), (20), and (21) yields:

—_

per — X5\ — pua X2 =0,

\)

Pe2 — pz2XE2 = 07

€F2

w

eFt_éAt_eNt:(); t:1,2,

XAl — Pel —T1 :07

€A1

ot

A2
Pa2 Xz, — Pe2 — M2 =0,

(=)

XN —pg =0,

EN1

o e
\:]/\_/\_/\H_;/\_/\_/\_/

px2X3N2 Pe2 = 0.
Total differentiation of (A.1)-(A.7) yields:

dper — XE! . depr — X2 dpea — paa X2, depr + X2, deps] =0, (

€F1€F1

dpez — X2 dpao — pea[ X2, dep + X2, deps] =0, (

XAl déa — dpe; — dmp =0, (A.11

€A1€Al

)
)
depy —déar —denyy =0, t=1,2, (A.10)
)
)

XA2 dpzZ + szXe

€A2

deAQ - dpeg —dm = 0, (A.12

A2€A2

4 Term [3] of equation (30a) and (35a).
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—nn1 =0, (A.13)

pel

eN2

—— — N2 =0, (A.14)

pe2 _p:r2

XNt
where ny; = % <0fort=1,2.
ENtENt

Inserting (A.13) and (A.14) in (A.10) and afterwards inserting in (A.8)-(A.9) yields:

dper — XE! . [dear + eniniPer] — X2 dpao (A.15)
—peo|XE2 [dEea +e Pet] + XE2, [deas +e [Pz — Du2]]] =0
22N epep; [AEAL N17N1Pel eprepy [A€A2 N2TIN2|Pe2 — P2 )
dpea — XeEF22 dpz2 (Alﬁ)
—pa2 X2 [dear + exinniber] + X2 ., [deaz + enanne[Pez — Pral]] = 0.

Inserting (A.15) in (A.16) yields:

Pel

[Co — petlpez — po2 X B2, enann2]]

dpe; = — 2N T deas (A.17)
Perpe2pz2 X 22, Qs 1 pengfl [pe2 — Pe2 X2, enann2] dpao,
Iy Iy
SLELE 5 (a9
s To = pealper — (X7 ey + o2 X7 Jenanil] - XE2T, s,

Iy

where Do = [pe1 — [XEL . +pe2XP2 . leninni][pe2 — Do XE2 . enonne] — po2 XE?  eninne -

E2
p.L2XgF1

E2
Pa2Xe e EN2N2 and I's = To + P2 XE2 L eN1INT - Pea-

Inserting (A.13) and (A.14) in (A.IO) and afterwards inserting (A.17) and (A.18) yields:

B2
Pet[pe2 — P2 X572 enann] Pe2Px2 X, ey EN1TINT

d de de A.19
er1 = T, A1+ Ty 49 ( )

Xizl eN1N1[Pe2 — Pea X2, eNanN2)]

F dp:t27
0
E1l E2
depy = pelpx2X6F26F1€N277N2 deaL + pa?[pel [XeF1eF1 +px2XepleF1]eN1nN1] de 1o (AQO)
Ty Ty
XE2 eninn[pea X B2, enanna)
+ FO dpm2~

Adding (A.19)-(A.20) yields:

B2
Pe1l’y . +p62F2 Qe + XeZeninnily

Iy el Iy ‘ Iy

dep1 +depy = depy = dp,a, (A.21)

E2 E2 _ El E2
where I'y = pea + [P22 X202 o, — P2 Xih e lenanne and 'y = pey — [ X720 o 4+ pea X2 —
F2€F1 F2€F2 F1€F1 F1€F1

E2
Pe2 Xy oo lENTTNT.
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A.2 The Commodity Market

The relative commodity demand of A, N, F' and F is equal to:

d_ > xi _ TA1+ZTN1LFTFI + XFE1
Zﬂ?ig xA2+HZN2+$F2+XE27

q i=AN,F,E. (A.22)

Inserting (22) and (27) in (A.22) yields:

o a XE2 XEI
¢ = XPz2 \ [ X1Px2 4 _ (A.23)
a9 a9 XA2 +XN2 XA2 +XN2

Total differentiation of (A.23) and afterwards inserting (A.1)-(A.7) and (27) yields:

o o XE2
a9 (6]

9 XA2—|—XN2
Q1 P22 o dXEQ(XAQ +XN2) _XEQ(dXAQ +dXN2)
N < o ) (XA2 4 XN2)2
dXEl(XAZ —|—XN2) _XEl(dXAQ +dXN2)
(XA2 +XN2)2

s s my [T TTN, $f41+mZV1_$E1
S
:xAl + TN —TEl oD Po2 \ ThoTTho Yot T Ny —TE2

— de
r S 2 s S A2
Tho T T g Tho T Tng
XEl _ xB2  Tmten,—om B2 | Ttri
er1 EF1 T, +TN 0 —TE2 d €F2 T+, d
3 5 €Fl — — 5 5 dera.
Tho T Ty Tho T T

The relative commodity supply of A and N is equal to:

xs XAL L xN1
qs - Z I = A2 i N2> ,7 - A7 N (A25)
doxiy X+ X

Total differentiation of (A.25) and afterwards inserting (A.1)-(A.7) yields:

(XAL dear + XNL deny)(XA2 4+ XN2) — (XA + XND)(X22 deag + X 02 dens)

s _ EN1 €A2
dg” = (XA2 4 XN2)2
(A.26)
T2 i ey,
_ 1 — Pzx2 1'22"!‘33?\72 _
Tt T T g, R
A2 N2 A2 N2
E1 E2 B2 | Tt
XeFl +px2XeF1 dem — X€F2 T+ de
55 + x5 ! x5, + x5 F2:
A2 N2 A2 N2
Equating (A.24) and (A.26) yields:
0 s
dpzo = Pa2 ! degr — 2 dess + Odepy |, (A.27)
Thy + Ty — TE1 Pa2(Ty + Tp — TE2)
where © = — 22X pe2Xep

T T2 —TEL | Pa2(2f Ty —TE2)”
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A.3 The Combined Market

A.3.1 The Quantities on the Combined Market

Inserting (A.27) in (A.19) for deso = 0 yields:

B2
Pet[pe2 — pe2 X 52 . en21IN2] XeF1 eN1N1[Pe2 — Pr2Xe o e EN2TIN2)]

d de
EF1 = FO eal + FO
P2 . 7;1 des; + Odep
o xAl + 'er — TE1

E2 _ _TieN17MN1 E2
- [Pe10 + praXZl7 m] [Pe2 — P22 X7 ey EN2TIN2)]

deg;.
olo — p22a X2 Oeninni[pez — pr2 XE2 .., enann2)]

Inserting (A.27) and (A.28) in (A.20) for deso = 0 yields:

E2 E2 E2
Pe1Px2 X2 hs e oy EN2TIN2 F— X en1nn1 P2 Xel ey EN2TIN2]
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T
M( 1 dEAl

deFQ =
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"ol — P2 X P2 Oen1nn1[pe2 — P22 XE2 . . enamna]
Adding (A.28) and (A.29) yields:
[pelo' +p$2XeF1 pr—— ﬂfg]\j?]_valel] 1

dep; +depy = depy = deys.

0Ty — pr2 XE2 Oeni1nni[pea — pr2 X E2, ., eN21IN2)]

Inserting (A.28) and (A.30) in (29) yields:

dD(eFl, epg) = 0
7T16N177N1

Inserting (A.27) in (A.19) for de4; = 0 yields:

g [pelo— +p;t2XeF1

peap2 XE2 . eniint XE2 eninnilper — pea XE2 ., enanna]
deFl == T deAZ r
0 0
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Inserting (A.27) and (A.32) in (A.20) for de4y = 0 yields:
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de
Ty €A2

deps =

23

I[[pe2 — Pe2 X2 ., enamne] + AT'1] dear = 0.

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)



B2 B2
+ XeFleNlan [pl"ZXereFleNQnNQ] Pa2 [ 2 e .40
1) g pr(l‘ig + m?vg - xEQ)
B2
Pe20D22 X1 ¢ py ENTTINT _
+ O deAQ
oTo — 2 XE2 Oeninni[pe2 — P2 X E2 . en2IN2]
T2EN1TIN1 _
pﬂXeplsz(xAQHm_m) [Pe2 p12X6F26F2€N277N2] .
- €A2
oTo — pr2 X2 Oeninni[pez — P2 XE2 . enanine]
Bl B2
Pe20(per — [Xehepy + P22 X2 e len1nn] -
= A2
0Ty — pra X B2 Oeninni[pe2 — 2 X E2 . en2nn2]
T2EN1TN1 E2 E2
pa:2XeF1 pﬁ(xAQﬂNQ_xEQ)pm2X6F2@F1€N277N2 + peapz2 X7 Oen1nnt .
€A2.
oTo — pr2 X2 Oeninni [pe2 — P2 XE2 . enaning)]

Adding (A.32) and (A.33) yields:

Peao 'y — prXeF% P2 (IT:J]:;Z];EJEEQ) I' — pegpszfg@eNle B
dep1 +depy = depy = 5 deé 49.
0Ty — per2 XE2 Oen1nn1[pe2 — P2 X2 ., eN21IN2]
(A.34)

Inserting (A.32) and (A.34) in (29) yields:

dD(eFl, epg) z 0

(A.35)
E2 T2EN1TIN1
< [Pe20[pr2 X en1n1 + AT2] — pro X 22
[ € [ X er1eF2 Ui ] € EFlme(xZQ +w§\[2 . xEZ)
lpe2 — P2 X2 enamne] + AT — Apeapea X2 ©en1nn1] deas = 0.
A.3.2 The Prices on the Combined Market
Inserting (A.28) in (A.27) for deso = 0 yields:
dpza _ pe2 1 (A.36)
dear o \zh +23 —2m1 |
[Pero + prngl %] [Pea — prXi-Qgng eN21N2)]
olo — pr2 X2 Oeninni[pez — pr2 XE2 . enaniNg)]
pxz mr‘o + Pe1P220O[pe2 — px2XeF2eF2 eN21N2)
ol'o — 22 X2 Oeninni[pe2 — pr2 XE2 .., eNaTIN2)]
>0.
Inserting (A.32) in (A.27) for des; = 0 yields:
dpzz _pa2 [ P (A.37)
deas o Pa2(25y + T3y — TE2)
E2 E2 E2
+@Pe20px2XeFleF2 eNVINT =~ PuaXep 5o tataaps) (P2 — PaaXerep, eNanNe]

olo — pr2 X2 Oeninni[pez — pr2 XE2 . . enann2)]
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I2 E2
p$2pw2(xf42+x?\r2*$E2)F0 o pdpﬂﬁerﬂf?XeFlepzeNlan

olo — p22a X2 Oeninnipez — pr2 XE2 .. enann2)]

<0.

Inserting (A.36) in (A.17) for deso = 0 yields:

3 E
dper _ eNzifllN1 [FO - pel[peQ - prXeFieF2€N277N2H n peng?l [peZ — p:z:ZXeEF223F2€N277N2]
de s Iy Iy
(A.38)
‘ Pz2 mro + Pe1P2©[pea — px2X£226F2€N277N2]
olo — 22 X2 Oeninni[pe2 — pr2 XE2 . . enann2)]
B 2 —0[Lo — pet[per — pua X2 enamn2]
olo — px2 X2 Oeninni [pe2 — P2 XE2 . enanin2)]
Pe1pra X2 e Tay=am T ©Ollpe — P22 X B2, enanna]
0Ty — pr2 XE2 Oen1nni[pe2 — pr2 X E2, ., eN21IN2)]
>0.
Inserting (A.36) in (A.18) for deso = 0 yields:
dpes :pelpe2px2XeEF226F1 n XE2Tg (A.39)
dé Iy Iy ’

s E2
D2 mf41+m§\:1 —m o+ pelpx2@[pe2 - p:v2XeFQeF2 6N277N2]

0Ty — pr2 X E2 Oen1nni[pea — pr2 X E2 . . eN2nIN2)]

B2 B2 m B2 B2
_pelpezﬁpszereFl T P2 Xer, o Fan ap L3 T PeaPa2 Xop, Olpe2 — P22 Xel ey EN2TIN2]

oTo — 2 XE2 Oeninni[pe2 — P2 X E2 . en2IN2]

>0«<=TI'3>0.

Inserting (A.37) in (A.17) for de; = 0 yields:

dpe1 :pelpezpszﬁm n Per XE2 [per — 22 XE2 | enanno) (A.40)
de 4o F() I‘0 '
p

T2 — E2
mQPZ?(w,S42+xJSv2—IE2)FO pe2px2@p$2X@pleF2€N1an
ol — pszgfl Oen1MN1[Pe2 — px?ngzgem@NQUNQ]

E2 E2 7 B2
_Pe1pe20px2XeFleF2 —PerPe2 X s e, —ama) [Pe2 — Pr2 X7 e EN2TIN2]

olo — pr2 X E2 Oeninni [pe2 — P2 XE2 . enaniNg)]
de de
__ P 7F1 20@ 7F1 ;0‘
enimn1  deas deas

Inserting (A.37) in (A.18) for de4; = 0 yields:

dpez _ 22T — peolper — [XEL o, + P2 XE2 . leninn]]  XE2Ty

er2 A.41
dé o Iy + Ty ( )

12 Jop)
Pa2y T asy w1 0~ Pe2Pe2OPaaXep e eN1INT

0T — pa2XE2 Oeninni[Pez — Po2 XE2 . enann2]
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__ EN271N2
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€F2 Pa2 (-77?42 +x}g\72 —TE2
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E20en1nN1[pe2 — pe2 X2 . eN21N2]

XE2 XE2

€p2” TEF1EF2

_ XE2 XE2 ]

€F1~ TEF2€F2

olo — pr2a X2 Oeninni[pe2 — pr2 XE2 . . enanin2)]

A.4 The Gammas

El

Lo =[per — (X2 o) + 022 X2 Jeninnil[pez — po2 X 22 . enanne]

B2 B2
— P22 X ey ENTTINT * P2 Xe e oy EN2TIN2

_pe2enalne| peaenilnni| | [ erinrie | erinee

EF27F2,1

(A.42)

Er2MF21

eF1NF1,26F21F2,1 ena|nne|  eranF22

Ty =pe2 + P2 X2, — P2 X2, lenanne

_pe2en2|nne| [ erinri2 L CFEL
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EF1TF1,2 CF1NF1,2 >
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_ E1l E2 E2
[y =pe1 — [XeFleFl +px2XeF16F1 _pI2X6F16F2]€N1nN1

_peleNllel' €F27F21 +€F277F2,1
 emanF21 eni|nni|  erinpia
€F2NF2,1 | €F2NF2,1 >
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DPe2

>
0 1
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—1 ,
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P22X¢ e ENTINT * De2

ent|nn1|

EF2MF2,1

€F1TF1,1

(A.43)

(A.44)

(A.45)

EF2MF2,1

_ Pe2en2|nn2| perent|nn| CFINF12 | CFIFL2
er1NF1,2€F2NF2,1 enalnNe|  eranF22

E2
_Pz2XeF1 EF2MF2,1

Del en2|nn2|

>T3 = paa X2 P2 X2 + poa X2 eninni]

E2 E2
= pe2 Xy, P2 X e EN1ITNT
EF1MF1,2
20 o L2z

ent|nni|

where I'3 is a lower limit for I's.
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