
WORKING PAPER SERIES

SLOPPGEN: A Problem Generator for the Two-Dimensional
Rectangular Single Large Object Placement Problem With Defects

Vera Neidlein/André Scholz/Gerhard Wäscher

Working Paper No. 28/2012

Impressum (§ 5 TMG)
Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Wirtschaftswissenschaft
D Dekan

Verantwortlich für diese Ausgabe:

Otto-von-Guericke-Universität Magdeburg
Fakultät für Wirtschaftswissenschaft
Postfach 4120
39016 Magdeburg
Germany

http://www. ww. /femm

Bezug über den Herausgeber
ISSN 1615-4274

Vera Neidlein, André Scholz and Gerhard Wäscher

Vera Neidlein • André Scholz • Gerhard Wäscher

SLOPPGEN:
A Problem Generator for the Two-Dimensional Rectangular

Single Large Object Placement Problem
With Defects

Revised Version, November 2012

Abstract: In this paper, a problem generator for the Two-Dimensional
Rectangular Single Large Object Placement Problem is presented in which
the large object includes one or several defective areas. The parameters
defining this problem are identified and described. The features of the
problem generator are pointed out, and it is shown how the program can
be used for the generation of reproducible random problem instances.
Keywords: two-dimensional cutting, defect, problem generator

Corresponding author:

Prof. Dr. Gerhard Wäscher
Otto-von-Guericke-University Magdeburg
Faculty of Economics and Management
- Management Science -
Postfach 4120
39016 Magdeburg
{gerhard.waescher@ovgu.de}

Table of Contents

1 Introduction .. 1

2 The Two-Dimensional Single Large Object Placement Problem 2

2.1 Standard Problem .. 2

2.2 Problem Variant: Defects ... 2

3 Identification of Problem Parameters .. 3

3.1 Number of Small Item Types.. 4

3.2 Dimensions of the Large Object ... 4

3.3 Relative Size of the Item Types ... 4

3.4 Dimensions of the Defects ... 4

3.5 Locations of the Defects .. 5

4 Generation of Test Problem Instances .. 5

4.1 Generation of Uniformly Distributed Pseudo-Random Numbers 5

4.2 Determination of Item Type Dimensions .. 6

4.3 Determination of the Locations of the Defects ... 8

4.4 Implementation .. 8

5 Numerical Example ... 8

6 Remarks .. 9

References .. 10

 Vera Neidlein • André Scholz • Gerhard Wäscher 1

1 Introduction

Two-dimensional cutting problems have been in the focus of researchers for many
years. Since its beginnings (cf. Brooks et al. (1940), Gilmore and Gomory (1965)),
different types of this problem have been widely studied in the literature. Starting in
the 1960s, work has also been done on problems including material defects (e.g.
Hahn (1968), Carnieri et al. (1993)), which are particularly relevant in practice.
There are still numerous publications in the field of two-dimensional cutting at the
present time. Many of them deal with the challenge of developing exact algorithms
that are faster than existing ones, or with developing faster and better-performing
heuristics. The latter is due to the fact that most problems in the field of two-
dimensional cutting are known to be NP-hard.
It is often difficult to draw general conclusions on the performance of an algorithm,
because authors – in particular when dealing with real-world, “practical” problems –
often only give the results for a few instances to demonstrate how their algorithm
works. These instances usually either come from the practical problem considered, or
they are taken from the literature (e.g. the OR library by Beasley (1990), problems
presented by Herz (1972), Beasley (1985)) and treated as benchmark problems,
although – sometimes having been used for decades – it is not known whether they
still can be seen as valid benchmark problems. Both approaches make it almost
impossible to carry over the results to problems with a different data structure. Having
been not necessary for the first algorithms (as from Gilmore and Gomory (1965)),
such systematical tests gain more importance with every new publication in this field
due to the huge and still growing number of algorithms for two-dimensional cutting
problems.
In order to overcome this lack of appropriate systematic test problem instances and
provide general access to an un-biased basis of problem data for an important class
of two-dimensional cutting problems, namely the so-called Rectangular Single Large
Object Placement Problem (cf. Wäscher et al. (2007)), a problem generator has been
developed that will be described in this publication. It can be used to easily generate
a large number of problem instances with specific desired properties, and can thus
enable researchers to follow a more systematic approach for testing algorithms with
regard to the performance compared to existing algorithms and with regard to in-
stances from problem classes of different data structures.
This paper is organized as follows: In Section 2, we introduce the Two-Dimensional
Rectangular Single Large Object Placement Problem With Defects, for which this
problem generator was designed. In Section 3, the parameters of the problem are
identified and explained, which can be used to define classes of problems. Hence,
homogeneous instances of a specific problem class can be generated randomly with
the problem generator described in detail in Section 4. In Section 5, examples for
instances from a specific problem class are given.

2 A Problem Generator for the 2D Rectangular SLOPP with Defects

2 The Two-Dimensional Single Large Object Placement Problem

2.1 Standard Problem

The Two-Dimensional Rectangular Single Large Object Placement Problem
(2D_R_SLOPP) is a standard Cutting & Packing problem which can be described as
follows (cf. Wäscher et al. (2007)):
A large rectangle (large object) of given length L and width W is to be cut down in
order to provide smaller rectangles (small items) of particular dimensions (types), i.e.
of length li, width wi and value vi (i = 1, …, n). It is imposed that all cuts lie parallel to
one of the edges of the large object (orthogonal layout). The objective is to maximize
the total value of the provided small items (output maximization problem). In our
special case, the value of the item types corresponds to their area, i.e. vi = li wi
(unweighted problem).
As a first-level standard problem (see Wäscher et al. (2007)), the 2D_R_SLOPP is
characterized by the absence of additional constraints, i.e. there are no upper or
lower bounds on the number of times an item type has to be cut from the large object
(unconstrained problem), the items may have any orientation (vertical or horizontal)
on the large object (no rotational constraint), the type of cutting is not restricted (non-
guillotineable-constrained layout), and there are no upper or lower bounds on the
number of cutting stages (non-staged problem).
Any layout of an assortment of small items on the large object such that the items do
not overlap and lie entirely within the large object is called a feasible cutting pattern.
The 2D_R_SLOPP can now be formulated as a mathematical model:

n

i i
i 1

1 n

max v z

s.t. (z , ..., z) corresponds to a feasible cutting pattern.
1

i i
i

n

vi
1

iz

Herein, (z1, …, zn) is said to correspond to a feasible cutting pattern if item
type i (i = 1, …, n) can be laid out zi times an on the large object in a way that a
feasible cutting pattern is obtained.
All the problem data introduced above can be assumed to be integer numbers with-
out loss of generality since – as similarly described in Gau and Wäscher (1995) for a
one-dimensional problem – the data L, W, l1,…,ln, w1,…,wn is only implicitly repre-
sented in the model formulation as it defines the feasible cutting patterns. Therefore,
multiplying all the data with a constant factor m 0 results in an identical model
formulation.

2.2 Problem Variant: Defects

The standard problem can be extended by introducing m defects on the large object.
These defects are defined by their lengths (j)

dl and widths (j)
dw and by the position of

their lower left corners (j) (j)
d d(x ,y) (j = 1, …, m). In other words, due to some material

deficiency, there are regions on the large object to which no small item is to be
assigned. Every single region is contained in the smallest possible rectangle with

Vera Neidlein • André Scholz • Gerhard Wäscher 3

edges parallel to the edges of the large object. Figure 1 shows an example for such a
defect with length ld, width wd and lower left corner (xd,yd). In every feasible cutting
pattern, no small item must overlap with this rectangle.

xd

yd

wd

ld

Fig. 1: Representation of a single defect on the large object

The above-given mathematical formulation remains valid for this problem variant,
since the defects are only implicitly contained in the model via the postulation of a
feasible cutting pattern.

3 Identification of Problem Parameters

In this section, the parameters of the Two-Dimensional Rectangular Single Large
Object Placement Problem With Defects (2D_R_SLOPP_DEF) will be identified, and
it will be explained why they are a sensible choice for and how they will be included in
the problem generator. These parameters (or, more precisely, a specific set of
parameter values) are then used as descriptors for homogeneous problem classes.
Table 1 gives an overview of the parameters of the 2D_R_SLOPP_DEF, which will
be described in more detail in the following sections.

n number of small item types
m number of defects
(L,W) dimensions of the large object

sl
lower bound for the relative size of item types w.r.t. size of
the large object

su
lower bound for the relative size of item types w.r.t. size of
the large object

dimensions of defect j (j = 1, …, m)
location of defect j (j = 1, …, m)(j) (j)

d d(x ,y)

(j) (j)
d d(l ,w)

Table 1: Problem parameters of the 2D_R_SLOPP_DEF

4 A Problem Generator for the 2D Rectangular SLOPP with Defects

3.1 Number of Small Item Types

The number n of small item types is a very straightforward candidate for a parameter
of the 2D_R_SLOPP_DEF, as it is a common measure for the problem size. It can be
expected that the problem becomes more difficult to solve with a growing number of
item types as the number of possible cutting patterns increases (for example, for only
one item type, the optimal solution can be calculated applying a simple formula, at
least if a guillotineable layout is assumed), yet it is expected that the solution quality
also increases.
In the problem generator, this parameter is introduced as a controllable one, i.e. it
can be fixed to an appropriate value by the user.

3.2 Dimensions of the Large Object

It has already been said in Section 2 that the problem data can be multiplied by a
constant factor without changing the model. Hence, the absolute size of the large
object is not too important, but its relative size in relation to the small item types and
the defects. Yet, it can be assumed that the shape of the large object (quadratic,
rectangular) is an influencing factor on how difficult it is to solve the problem, as a
quadratic large object is probably easier to cut down than a very long and very
narrow large object of the same area. As a consequence, we introduce the length
and width of the large object as problem parameters.
Again, these parameters are controllable and can be explicitly defined by the user of
the problem generator.

3.3 Relative Size of the Item Types

The sizes of the small item types are also likely to have an impact on the difficulty of
the 2D_R_SLOPP_DEF. We measure the size of an item type by its area which is
given as ai = li wi. Small items allow for more and more sophisticated cutting patterns
so that the solution quality is expected to increase, whereas the solution time is
expected to drop.
The influencing factor is not the absolute, but the relative size of the item types in
relation to the area of the large object. This relative size can be controlled by the user
via the two descriptors sl and su, which represent the lower and the upper bound for
the relative size of the item types w.r.t. the area of the large object.
As it seems not reasonable – and not manageable – to keep control over every pos-
sible shape of the item types, the area of the item types is a sensible-chosen repre-
sentative for the size. It will be described in more detail in Section 4 how the genera-
tion of “degenerated” item types (very long but very narrow) can be avoided.

3.4 Dimensions of the Defects

As we consider a cutting problem including material defects, at least one parameter
has to be related to the set of defects. One candidate for this is their size. Unlike the
small item types, length and width of the defects rather than their area are identified
as an influencing factor and as a controllable parameter because, if there are only a
few defects present, the shape of the defects can be assumed to have a strong

 Vera Neidlein • André Scholz • Gerhard Wäscher 5

influence on how difficult a problem is to solve. Although having the same area,
narrow defects which almost divide the large object in two or more objects and, thus,
practically leaves us with two or more standard 2D_R_SLOPP, are expected to
provide a very different challenge than big quadratic defects on the large object.

3.5 Locations of the Defects

The locations of the defects on the large object (represented by their lower left
corners) are not included as controllable problem parameters, but are depicted as
realizations of random variables. The reason for this is that their influence on the
difficulty of the problem can be assumed to be strongly dependent on the size and
shape of the large object and the defects and can thus not be defined independently
in a sensible way.

4 Generation of Test Problem Instances

In the course of testing algorithms, a random sample of problem instances from
a set of problem classes of the 2D_R_SLOPP_DEF will have to be provided.
Each problem class is defined by the set of parameters (or descriptors)

1 11() (m) () (m)
l u d d d d(L,W,n,s ,s , l , ,l ,w , ,w) specified above.

A specific problem class given through the values of L, W, n, sl, su, (j)
dl and (j)

dw

(j = 1, …, m) forms the basis for problem instances which can be interpreted as a
realization of a random variable 1 1

1 1

1

1

() () (m) (m)
n n d d d d(l , ,l ,w , ,w ,(x ,y),...,(x ,y)) . For the

generation of a problem instance, these values have to be fixed randomly. Section
4.2 deals with generating the dimensions of the item types, whereas in Section 4.3,
the generation of the locations of the defects is considered in detail. Before that, a
short description of the pseudo-random number generator used within this
implementation is given.

4.1 Generation of Uniformly Distributed Pseudo-Random Numbers

Instead of using any built-in pseudo-random number generator (which may be de-
pendent on the computer the program is running on), the problem generator includes
an implementation, which ensures the portability of the generator as well as the re-
producibility of the results. The implemented pseudo-random number generator is the
one that has also been used by Gau and Wäscher (1995), and which is a special
variant of the method attributed to Lehmer (Hutchinson (1966)). Only a very brief de-
scription shall be given here, similar to the one in Gau and Wäscher (1995).

Let a prime number p and an integer c {1,…,p-1} be given. After defining an integer
number r1 {1,…,p-1} as a “seed” (an initial number), a sequence of uniformly dis-
tributed integer random numbers is defined through the recursive formula

n 1 nr c (r mod p)11 nc (r modnc (.

A sequence of uniformly distributed random numbers in the interval (0,1) can thus be
obtained by dividing the integer random numbers by p.

6 A Problem Generator for the 2D Rectangular SLOPP with Defects

An appropriate choice for p and c (Park and Miller (1988)) is
31p 2 1 2,147,483,647 and c 16,807 .

Due to the size of the numbers, a direct calculation of the product of c and rn is not
possible on most contemporary computers. Yet, this problem can be solved by an
approximate factorization of p in the following way:
Let

p c q t

where
q p div c (integer part of p) and t pmodc .

With values for p and c as introduced above, we obtain
q 127,773 and t 2,836 .

The desired value c rn mod p can now be calculated as follows (involving only num-
bers up to p):

 n n n n
n

n n

c (r modq) t (r div q) if c (r modq) t (r div q) 0
c r mod p

c (r modq) t (r div q) p otherwise.

The seed r1 has not been chosen in advance. Thus, if this problem generator is used
for testing algorithms, the seed used should always be published together with the
results, due to reproducibility of the test data.

4.2 Determination of Item Type Dimensions

It has already been stated that all dimensions (li,wi), i = 1, …, n, of the item types can
be considered as integer values without loss of generality. The following procedure is
used to determine the values: A realization iâ (the preliminary area of item type i) of
a random variable Ai which is uniformly distributed in the interval [sl LW, su LW] is
generated. Note that this number is not required to be integer. To avoid the
generation of biased items, which would occur if length and width would be
generated directly, we generate the aspect ratio

 i
i

i i

lb
l w

 (1)

and use this value to calculate li and wi.
To guarantee non-biased problem instances, every item type generated fits on the
large object. Therefore it is necessary to limit bi to an interval chosen in a way that li
will not exceed L and wi will not exceed W. In detail, the following conditions hold if
item type i fits on the large object:

i i iˆl w a (2)

il L (3)

i i
i i

i

ˆ ˆa aw W W l
l W

 (4)

 Vera Neidlein • André Scholz • Gerhard Wäscher 7

(2) can be written as i
i

i

âw
l

. Inserting this into (1) and solving for il gives

 i i
i

i

â bl .
1 b

 (5)

Inserting this formula for il into (3) and (4) gives the following feasible interval for ib :

2

i
i2 2

i i

â Lb
ˆ ˆa W a L

Lb 2
i

22W a L2 2i
i

2 i 2ibi 2ii . (6)

Furthermore, it is desirable to avoid “degenerated” item types which are very long,
but very narrow. Thus bi is limited to the interval [0.1,0.9]. If necessary and desired,
the interval can be adjusted in the source code.
Summing up, bi is generated as a realization of a random variable Bi which is uni-
formly distributed in the interval [bl,bu] where

i
l 2

i

âb max ,0.1
â W

 and (7)

2

u 2
i

Lb min ,0.9
â L

 . (8)

Preliminary values for li and wi are then calculated as follows:

i i
i

i

â bl
1 b

 and (9)

i
i

i

âŵ
l

. (10)

Both values are rounded to the nearest integer to obtain li and wi, which gives an
item type with an area ai = li wi which is very close to the randomly generated value

iâ .

Due to the rounding throughout the process, it may will happen that the area ai does
not lie within the feasible interval [sl LW, su LW]. If this is the case, the following
adjustment procedure is applied. Assuming that ai is too small, item type i is then
adapted in the following way (an analogous procedure is used if ai is too large): A
realization k of a random variable K which is uniformly distributed in the interval [0,1]
is generated. If k < 0.5 and if it is feasible, li is augmented by 1. (The augmentation

of li is feasible if il L , 11i i(l) w su LW and i

i i

l 1
(l 1) w

 0.9.) Otherwise wi is aug-

mented by 1, if feasible. The area ai is recalculated, and it is checked if it lies within
the feasible interval now. If this is not the case, the adjustment procedure starts
again.
(Note that there are some restrictions for an augmentation of li or wi. It is even
possible that there is no feasible augmentation. In that case it is not possible to find
values for li and wi that meet the restrictions. This case can be avoided by choosing
sl, su, L and W in such a way that u lLW (s s) is sufficient large.)

8 A Problem Generator for the 2D Rectangular SLOPP with Defects

4.3 Determination of the Locations of the Defects

Let (xd,yd) be the lower left corner of a defect with length ld and width wd. Then the
position of the lower left corner, (xd,yd), has to fulfill the following properties: xd must
lie within the interval [0, L - ld] and yd must lie within the interval [0, W - wd]. Thus,
realizations ˆdx of a random variable X, which is uniformly distributed in the interval
[0, L - ld], and ˆdy of a random variable Y, which is uniformly distributed in the interval
[0, W - wd] are generated. These values are then rounded mathematically to obtain xd
and yd.
Yet, each defect has to be treated as an individual, single defect for the particular set
of item types it is generated for, as it is not checked if the defects overlap.

4.4 Implementation

The problem generator described in this section has been coded in C and compiled
with the free compiler Bloodshed Dev-C++ (in order to enable everyone interested to
recompile the code with adapted specifications). The problem parameters can be
entered via a dialog window when running the program.
A version executable under Windows as well as the source code of the problem
generator are available at www.mansci.ovgu.de/mansci/en/research/materials.

5 Numerical Example

In order to demonstrate the functioning of the problem generator, a few examples of
instances from a specific problem class will be shown in this section.
The pseudo-random number generator has been initialized by using the value
123456 as a seed. For the examples presented in this section, the parameters of the
problem have been chosen as given in Table 2.

number of instances 50
dimensions of the large object (400,300)
number of item types 10
lower bound for relative size of item types 0.01
upper bound for relative size of item types 0.05
number of defects per instance 3
dimensions of the 1st defect (5,5)
dimensions of the 2nd defect (10,15)
dimensions of the 3rd defect (40,20)

Table 2: Parameter choices for the example

 Vera Neidlein • André Scholz • Gerhard Wäscher 9

From the 50 problem instances provided by the problem generator, the first and the
last one are given in Table 3.

i
1
2
3
4
5
6
7
8
9
10

no. no.
1 107 1 289 247
2 258 2 364 64
3 31 3 190 224230191 11 231 204

294
58 243 68 49 374

232 102 237 242
lower left corner upper right corner lower left corner upper right corner

53 77 4081

defects defects

10 21 75 1575

15 118 1770
9 143 21 3003 16 94 1504
8 58 76 4408

19 138 2622
7 23 79 1817 50 48 2400
6 51 30 1530

72 57 4104
5 72 47 3384 208 24 4992
4 46 122 5612

43 92 3956
3 172 30 5160 94 46 4324
2 31 57 1767

length width area
1 15 122 1830 40 87 3480
i length width area

Instance 01 Instance 50
item types item types

Table 3: Selected problem instances of the numerical example

6 Remarks

The problem generator described in this paper has been developed in order to be
able to test algorithms for the 2D_R_SLOPP_DEF. By ignoring the data of the de-
fects, the problem instances can also be applied to testing algorithms for the
2D_R_SLOPP without any defect. Apart from that, it is also directly applicable for
both the 2D_R_SLOPP_DEF and the 2D_R_SLOPP if the rotation constraint is im-
posed and / or if a guillotineable cutting pattern layout is required.
The problem instances generated are suitable for unweighted problems (the value of
each item type equals its area). Only minor modifications in the code are necessary
to enable the problem generator to provide a specific value for each item type and,
thus, instances for weighted problems.

10 A Problem Generator for the 2D Rectangular SLOPP with Defects

References

Beasley, J.E. (1985):
Algorithms for Unconstrained Two-Dimensional Guillotine Cutting. Journal of the
Operational Research Society 36, 297-305.
Beasley, J.E. (1990):
OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational
Research Society 41, 1069-1072.
Library available online at http://people.brunel.ac.uk/~mastjjb/jeb/info.html, last visited
2012/11/07
Brooks, R.L.; Smith, C.A.B.; Stone, A.H., Tutte, W.T. (1940):
The Dissection of Rectangles into Squares. Duke Mathematical Journal 7, 312-340.
Carnieri, C.; Mendoza, G.A.; Luppold, W.G. (1993):
Optimal Cutting of Dimension Parts from Lumber with a Defect. Forest Products
Journal 43, 66-72.
Christofides, N.; Whitlock, C. (1977):
An Algorithm for Two-Dimensional Cutting Problems. Operations Research 25, 30-
44.
Gau, T.; Wäscher, G. (1995):
CUTGEN1: A Problem Generator for the Standard One-Dimensional Cutting Stock
Problem. European Journal of Operational Research 84, 572-579.
Gilmore, P.C.; Gomory, R.E. (1965):
Multistage Cutting Stock Problems of Two and More Dimensions. Operations
Research 13, 94-120.
Herz, J.C. (1972):
Recursive Computational Procedure for Two-Dimensional Stock Cutting. IBM Journal
of Research and Development 16, 462-469.
Hutchinson, D.W. (1966):
A New Uniform Pseudorandom Number Generator. Communications of the ACM 9,
432-433.
Park, S.K.; Miller, K.W. (1988):
Random Number Generators: Good Ones are Hard to Find. Communications of the
ACM 31, 1192-1201.
Wäscher, G.; Haußner, H.; Schumann, H. (2007):
An Improved Typology of Cutting and Packing Problems. European Journal of
Operational Research 183, 1109-1130.

Otto von Guericke University Magdeburg
Faculty of Economics and Management
P.O. Box 4120 | 39016 Magdeburg | Germany

Tel.: +49 (0) 3 91 / 67-1 85 84
Fax: +49 (0) 3 91 / 67-1 21 20

www.ww.uni-magdeburg.dewww.fww.ovgu.de/femm

ISSN 1615-4274

