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This paper presents a quantum model of risk preferences that seeks to provide an 

explanation of the experimental results reported in Berninghaus, Todorova & 

Vogt (2012). The finding that subjects choose the risk-dominant strategy in a 

2 2� coordination game, on the average, more often, when they have previously 

completed a risk questionnaire, is not anticipated by the standard economic 

theory. The model presented in this paper demonstrates that the coordination 

game and the risk questionnaire can be analyzed as two decisions situations that 

do not commute and predicts that the order in which decisions are made will 

influence behavioral choices. 
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1. Introduction 

 

Expected utility theory (von Neumann & Morgenstern 1947) is the standard 

economic model of decision making under risk. It is based on a set of assumptions 

that specify how a rational decision maker will choose between risky alternatives. 

Empirical evidence suggests, however, that decision making is more complex than 

what is assumed by the rational choice framework, as people are found to act 

differently in repeated decision situations involving equivalent choice problems 

(e.g., Camerer 1989; Starmer & Sugden 1989; Hey & Orme 1994). Changes in risk 

preferences are found to be induced by non-normative factors, such as framing 

(Tversky 1969), compatibility effects (Lichtenstein & Slovic 1971), elicitation 
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procedures (Hershey & Schoemaker 1985; Bostic et al. 1990), and game relativity 

(Vlaev & Chater 2006). 

 The mathematical formalism of quantum mechanics has already been applied to 

extend the analysis of the classical economic theory on the equilibrium selection 

problem in games (Meyer 1999, Eisert; Wilkens & Lewenstein 1999). Meyer (1999) 

proves that if players in zero-sum games, and more precisely in the matching 

pennies game, are allowed to use quantum strategies, then they can always earn 

payoff at least as good as the one obtainable by application of standard strategies 

(pure or mixed). Wilkens & Lewenstein (1999) study nonzero-sum games, and in 

particular the prisoner’s dilemma. They show that the dilemma can be avoided if 

both players use quantum strategies. Khrennikov (2008) offers a quantum-like 

representation of the well-known from cognitive psychology Shafir–Tversky 

statistical effect (Shafir & Tversky 1992). Another application of the mathematical 

formalism of quantum mechanics in social sciences is discussed in Lambert-

Mogiliansky, Zamir & Zwirn (2009). The basic idea behind the quantum approach 

of Lambert-Mogiliansky, Zamir & Zwirn (2009) is that there exists an intrinsic 

indeterminacy of the type of an individual. It is suggested that when asked to make a 

decision choice, people actualize one of the many coexisting types. 

 Inspired by the advancement in the literature to extend the analysis of equilibrium 

selection in economic games with insights from quantum mechanics, I, in this paper, 

apply a model of quantum preferences to the results of a laboratory experiment on 

strategy selection in a 2 2� coordination game (Berninghaus, Todorova & Vogt 

2012 [from now on BTV]). The aim of this study is to demonstrate that by extending 

players’ risk preferences to the quantum domain, the perplexing in the light of the 

standard economic theory experimental results in BTV, receive a plausible 

explanation. 

 BTV present results from an experiment designed to study the effect produced on 

strategy choices when a subject reports risk preferences on a risk questionnaire 

before engaging in a 2 2� coordination game. BTV’s main finding is that the act of 

stating one’s own risk preferences significantly alters strategic behavior in the 

coordination game. In particular, subjects tend to choose the risk-dominant strategy 

more often when they have previously stated their attitudes to risk. This finding is 
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not anticipated by the internal consistency of preferences assumption of expected 

utility theory, stating that in theoretically equivalent situations people will always 

make the same behavioral choices. The model of uncertain preferences presented in 

this paper offers an explanation to the experimental results of BTV. 

 The rest of the paper is organized as follows. Section 2 presents the 

2 2� coordination game used in BTV. Section 3 summarizes the experimental design 

and results of BTV. Section 4 introduces the basic mathematical tools of quantum 

mechanics. The model of uncertain preferences is developed in Section 4. Section 5 

concludes. 

 

 

2. The Game 

  

Coordination games are non-cooperative, common interest games with multiple, 

usually Pareto-ranked, Nash equilibria. In a 2 2� coordination game, the two players 

have to simultaneously choose either Strategy A or Strategy B. Subjects’ payoffs are 

determined by the combination of their strategies—see Figure 1. The game depicted 

in Figure 1 has two Pareto-ranked pure strategies Nash equilibria ([A, A] and [B, B]) 

and one equilibrium in mixed strategies. In this game, (A, A) is the Pareto-dominant 

equilibrium and (B, B) is the risk-dominant equilibrium (Harsanyi & Selten 1988). 
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FIGURE 1. —The baseline game 

 

 In coordination games, achievement of mutual gains is possible only if agents 

make mutually consistent decisions. The failure to coordinate on a certain action 

results in disequilibrium and inferior payoffs. Despite the strong incentives to make 
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coordinated decisions, however, strategy selection in coordination games is not a 

trivial problem because the structure of the game provides no universal device to 

coordinate actions on any of the multiple equilibria. The difficulty in determining 

what, if any, equilibrium point will be expected in the game shown in Figure 1, 

arises from the fact that although the equilibrium point (A, A) is associated with a 

higher payoff for both players, playing Strategy A is risky. In contrast, playing 

Strategy B results in a payoff, that albeit lower than the one attainable in the 

equilibrium point (A, A), is only marginally affected by the other players’ actions.   

 

 

3. The Experiment 

 

BTV present a laboratory experiment with a two-conditions between-subjects design 

that studies strategy choices in a 2 2�  one-shot coordination game and examine how 

these depend on the act of completing a risk questionnaire. In one condition 

(Condition G), subjects were asked to select a strategy in the 2 2� coordination 

game presented in Figure 1. In another condition (Condition Q_G), subjects were 

instructed to first fill out a questionnaire about their own risk preferences and then to 

play the 2 2� coordination game presents in Figure 1. The summary data of the 

distributions of choices in the coordination game from conditions G and Q_C are 

given in Table 1. 

 

TABLE 1: Distribution of strategy choices in the coordination game 

          Condition G    Condition Q_G 

Number of participants     56       54 

Strategy A chosen       37 (66%)    27 (50%) 

Strategy B chosen        19 (34%)    27 (50%) 

 

 The questionnaire consisted of three questions. In Question 1, subjects were 

asked whether they liked taking risks; In Question 2, whether they always tried to 

avoid risks. Admissible answers were “Agree,” “Disagree”, and “Neither agree nor 

disagree.” In the third question, subjects were asked to determine their risk 
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preference with greater precision by positioning it on a scale of 0 (most risk loving) 

to 100 (most risk averse). 

 Table 2 shows that 34 percent of the subjects chose Strategy B when they played 

the coordination game right away. When the subjects were asked to first complete 

the risk questionnaire and then to play the coordination game, 50 percent of all 

players selected Strategy B. The null hypothesis of equal proportions is rejected at 

the five percent level of significance (Z-test, z-statistics: 1.7083; p-value: 0.04379). 

 Within a best-response correspondence framework, this result can be explained 

by a shift in either beliefs or risk preferences. With the help of two additional 

conditions, in which players’ first order beliefs were elicited (Murphy & Winkler 

1970), BTV show that the act of completing the questionnaire exerts no influence on 

subjects’ beliefs. This result implies that subjects should have become, on the 

average, more risk-averse after they completed the risk questionnaire. 

 BTV’s experimental results contradict the internal consistency of preferences 

assumption of expected utility theory. Also, the conclusion that subjects become, on 

the average, more risk-averse after completing the questionnaire cannot be justified 

by any arguments in a world with deterministic preferences. A model of uncertain 

preferences, based on the model of Lambert-Mogiliansky, Zamir & Zwirn (2009), 

which provides an explanation of the BTV’s experimental results, is presented 

below. 

 

 

4. Mathematical Tools of Quantum Mechanics 

 

Quantum mechanics provides a mathematical and conceptual framework for the 

development of the laws governing a physical system. The simplest quantum 

mechanical system is the quibit, which is a vector in the two-dimensional complex 

vector state space. The vectors 0
 
and 1  form an orthonormal basis in the relevant 

Hilbert space. The state of a quibit is described by the linear combination of the 

vectors belonging to its basis: 

(1) 1 20 1 .� � �� �  
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 The numbers 
1� and 

2� are complex numbers and are often referred to as 

amplitudes. The state of a quibit is not observable. A measurement of the quibit will 

result in either 0 or 1 with probabilities 
2

1� and 
2

2� , respectively. Since the 

probability must sum up to 1, it follows that
2 2

1 2 1� �� � . This is often referred to 

as the normalization condition that should always be fulfilled for a legitimate 

quantum state. The amplitudes 
1� and 

2�  could be determined only if infinitely 

many identically prepared quibits are measured. Another interesting property of a 

quibit is that its post-measurement state is different from its pre-measurement state. 

That is, if a quibit is initially in the state �  and the result of a measurement is 0, 

its state after the measurement collapses to 0 . Analogously, if a measurement 

yields 1, the post-measurement state of the quibit is 1 . 

 It is useful to think of a measurement as a linear operator applied to the relevant 

vector space. In the matrix representation, a linear operator is nothing more than a 

matrix. When a physical system is measured, the result of the measurement is a 

value equal to one of the eigenvalues of the operator used.  An important for the 

subsequent analysis question is whether two operators A and B commute. Two 

operators are said to commute if AB BA� .  If A and B are Hermitian operators (A is 

a Hermitian operator if its adjoint is A) then they can be simultaneously 

diagonalized. That is, we can write i
i

A a i i�� and i
i

B b i i�� , where i is 

some common orthonormal set of eigenvectors for A and B, and ia and ib are the 

eigenvalues corresponding to these eigenvectors. It will be shown later that the 

property of whether two operators commute has direct implications for the way in 

which the state of the system is expressed 

 

 

5. The Model 

 

The evidence that beliefs do not change after completing the risk questionnaire 

indicates that it is sufficient to model only risk preferences as possessing quantum 
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properties. The following analogy, adopted from Lambert-Mogiliansky, Zamir & 

Zwirn (2009), is used to link quantum mechanics to uncertain preferences: any 

decision situation is modeled as an operator, and the behavior observed in the 

decision situation is viewed as an eigenvalue of the operator. Prior to the decision 

situation, every player is in a state that is a linear combination of the eigenvectors 

corresponding to the eigenvalues of the relevant operators. This implies that, in 

contrast to standard economic theory, stating that the type of a player is 

deterministic, in the quantum mechanical framework, there is inherent 

indeterminacy of preferences. 

 In the BTV’s experiment there are two decision situations—the subjects evaluate 

their risk preferences on a risk scale (Q) (Question 3 of the questionnaire); and the 

subjects play a one-shot 2 2� coordination game (G). For simplicity, the subjects are 

characterized as either risk-averse or risk-loving in the questionnaire depending on 

whether they scored a value on the risk scale above or below 50, respectively (only a 

negligible number of the subjects scored exactly 50 on the risk scale). Further, I 

characterize the subjects as either risk-averse or risk-loving in the coordination game 

depending on whether they played the risk-dominant or Pareto-dominant strategy, 

respectively. So in effect, there are two, non-repeated and non-strategic, decision 

situations. 

 Consider the case when Q and G are two operators that commute. Each of them is 

characterized by two eigenvalues—a subject is risk-averse (in the questionnaire 

[ Qra ]; in the 2x2 game [ Gra ]) or risk-loving (in the questionnaire [ Qrl ]; in the 2x2 

game [ Grl ]). To each of these eigenvalues, there is a corresponding eigenvector 

( Qra , Gra , Qrl , Grl , respectively). Under the assumption that Q and G 

commute, the initial state of a subject is: 

(2) 
1 2 3 4Q G Q G Q G Q Gra ra ra rl rl ra rl rl� � � � �� � � �  

with 

24

1

1i
i
�

�

��  under the normalization condition. Now, if one measures first G 

(that is, subjects play the coordination game right away), the probability of 

observing Gra is: 
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(3) 
2 2

1 3Pr( ) .Gra � �� �  

This probability could be interpreted either as the fraction of subjects who choose 

the riskless strategy in the game (corresponding to risk-averse behavior) or the 

probability with which this strategy is chosen by a single player. 

 Alternatively, one can measure first Q. Then, the probability with which Qra is 

observed is: 

(4) 
2 2

1 2Pr( ) .Qra � �� �  

The resulting post-measurement state (taking into consideration also the 

normalization condition) of the subject is: 

(5) 
1 2

2 2

1 2

.
Q

Q G Q G
ra

ra ra ra rl� �
�

� �

�
�

�
 

If one now measures G, Gra will occur with the following probability: 

(6) 

2

1

2 2

1 2

Pr( / ) .G Qra ra
�

� �
�

�
 

The joint probability of  Gra  and Qra is found by applying the conditional 

probability formula: 

(7) 
2

1Pr( , ) Pr( )Pr( / ) .G Q Q G Qra ra ra ra ra �� �  

The joint probability of Gra and Qrl  is calculated analogously: 

(8) 
2

3Pr( , ) Pr( )Pr( / ) .G Q Q G Qra rl rl ra rl �� �  

Finally, the marginal probability of observing Gra , when one measures first Q and 

then G, is given below: 

(9) 
2 2

1 3Pr ( ) Pr( , ) Pr( , ) .QG G G Q G Qra ra ra ra rl � �� � � �  
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 It is obvious from Equation (9) and Equation (3) that the risk-dominant strategy 

in the coordination game is played with the same probability regardless of whether 

subjects have previously completed the risk questionnaire. The same result holds 

also for the Pareto- dominant strategy. The conclusion is that, when two decision 

situations commute, the predictions of the standard economic theory and those of the 

present model of uncertain preferences coincide. 

 The case when the two operators Q and G do not commute is considered next. 

Also in this case, each of the operators is characterized by two eigenvalues and 

eigenvectors corresponding to these eigenvalues. The difference to the previous case 

is that the eigenvectors of each of the operators constitute two different bases in the 

relevant Hilbert space and the state of a subject could be written in terms of only one 

of these bases. For example, it can be written as follows: 

(10) 
1 2Q Qra rl� � �� � . 

Each vector from one of the bases can be expressed as a linear combination of the 

vectors of the other basis. Consider: 

(11) 
1 2

3 4

Q G G

Q G G

ra ra rl

rl ra rl

	 	

	 	

� �

� �
. 

Substituting for Qra  and Qrl in (10) and rearranging the terms, results in the 

following state vector: 

(12) 
 � 
 �1 1 2 3 1 2 2 4G Gra rl� � 	 � 	 � 	 � 	� � � � . 

Measuring first G, Gra is found with probability: 

(13) 
2

1 1 2 3Pr( )Gra � 	 � 	� � . 

Alternatively, one can measure first Q and receive Qra with probability: 

(14) 
2

1Pr( )Qra �� . 

After the measurement of Q, the state vector collapses to: 
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(15) 

 �1 1 2

2

1

Q

G G
ra

ra rl� 	 	
�

�

�
� . 

Now, if G is measured, Gra occurs with the following probability: 

(16) 

2 2

1 1

2

1

Pr( / )G Qra ra
� 	

�
� . 

By applying the conditional probability formula, the joint probability of Gra and 

Qra is found to be equal to: 

(17) 
2 2

1 1Pr( , ) Pr( )Pr( / )G Q Q G Qra ra ra ra ra � 	� � . 

The joint probability of Gra and Qrl is calculated analogously: 

(18) 
2 2

2 3Pr( , ) Pr( )Pr( / )G Q Q G Qra rl rl ra rl � 	� � . 

The final step is to calculate the marginal probability of Gra , when one measures 

first Q and then G: 

(19) 
2 2 2 2

2 3 1 1Pr ( )QG Gra � 	 � 	� � . 

 It is obvious that, in the general case, the expression in (19) is different from the 

expression in (13). In addition, the result for Pr ( )QG Gra and an analogously 

calculated result for Pr ( )QG Grl will not sum up to 1. This observation implies that 

when two operators do not commute, the probability space changes after each 

measurement and a joint probability between elements from the two probability 

spaces is not a defined event. Consequently, behavioral choices will not be 

independent of the order in which decision situations are encountered. 

 In relation to the BTV’s result, the model of uncertain preferences implies that 

the risk questionnaire and the coordination game are two decision situations which 

do not commute. The subjects from Condition G and Condition Q_G play the same 
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coordination game. However, at the time of playing the game, they are in a different 

sate, which explains the differences in the distributions of their strategy choices. 

 

 

6. Conclusion 

  

Based on a simple model of uncertain preferences, this paper seeks to provide an 

explanation of the experimental results reported in BTV. In quantum mechanics 

framework, the type of player is not deterministic, as stipulated by the standard 

economic theory. Rather, it is assumed that the subjects possess uncertain 

preferences. With uncertain preferences, the order in which two (or more) decision 

situations are encountered will matter (not matter) if the decision situations “do not 

commute” (“commute”). The BTV’s experimental results could then be interpreted 

as evidence to show that the risk questionnaire and the coordination game are two 

decision situations which do not commute, and that the difference between the 

strategic behavior of subjects who completed the questionnaire before playing the 

game and that of the subjects who played the game right away should come as no 

surprise. 
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