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with three-dimensional loading constraints and mixed

backhauls

Henriette Koch∗† Maximilian Schlögell∗ Andreas Bortfeldt∗

Abstract

In this paper, a variant of the vehicle routing problem with mixed backhauls

(VRPMB) is presented, i.e. goods have to be delivered from a central depot to

linehaul customers, and, at the same time, goods have to be picked up from backhaul

customers and brought to the depot. Both types of customers can be visited in

mixed sequences.

The goods to be delivered or picked up are three-dimensional (cuboid) items.

Hence, in addition to a routing plan, a feasible packing plan for each tour has to

be provided considering a number of loading constraints. The resulting problem is

the vehicle routing problem with three-dimensional loading constraints and mixed

backhauls (3L-VRPMB).

The simultaneous transport of linehaul and backhaul items presents a particular

challenge of the problem. We consider two different loading variants in order to

avoid any reloading during the tour: (i) rear loading with separate linehaul and

backhaul sections and (ii) loading at a long side.

In order to solve the problem, we propose a hybrid metaheuristic consisting of a

reactive tabu search for the routing problem and different packing heuristics for the

loading problem. Numerical experiments are reported with benchmark instances

from the literature for the one-dimensional VRPMB to examine the performance of

the routing algorithm and with newly generated instances for the 3L-VRPMB.
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1 Introduction

In 2010, the average empty running rate – i.e. the share of trucks driving without trans-

porting any goods – in the European Union amounted to 24 % (de Angelis, 2011). This

occurs, for example, if vehicles return empty from their deliveries. By incorporating the

pickup of goods (backhauling) during the tours into the logistics system, empty runs can

be reduced which subsequently leads to a reduction in travelled distances, fuel consump-

tion and CO2 emission. Therefore, vehicle routing problems (VRPs) with backhauls also

gain increasing attention in research.

While backhaul problems can be modelled in different variants (cf. e.g. Parragh et al.,

2008; Irnich et al., 2014), this paper will be focused on the VRP with mixed back-

hauls (VRPMB). In this problem variant, goods either have to be delivered to customers

(linehaul) or picked up from them (backhaul). The sequence of linehaul and backhaul

customers within a tour can be chosen arbitrarily.

Moreover, we aim to provide a more realistic modelling of the transportation of (bulky)

goods which are of a size that cannot be neglected to ensure feasibility when planning

the tours. Therefore, the transported goods are assumed to be three-dimensional (3D)

cuboid items. Each solution of the problem must, thus, be equipped with a feasible

packing plan per route. A particular challenge of the problem is to transport linehaul

and backhaul items simultaneously on the same vehicle. In order to avoid any reloading

during a tour, two different loading approaches are considered: (i) loading from the rear

side with horizontal separation of the loading space into a delivery section and a pickup

section and (ii) loading from one long side. The side from which items are loaded and

unloaded is subsequently called loading side. The resulting problem belongs to the group

of VRPs with three-dimensional loading constraints (3L-VRPs) which was introduced by

Gendreau et al. (2006).

We propose a hybrid algorithm for solving the three-dimensional VRPMB. The underlying

routing problem is solved with a reactive tabu search (RTS) based on the approach of Nagy

et al. (2013). In order to solve the packing subproblem, different packing heuristics have

been implemented which can be chosen alternatively. They were tested and compared

concerning their performance.

The remainder of this paper is organized as follows: A detailed problem description is

presented in Section 2. In Section 3, an overview of the relevant literature is given. The
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proposed RTS and the packing heuristics are described in Section 4. In Section 5, the

experiment set-up is described, and the results are presented and analysed. Finally, the

paper concludes with a summary and an outlook to future research in Section 6.

2 Problem Description

Let G = (N,E) be a weighted, directed graph with the node set N = {0, 1, . . . , n}, where
node 0 represents the depot and the nodes 1, . . . , n represent the n customer locations,

and the edge set E = {(i, j) : i, j ∈ N}. The customers are divided into l linehaul

customers and b backhaul customers, i.e. N = {0, 1, . . . , n} = {0, 1, . . . , l, l+1, . . . , l+ b}.
Furthermore, let cij be the cost corresponding to edge (i, j) ∈ E. A set Ii = {1, . . . ,mi}
of mi cuboid items (boxes) is assigned to each customer i (i ∈ N \ {0}) which must

either be delivered to them (linehaul) or picked up from them (backhaul). Each item

Iik (i ∈ N \ {0}, k ∈ Ii) has a known length lik, width wik, height hik and weight dik,

and is assigned with a fragility flag fik indicating whether it is fragile (fik = 1) or not

(fik = 0). vmax identical vehicles are available with a given weight capacity D and a

three-dimensional cuboid loading space of length L, width W and height H.

A solution for the problem must contain information about the allocation of customers

to routes, the customer sequences of the routes and the corresponding packing plans.

A packing plan P contains placements for one or more items. It is feasible if it fulfils the

following conditions: (P1) all items lie entirely within their loading space, (P2) any two

items which are placed simultaneously in one loading space must not overlap, (P3) all

items must be placed orthogonally to the loading space edges. Moreover, the following

additional packing constraints must be adhered to (cf. Gendreau et al., 2006):

(PC1) Fixed vertical orientation: The items can be rotated by 90◦ on the horizontal

plane, but the height dimensions are fixed.

(PC2) Vertical stability: Each item must be supported by a given percentage α by the

top face of other items or the container floor.

(PC3) Fragility: A non-fragile item cannot be placed on top of a fragile item, whereas

fragile items can be placed on top of any other item.

(PC4) LIFO: The items must be loaded and unloaded solely by straight movements
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towards the loading side. Therefore, it must be ensured that the (un-)loading is

not blocked by items that are delivered later or have already been picked up.

Let l1 and l2 be two linehaul customers and b1 and b2 two backhaul customers.

Assuming l1 precedes l2 in a given tour, no item of l2 must be positioned between

the loading side and any item of customer l1 or above such item. Analogously, if

b1 precedes b2 in a tour, no item of b1 can be positioned between the loading side

and any item of customer b2 or above such item. Furthermore, if b1 precedes l1 in

a tour, no item of b1 may be placed between the loading side and any item of l1

or above such item.

The LIFO policy implies that the reloading of any item during the tour is forbidden.

Therefore, this constraint is particularly challenging considering that linehaul and back-

haul items are transported simultaneously. Two alternative loading approaches are ap-

plied here in order to avoid any reloading effort.

In the first variant, double-decker vehicles are used. These vehicles are rear-loaded (the

loading side is the rear side) and the loading space is separated horizontally so that two

separate compartments are available for each type (linehaul or backhaul). This way, the

LIFO constraint must not be considered w.r.t. a mixture of linehaul and backhaul items.

It is assumed that both compartments are of the same size. In the following, this variant

will be referred to as loading space partition (LSP).

Secondly, side loading (SL) is applied for which so-called tautliners are used. These

vehicles can only be loaded and unloaded from the side (the loading side is one long side).

An example is illustrated in Figure 1. By loading linehaul (light grey) and backhaul

(dark grey) items from opposing sides (cabin and rear side), space is created for backhaul

items when linehaul items are unloaded. LLH and LBH represent the loading lengths

(i.e. maximum front edge) of all linehaul and backhaul items, respectively, which are

currently in the loading space. In order to avoid any overlapping, the sum of both lengths

must not exceed L. The LIFO constraint must be considered as above ensuring that

the (un-)loading is not blocked. In the example in Figure 1, items 2 and 3 must not be

delivered after item 1. Moreover, the constraint must also be considered along the length

axis ensuring that the unloading of linehaul items successively creates space for backhaul

items. Therefore, item 4 may not be delivered after item 1.

A feasible route R is a sequence of locations (0, i1, . . . , inr , 0) which fulfils the following

conditions: (R1) it starts and ends at the depot, (R2) it comprises each customer i ∈
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Figure 1: Side loading

R \ {0} exactly once, (R3) the total weight of all items transported simultaneously does

not exceed the vehicle weight capacity D, and (R4) a feasible packing plan PL exists for

all linehaul customers in R at the beginning of the tour and a feasible packing plan PB

exists for all backhaul customers at the end of the tour.

Let v be the number of used vehicles in a solution. Assuming each vehicle travels exactly

one tour, a solution consists of a set of v triples (Rt, Pt,L, Pt,B) containing a route Rt for

each vehicle t (t = 1, . . . , v) and the corresponding packing plans Pt,L and Pt,B. A solution

is feasible if (S1) all routes Rt and packing plans Pt,L, Pt,B (t = 1, . . . , v) are feasible, (S2)

each packing plan Pt,L (Pt,B) contains all of the respective linehaul (backhaul) items (and

no others) of all customers visited in Rt (t = 1, . . . , v), (S3) each customer i ∈ N \ {0}
is assigned to exactly one route, (S4) the number of used vehicles v does not exceed the

number of available vehicles vmax. Moreover, a feasible solution for the problem with SL

approach must also adhere to the restriction (S5) that the linehaul and backhaul items

that are transported simultaneously at any given moment in a route Rt (t = 1, . . . , v) do

not overlap, i.e. the sum of the lengths LLH and LBH must never exceed L (see above).

A feasible solution is to be found that minimizes the total travel distance (TTD). The

problem can be classified as a 3L-VRP with mixed backhauls (3L-VRPMB).

3 Literature Review

The 3L-VRPMB has – to the best of our knowledge – not been considered in any sci-

entific publications yet. Therefore, the following literature review is focused on the one-

dimensional VRPMB and problem variants of the 3L-VRP. In addition, some relevant

studies about the VRP with two-dimensional loading constraints are shortly mentioned.
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3.1 Vehicle routing problem with mixed backhauls

The (one-dimensional) VRPMB has been studied intensively in the past decades. Straight-

forward heuristic solution approaches were primarily used in the beginning. They include,

for example, savings and insertions heuristics (Golden et al., 1985; Casco et al., 1988),

or cluster-first-route-second heuristics (Halse, 1992). In the recent past, the trend shifted

towards the use of metaheuristics. One of the first metaheuristics for the VRPMB was

presented by Wade and Salhi (2004) who suggested an ant colony optimization (ACO)

approach. Crispim and Brandão (2005) presented a hybrid approach consisting of a tabu

search (TS) and a variable neighbourhood descent. Ropke and Pisinger (2006) presented

an adaptive large neighbourhood search (ALNS) for a great variety of VRPs with back-

hauls. More recently, Nagy et al. (2013) proposed a reactive tabu search (RTS) to solve

the VRPMB which is the basis for the solution approach presented in this paper. In ad-

dition, they also considered a problem variant where a mixture of linehaul and backhaul

customers in a tour is only allowed if a given percentage of the vehicle capacity is avail-

able. Hence, if the percentage equals 100 %, the VRP with clustered backhauls (VRPCB)

is considered, i.e. all linehaul customers have to be visited before the backhaul customers

within a tour. Further recent approaches include ACO (Wassan et al., 2013), adaptive

local search (Avci and Topaloglu, 2015), or evolutionary algorithms (Garćıa-Nájera et al.,

2015).

3.2 Vehicle routing problems with loading constraints

The capacitated VRP (CVRP) with three-dimensional loading constraints (3L-CVRP)

was first presented by Gendreau et al. (2006), who also introduced the above mentioned

constraints regarding the packing subproblem. Subsequently, the problem was studied

by various researchers (e.g. Tarantilis et al., 2009; Fuellerer et al., 2010; Bortfeldt, 2012).

Moura (2008) and Moura and Oliveira (2009) were the first to deal with the 3L-VRP with

time windows. They consider two objective criteria. Namely, the TTD and the number

of tours as common in research regarding VRPs with time windows (VRPTW). Further-

more, Moura (2008) also considered the maximization of the utilized volume as another

optimization objective. Wei et al. (2014) address the 3L-CVRP with a heterogeneous

vehicle fleet.

The routing problem is usually tackled with a metaheuristic approach, e.g., genetic algo-
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rithm (Moura, 2008; Miao et al., 2012), TS (Gendreau et al., 2006; Tarantilis et al., 2009;

Wang et al., 2010; Ma et al., 2011; Wisniewski et al., 2011; Zhu et al., 2012; Tao and

Wang, 2015), or ACO (Fuellerer et al., 2010). Since solving the packing problem requires

comparatively much computing time as the packing procedure is called very frequently,

the packing problem is often solved by applying simple construction heuristics, e.g. based

on bottom-left and touching area heuristics. More complex packing approaches are, for

example, applied by Bortfeldt (2012) (tree-search) or Zhang et al. (2015) (local-search

based approach). Furthermore, Escobar-Falcón et al. (2016) used an exact approach to

solve the routing subproblem and a GRASP algorithm to solve the packing problem for

the obtained routes.

So far, the underlying VRP was mainly assumed to be a CVRP or VRPTW. Variants

with pickup and delivery have not been studied intensely yet. Bortfeldt et al. (2015)

approach the 3L-VRP with clustered backhauls (3L-VRPCB) using ALNS and variable

neighbourhood search for the routing problem and a tree search procedure for the pack-

ing problem. Bartók and Imreh (2011) and Männel and Bortfeldt (2016) studied the

pickup and delivery problem with three-dimensional loading constraints, i.e. goods are

not transported between customer locations and a depot but from a loading location to an

unloading location (that are not the depot). A detailed overview of the literature about

the 3L-VRP is provided in Pollaris et al. (2015).

In addition, VRPs with backhauls have been studied considering two-dimensional (2D)

loading constraints, e.g. Dominguez et al. (2015) (clustered backhauls), Pinto et al. (2015)

(mixed backhauls) or Zachariadis et al. (2016) (simultaneous delivery and pickup). Both

Pinto et al. (2015) and Zachariadis et al. (2016) consider variants with simultaneous

transportation of linehaul and backhaul items and both do not allow rearrangements

either. Pinto et al. (2015) approach it by first finding a feasible packing plan for linehaul

items, and identifying free stripes where backhaul items can be placed. Zachariadis et al.

(2016) utilize separated loading spaces.

4 Hybrid solution approach

Being a generalization of the CVRP, the 3L-VRPMB is also an NP-hard optimization

problem (cf. e.g. Toth and Vigo, 2014). In order to find high-quality solutions within

reasonable computing time, a metaheuristic framework is applied to solve the routing
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problem. As in many previous works, the packing problem is tackled with construction

heuristics. In the following subsections, both parts of the solution procedure will be

described.

4.1 Reactive tabu search

The routing problem is solved with a reactive tabu search (RTS) based on the work

of Nagy et al. (2013). The rough outline of the procedure is depicted in Figure 2. It

starts with the initialization of the search (initial solution, tabu list). In each iteration, a

neighbour of the current solution s is generated by applying a selected move ms. Usually,

in tabu search algorithms the best non-tabu move is used or a tabu move if it satisfies

an aspiration criterion. However, we work with a candidate list CL here, consisting of

nCL (nCL > 1) moves. In general, the move ms to be applied to the current solution

s is chosen at random from the candidate list. Tabued moves held in the tabu list are

expressed in terms of a customer i and a tour t so that i must not be inserted into t for

a number of iterations given by the tabu tenure tt.

Reactive elements are included in the tabu list management changing the tabu tenure

based on the search progress. In each iteration, a reinitialization of the tabu search

can also be triggered. Otherwise, a local optimization procedure is applied to the current

solution s after the application of the move ms. The components of the RTS are described

in detail in the following subsections.

1: procedure Reactive tabu search(in: instance data, parameters, out: best solution sbest)
2: initialize tabu search
3: s := sbest := sinit � initialize current solution s and best found solution sbest
4: while stopping criterion is not met do
5: determine move ms for current solution s
6: s := s⊕ms � realize move ms

7: if f(s) < f(sbest) then
8: sbest := s � update best found solution
9: end if
10: update tabu list TL
11: if no reinitialization then
12: apply local optimization to s
13: end if
14: end while
15: end procedure

Figure 2: Reactive Tabu Search
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Initialization of the search

Two different construction heuristics are applied alternatively to generate the initial so-

lution in order to test their impact on the performance of the RTS.

On the one hand, we use the modified Sweep heuristic as in Nagy et al. (2013). This

heuristic extends the classical Sweep heuristic of Gillett and Miller (1974) by leaving the

20 % of the customers that are closest to the depot out of the procedure to form single-

stop tours. In doing so, poor quality solutions should be avoided and these customers

should be left to the RTS algorithm to find the best fitting routes (Wassan et al., 2008;

Nagy et al., 2013).

In addition, the savings heuristic of Clarke and Wright (1964) is also applied in order to

construct initial solutions. In this case, all customers are included into the construction

process. Initially, they form single-stop tours and are successively merged according to

the savings criterion until no further merging is possible.

At the very beginning of the solution procedure, the tabu search is initialized with an

empty tabu list (TL := ∅), and a tabu tenure tt := ttinit, countors := 0 and ma := 0. The

variables countors and ma serve for the reactive operations (see below).

Neighbourhood structures and moves

The two inter-route move types used in Nagy et al. (2013) are applied here: Shift moves

remove one customer from one tour and reinsert the customer into another (which can

also be an empty tour). Swap moves remove two customers from different tours and

reinsert them into the tours of the respective other customer. A move consists of one

(Shift) or two (Swap) customer movements. Each customer movement is characterized

by a customer to be moved, a source tour, a target tour and a target position. Hence,

the swapped customers are not necessarily inserted into the previous (source) position of

the respective other customer but can be inserted into any position. Analogously, any

position can be considered for the Shift moves. For example, shifting customer i from

tour t1 into tour t2 at position p1, and shifting customer i from tour t1 into tour t2 at

position p2 are two different moves. This approach is contrary to the original approach of

Nagy et al. (2013) who always insert a customer into its best position in the target tour.

Furthermore, in Nagy et al. (2013), the whole neighbourhood is evaluated, i.e. each

customer and each target tour is considered for the Shift moves and each pair of customers
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in different tours for the Swap moves. In contrast, we aim to omit potentially unpromising

moves in order to save computing time while maintaining the solution quality. As relevant

criterion we use the distance Δ(t1, t2) between two tours t1 and t2 which is calculated using

the minimum and maximum x- and y-values of the coordinates of the customers included

in the respective tours:

Δ(t1, t2) =

(
max[min

i∈R′
t1

xi, min
i∈R′

t2

xi]−min[max
i∈R′

t1

xi,max
i∈R′

t2

xi]

)

+

(
max[min

i∈R′
t1

yi, min
i∈R′

t2

yi]−min[max
i∈R′

t1

yi,max
i∈R′

t2

yi]

)
.

Here, R′
ti
stands for the set of customers served in tour ti (i = 1, 2) excluding the depot

(R′
ti

= Rti \ {0} (see Section 2)). Negative distance values indicate two intersecting

tours and offer more potential for improvement than pairs of tours that are further away

from each other. Only tpmax of all tour pairs with the smallest distances Δ(t1, t2) are

considered. tpmax is a predefined parameter.

Determining a move for the current solution

In each iteration, a move ms is determined to construct a new solution from the current

one according to s := s ⊕ms. In order to determine ms, in a first step, a candidate list

CL is generated as depicted in Figure 3 (lines 7 to 22).

In the beginning, the set of all moves M for solution s is generated. All of these moves

are then examined. In the end, CL contains up to nCL moves m that lead to feasible

solutions s′ := s⊕m. The feasibility check has the following aspects:

• all tours of a feasible solution s′ must not exceed the vehicle weight capacity D and

volume capacity V (V = L ·W ·H),

• feasible packing plans Pt,L and Pt,B must exist for all tours t of s′. This includes

(S5) in the case of SL.

CL contains the best non-tabu moves leading to feasible solutions. In addition, a tabu

move m that yields a new best solution s′ := s⊕m with f(s′) < f(sbest) is also accepted

for CL, i.e. aspiration by objective is applied.

When the candidate list CL is completely generated, the movems is determined as follows:
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(1) If CL is empty (including only dummy moves, see Figure 3), the tabued move with

the shortest remaining tabu tenure is chosen as ms, i.e. aspiration by default is

used.

(2) If CL is not empty and the solution s′ := s⊕mbest (see Figure 3, line 26) is a new

best solution, ms is set to mbest; clearly, the best move mbest is the move for which

f(s⊕m) gets minimal.

(3) If CL is not empty and there is no new best solution, the move ms is selected

randomly from CL.

Hence, by not necessarily selecting the best neighbour of s, a diversification mechanism

is introduced into the search.

1: procedure Determine move(in: current solution s, best solution sbest, instance data, parame-
ters, out: move ms)

2: initialize set of all moves M
3: md := dummy move for initialization of CL with f(s⊕md) = ∞
4: mworst := md � initialize worst move in CL
5: mTabuShort := md, δ(mTabuShort) := ∞ � init. move with shortest remaining tabu tenure δ
6: CL is initialized with nCL dummy moves md

7: for all moves m ∈ M do
8: s′ := s⊕m � generate neighbour s′ of s
9: if (m is not tabu and f(s′) < f(s⊕mworst)
10: or f(s′) < f(sbest) then � aspiration by objective
11: if s′ is feasible then
12: CL := CL ∪ {m}, CL := CL \ {mworst} � current move replaces mworst

13: determine new mworst

14: end if
15: else
16: if m is tabu then
17: if δ(m) < δ(mTabuShort) then � aspiration by default
18: if s′ is feasible then mTabuShort := m end if
19: end if
20: end if
21: end if
22: end for
23: if CL contains only dummy moves then
24: ms := mTabuShort

25: else
26: determine best move mbest ∈ CL � f(s⊕mbest) ≤ f(s⊕m), ∀ m ∈ CL
27: if f(s⊕mbest) < f(sbest) then ms := mbest

28: else select ms ∈ CL,ms 
= md at random � without dummy moves
29: end if
30: end if
31: end procedure

Figure 3: Determination of move ms
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Tabu list management

The tabu list contains all customer movements that are currently tabu, i.e. the information

which customers must not be inserted into which tours, as well as the iteration number in

which the respective moves are allowed again. The tabu tenure tt determines how long a

movement is set tabu. If a Shift move removing customer i from tour t was applied in the

current iteration, any move that inserts i into t would be tabu for tt iterations. If a Swap

move was applied, two kinds of movements must be set tabu – one for each customer-tour

combination affected: If customer i1 from tour t1 was swapped with customer i2 from tour

t2, any move inserting i1 into t1 and i2 into t2 is set tabu. That means, that each move

inserting i1 into t1 or i2 into t2 is not allowed for the next tt iterations.

Three operations to adapt the search can be carried out within the RTS, namely increasing

and decreasing of the tabu tenure tt, and reinitialization of the search. These operations

are described in detail in Table 1 (see also Nagy et al., 2013).

Table 1: RTS updating

RTS operation Triggering event/ condition Actions

1. Increasing tabu
tenure

(i) currently generated solution s(it) is
copy of old solution s(it old) and

(ii) CopyGap := it − it old < GapMax,
i.e. a copy was generated after too
few iterations.

- tt := min(tt · φinc, ttmax)
(tt is increased by a factor
φinc > 1, but at most up to
ttmax)

- ma := 0.1CopyGap+ 0.9ma

2. Decreasing tabu
tenure

(i) currently generated solution s(it) is
not a copy of any older solution and

(ii) no. of iterations since last tt change is
greater than moving average (ma) of
CopyGap over all iterations since last
(re-)initialization

- tt := max(tt · φdec, 1)
(tt is decreased by a factor
φdec < 1, but at most down
to 1)

3. Reinitialization
of the search

- for each generated solution s(it), η(s)
is defined as the number of iterations
it old for which s(it) = s(it old), i.e.
s(it) is a copy of a former solution

- if η(s) exceeds the limit ηmax, the
counter for often-repeated solutions
countors is increased by one

- a reinitialization of the search is trig-
gered if countors exceeds the threshold
countors,max

- TL := ∅
- tt, countors, and ma are set
back to their initial values
(see above)

- an old solution is selected at
random to be the new initial
solution

The parameter GapMax is handled in a different fashion compared to Nagy et al. (2013)

who assume it to be constant. The results could be improved, though, by taking the

size of the instance into account. If an instance contains many customers, there are more
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possibilities for the algorithm to move around a local optimum and to avoid tabued moves.

Therefore, we determine this value as GapMax = λgap ·
√
n. In addition, a maximum

tabu tenure ttmax = λtt · n is considered. λgap and λtt are predefined parameters.

Local optimization

At the end of an iteration, two post-optimization procedures are utilized. They are applied

only to the tours affected in the current iteration. The first routine is a sequence of intra-

route shifts. That is, a customer is moved to another position within the tour if this shift

leads to a TTD reduction. This is done iteratively for all customers in the tour until no

further improvement is achieved.

In the second routine, the visiting sequence of the customers in a tour is reversed if

this reduces the maximum load of a route. In Nagy et al. (2013), the utilization of the

capacity is taken into account for this purpose since they consider the one-dimensional

case. Here, the maximum loading length needed for linehaul and backhaul items that

are simultaneously transported (cf. Figure 1) is reduced if possible. By this means, an

additional customer might be visited in the given route.

Tour number reduction

The heuristics for the construction of the initial solution can lead to solutions with more

than vmax tours. In order to guide the search towards solutions that do not violate the

maximum tour number constraint, objective function values of solutions with more than

vmax tours are penalized. A penalty term (p · cmax · max(0, v − vmax)) is added to the

TTD. p is a fixed parameter, cmax is the maximum distance between any two customers

(cmax = max(i,j)∈E cij), v is the number of vehicles used in the respective solution. The

factors cmax and p serve to ensure a sufficiently large penalty.

Furthermore, in connection with the Shift move, a customer can only be moved into an

empty tour if less than vmax tours are used in the current solution.

Stopping criteria

The algorithm has to run for at least itermin iterations. However, the search may continue

beyond itermin iterations if the last improvement was less than iterno impr ago. Then, it

stops after iterno impr iterations without improvement.
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4.2 Packing heuristics

Three different variants of the deepest-bottom-left-fill (DBLF) heuristic have been in-

tegrated into the RTS. It was originally developed for 2D packing (Baker et al., 1980;

Hopper, 2000) and extended to 3D packing (Karabulut and Inceoglu, 2005). The DBLF

variants are described here for the 3D container loading problem (3D-CLP). In the 3D-

CLP a subset of a set of 3D (cuboid) items has to be packed into one container of fixed

dimensions such that the filling rate is maximized. Below, we adapt these heuristics to

ensure the feasibility of a route w.r.t. the packing subproblem within the 3L-VRPMB.

DBLF heuristics for the 3D container loading problem

The first variant of the DBLF heuristic that we consider, is based on the DBLF implemen-

tation presented by Karabulut and Inceoglu (2005) (and Hopper (2000) for the 2D case).

In the approach of Karabulut and Inceoglu (2005) items are packed according to a given

sequence. If an item cannot be placed feasibly in a container, it is skipped. Moreover, the

spatial orientation is provisionally assumed to be fixed. The priorities for the placement

are to position the items as far as possible to the back, (then) to the bottom and (then)

to the left of the loading space. In implementations of the DBL heuristic, the final place-

ment is often found using a sliding technique. On the contrary, the Fill method allows to

fill gaps by keeping track of all possible placement positions and places each item in the

deepest, bottom-most, left-most available position. The different approaches are depicted

in Figure 4. (For the sake of simplicity, the figures in this section show 2D problems).

In the case of the Fill approach (Figure 4a), the potential positions are defined by the

top-left-back, bottom-right-back, and bottom-left-front corners of already placed items.

The positions are sorted based on the deepest-bottom-left priority which is indicated by

the numbers 1-5 in the example figure. It is successively tested whether the placement

in the respective positions would be feasible. The tests terminate as soon as a feasible

position was identified or all position have been tested. The position that is nearest to

the bottom and (then) nearest to the left and where the placement would be feasible is

position 2. Hence, the gap could be filled which is not possible by sliding the item from

the top-right corner (Figure 4b). After a successful placement test for a given position, an

item is (if possible) further moved starting from said position as far as possible towards

the back, the bottom and the left. In the example in Figure 4a, the final position of the
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Figure 4: Comparison between BLF- and BL-approach

The second implementation variant extends the the placement test of the heuristic pre-

sented above and is subsequently called DBLF+. A position where an item cannot be

placed feasibly is not considered any further in the DBLF approach. On the contrary,

sliding an item into one direction is considered during the placement in the variant DBLF+

(regardless of whether a feasible placement is already possible without the sliding). That

way, a feasible placement could result from an otherwise infeasible position. The DBLF

priority is applied to the sliding, too. That is, first, sliding towards the back, then towards

the bottom and then towards the left is tested. If sliding is possible towards one direc-

tion, the other ones are not regarded any more. As before, further movements towards

the back, bottom and left can be conducted after the placement test was successful.

An example is illustrated in Figure 5. Testing the placement in position 2 according

to the DBLF approach would lead to an infeasible placement (Figure 5b). The item

would overlap with other items. Thus, the next position would be tested now. However,

considering sliding for position 2 would lead to a placement further to the bottom which

is feasible (Figure 5c).

The third variant is a combination of the original DBLF implementation and DBLF+ in

which the sliding of DBLF+ is only used once the original DBLF procedure cannot find

a feasible placement for an item. The variant is subsequently called DBLF-Comb and is

outlined in Figure 6. The functions placement DBLF and placement DBLF+ represent

the respective procedure in which the feasibility of a placement is tested.

Furthermore, variants of the touching area (TA) heuristic (e.g. Lodi et al., 1999) were

also implemented and tested but led to worse results than the DBLF variants. Therefore,
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Figure 5: Illustration of DBLF+

they will not be described in further detail here.

1: procedure DBLF-Comb(in: instance data, sequence of items I, out: packing plan)
2: initialize sorted set of positions P := {(0, 0, 0)}
3: for i := 1 to |I| do
4: current item item := I(i)
5: placed := false � binary variable stating whether an item could be placed feasibly or not
6: for p := 1 to |P | do
7: if placement DBLF(item, p) is feasible then placed := true, p′ := p, break end if
8: end for
9: if placed = false then
10: for p := 1 to |P | do
11: if placement DBLF+(item, p) is feasible then placed := true, p′ := p, break end if
12: end for
13: end if
14: if placed = true then
15: place item in P (p′) (with sliding if necessary)
16: move item as far as possible towards the back, bottom, left
17: update P
18: end if
19: end for
20: end procedure

Figure 6: DBLF-Comb

Adaption of the DBLF heuristics to the 3L-VRPMB

In order to apply the three packing heuristics to the packing subproblem described in

Section 2, the following modifications have been made:

• In the 3L-VRPMB, each item has two possible spatial orientations. Therefore, the

following placement rule is applied: if placing an item in a given position with the

first orientation fails, the same position is tested again with the second orientation.

• Only those placements are accepted where the geometrical constraints ((P1)-(P3))

as well as the packing constraints vertical stability, fragility and LIFO are satisfied.
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• In order to facilitate finding a feasible packing plan for a given route, the following

sequence of items is chosen: The first items to be placed are the ones of the last

customers to be visited (in the case of linehaul customers, vice versa for backhaul

customers). The items of one customer are sorted by the item fragility (non-fragile

items first), breaking ties by non-increasing volume, breaking ties by non-increasing

length and breaking ties by non-increasing width.

• The packing problem to be solved is the orthogonal packing problem (OPP), i.e.

the objective is not to maximize the filling rate but to load all items belonging to

a route feasibly into the loading space. Thus, the procedure is aborted as soon as

one item cannot be placed feasibly in any available position.

• For the SL approach, the heuristics were modified. The LIFO restriction as de-

scribed above must be considered along the width axis of the loading space in order

to avoid rearrangements when (un-)loading items. Moreover, it should also be con-

sidered along the length axis in order to guarantee that the unloading of linehaul

items gradually decreases LLH and, thus, creates space for the backhaul items (see

Figure 1). However, simply extending the restriction in this manner resulted in

packing patterns as in Figure 7a. Let the visiting sequence here be {4, 3, 2, 1}.
Items of neither customer 3 nor 4 can be placed behind item I22 (from the view of

the unloading side). In order to avoid such gaps, the placement priorities have been

adjusted for the SL: With first priority, an item is to be placed as close as possible

towards the origin of the loading space, where the distance is defined as the sum

of length and width coordinate of a given placement position. Subsequently, the

DBLF rule is applied again, i.e. ties are broken by non-increasing length coordi-

nate, then by height coordinate, and then by width coordinate. This rule results

in patterns like in Figure 7b where items tend to be stacked first and then to be

arranged towards the side from which they are loaded (cabin or rear side).

4.3 Integration of routing and packing

The packing procedure is executed in order to check whether the items transported on

a tour can be packed feasibly according to the above-formulated packing constraints. In

the course of a packing check, (generally) two packing plans – one for the linehaul items
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Figure 7: Example packing patterns for side loading

and one for the backhaul items of a tour – are determined. Moreover, in the case of

the SL approach, the procedure tests whether linehaul and backhaul items would overlap

at any stop of the route according to the generated packing plans (see restriction (S5),

Section 2).

A packing check is made when a route is tested for feasibility (see Figure 3). Feasibility

tests are conducted whenever a new solution is generated, i.e. during the generation of the

initial solution, during the generation of neighbour solutions and in connection with the

local optimization. Firstly, it is checked whether the items transported simultaneously

exceed the weight and volume capacity of the vehicle at any stop of the tour. If this

is not the case, the packing procedure is called. Note, that not every neighbour of the

current solutions is tested for feasibility during the TS. Only if the corresponding move

can potentially be added to the candidate list, the routes affected by the move are tested.

That way, the efficiency is increased significantly (cf. Figure 3, lines 11 and 18).

In the course of the packing procedure, the maximum loading length of a packing plan is

determined. This is needed (i) for the tests regarding the SL approach, and (ii) for the

second routine of the local optimization (reverse operator).

The application of the packing procedure is usually computationally very expensive.

Therefore, a cache is used which stores routes that have already been tested for pack-

ing feasibility.
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5 Computational experiments

5.1 Benchmark instances

One-dimensional instances

In order to make sure the implemented routing approach is working properly, it was

applied to one-dimensional (1D) benchmark instances and the results were compared to

the ones obtained by Nagy et al. (2013) and to the best known solutions from the literature.

The first instance set (GJB89) was proposed by Goetschalckx and Jacobs-Blecha (1989)

for the VRPCB. It consists of 62 instances with 25 to 150 customer locations and 50 %,

66 %, and 80 % linehaul customers. The second set (TV97) was proposed by Toth and

Vigo (1997), also for the VRPCB. The 33 instances are based on well-known CVRP

instances. The number of customers varies between 21 and 100 and the shares of linehaul

customers are the same as in the GJB89 set. Finally, the third set (SN99) was generated

by Salhi and Nagy (1999) for the VRPMB. This set consists of instances with 50 to 199

customer locations with 10 %, 25 %, and 50 % backhaul customers. Note that we consider

only those 21 instances that do not include drop times and tour length limits.

Three-dimensional instances

Since this paper is – to the best of our knowledge – the first to deal with 3L-VRPMB,

we cannot utilize benchmark instances from the literature for the tests with 3D load-

ing constraints. Hence, new instances were generated covering a wide range of different

aspects.

The number of customers are set to 20, 60, and 100, and the share of linehaul customers

to 50 % and 80 %. The locations of the customers were determined randomly. Moreover,

we keep the total number of items fixed to 200 items so that the number of items per

customer is varied by the number of customers in an instance (5-15 for n = 20, 2-5 for

n = 60, 1-3 for n = 100).

We consider different levels of heterogeneity with respect to the items, that is, instances

were generated with 3, 10 or 100 different item types. The edge dimensions and weights

of each item type were generated randomly. There are instances with large items and

instances with small items. The length and width of large items was uniformly randomly

generated in the intervals [0.2L, 0.6L] and [0.2W, 0.6W ], respectively (cf. Gendreau et al.,
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2006). The height of an item was determined in the interval [0.2H, 0.5H]. The factor 0.5

was chosen for the upper limit of the interval to ensure that the items can be placed inside

the partitioned loading space (cf. Section 2). For instances with 20 customers, only small

items are considered, since all large items of one customer would nearly completely fill the

loading space due to the comparatively large number of items per customer. The length

(respectively width and height) of small items is generated in the interval [0.1L, 0.3L]

(respectively [0.1W, 0.3W ] and [0.1H, 0.3H]).

The weight of an item type was randomly generated between 1[weight units
vol. units

] · item vol.[vol.

units] and 10[weight units
vol. units

] · item vol.[vol. units]. 20 %, but at least one, of the item types

is fragile. The loading space dimensions are L = 60, W = 25, H = 30 and the weight

capacity D = 200. All in all, 300 different instances were generated for the 3L-VRPMB.

The 3L-VRPMB instances as well as our best solutions can be found online at http:

//www.mansci.ovgu.de/Forschung/Materialien.html.

5.2 Parameter setting

The parameter settings were mostly adapted from Nagy et al. (2013). The values for the

newly introduced parameters were determined in pre-tests with a set of test instances

taken from the three sets for the VRPMB. Their settings are given in Table 2.

Table 2: Parameter settings

Parameter Value Parameter Value Parameter Value

countors,max 6 ttinit 1 λtt 4
itermin 1500 tpmax 30 % λgap 50

iterno impr 200 p 4 φinc 1.1
nCL 3 ηmax 3 φdec 0.9

5.3 Computational results

The hybrid algorithm was implemented in C++ and the experiments were conducted on

a Haswell system with up to 3.2 GHz and 16 GB RAM per core.

One-dimensional instances

Due to some random components in the algorithm, five runs of the RTS were conducted

for each instance and with each initial solution heuristic. The RTS in combination with
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the Savings procedure for the construction of the initial solution will also be referred to

as RTS Sav in the following. The combination with the Sweep heuristic shall be called

RTS Sweep. The results for the 1D instances are summarized in Table 3. They are

subdivided by the applied initial solution heuristic, Sweep or Savings, and by the instance

sets.

The column feas runs contains the share of feasible solutions among all runs, i.e. where

the maximum available tour number vmax was not exceeded. The column feas inst gives

the share of instances that could be solved feasibly at least once.1 In the following, the

obtained solutions are compared to the best solutions of Nagy et al. (2013) (NWS13 ) and

the best known solutions (BKS) from the literature (BKS ). The columns dev avg contain

the average percentage deviations of the average obtained TTDs from the solutions of

Nagy et al. (2013) and the BKS, respectively. The columns dev best contain the average

deviations of the best found TTD per instance from the solutions of Nagy et al. (2013)

and the BKS, respectively. In the last column the average computing time in seconds is

given.

The results are very close to those obtained by the original approach differing on average

0.69 % (RTS Sweep) and −0.12 % (RTS Sav), respectively, w.r.t. the TTD. Note, that

Nagy et al. (2013) did not consider the tour number restriction. Therefore, the solutions of

about 4.4 % of the instances exceed the tour number limit. Despite the above-mentioned

efforts to guide the search towards solutions with feasible tour numbers, this could only

be realized for 93.3 % of the runs by our implementation and three of the instances could

not be solved feasibly at all.

With an average deviation from the BKS of 1.47 %, RTS Sav produces better results than

RTS Sweep which led to an average deviation from the BKS of 2.34 %. As we were able

to improve the results obtained by Nagy et al. (2013) by applying the Savings heuristic,

it seems the choice of the initial solution construction heuristic has a significant impact

on the performance of the RTS. Furthermore, slightly less computing time is needed for

RTS Sav (on average about 4 minutes) than for RTS Sweep (4.3 min).

The computing times depend heavily on the instance size, i.e. the number of customers.

The instances examined here contain 21 to 199 customers and the computing times range

from less than one second to about 40 minutes. Thus, they exceed the ones of Nagy et al.

1Note, that for the instance set SN99 no tour number restriction is given. Hence, all solutions are
feasible.
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(2013) who state that less than a minute was needed for the majority of the instances.

Nevertheless, the computing times for both variants of the algorithm are tolerable.

Table 3: RTS results for one-dimensional instances

Init/
#

feas dev avg [%] dev best [%]
t[s]

Set runs inst NWS13 BKS NWS13 BKS

Sweep 116 91.6 95.7 0.69 2.34 −0.15 1.48 257.9
GJB89 62 91.0 96.8 1.20 2.12 0.15 1.06 257.3
TV97 33 87.3 90.9 0.01 0.94 −0.59 0.33 89.6
SN99 21 100.0 100.0 0.25 5.17 −0.34 4.54 523.8

Savings 116 95.0 96.6 −0.12 1.47 −0.68 0.91 239.1
GJB89 62 96.8 96.8 0.24 1.14 −0.26 0.63 223.1
TV97 33 88.5 93.9 0.23 1.16 −0.47 0.45 108.4
SN99 21 100.0 100.0 −1.75 2.96 −2.24 2.45 491.6

Moreover, taking into account only the best solutions achieved with any of the initial

solution procedures, the average deviation from the BKS amounts to only 0.37 % and

the average deviation from the best results obtained by Nagy et al. (2013) amounts to

−1.22 %. Those results are shortly summarized in Table 4. Regarding the computing

times, that would mean that the time consume would still be below ten minutes (on

average) if both variants are applied to an instance.

Table 4: RTS results for the best solutions obtained (1D)

Set dev NWS13[%] dev BKS[%]

GJB89 −0.83 0.06
TV97 −0.92 −0.01
SN99 −2.81 1.86

Total −1.22 0.37

Three-dimensional instances

As the final hybrid algorithm must be equipped with a packing heuristic, the available

packing heuristics where initially tested and compared. For this purpose, a test set of

30 out of the 300 instances was formed. The parameter settings determined with the

one-dimensional instances where also applied to the 3D case.

Determination of the best packing heuristic

Table 5 contains the results of comparing the different packing heuristics. Since no bench-

mark results are available for the newly generated instances, the obtained results are com-
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pared to the best found solutions over all heuristics, loading approaches and all five runs.

The table contains the average (avg dev) and maximum (max dev) percentage deviation of

the obtained TTDs from the best found ones. The results are presented for both loading

approaches, loading space partition (LSP) and side loading (SL).

The best results were obtained with the SL approach and the DBLF heuristic. However,

in combination with the LSP the combination of the DBLF with DBLF+ produced better

results than the plain DBLF heuristic. Hence, the respective results were examined in

more detail with the conclusion that the DBLF seems to work better for instances with

small items whereas the combination dominates in the case of large items. Therefore, in

the final tests, the packing heuristic is chosen depending on the item sizes: DBLF for

small items and DBLF-Comb for large items.

Table 5: Comparison of packing heuristics

avg dev[%] max dev[%]

Packing heuristic LSP SL LSP SL

DBLF 18.7 1.3 44.8 6.7
DBLF+ 18.1 5.0 42.3 10.8
DBLF-Comb 17.0 2.6 42.3 8.5

Results for the hybrid algorithm

The final experiments were conducted with all 300 instances each of which were solved five

times by the RTS for both loading approaches and with both initial solution construction

heuristics. Hence, 6,000 runs were performed in total.

Two aspects should be analysed in the following: (i) the impact of the initial solution

construction heuristic and (ii) the impact of the loading approach. The results regarding

the first aspect are summarized in Table 6. The results obtained with RTS Sav and the

respective loading approaches serve as a benchmark here. The columns avg dev contains

the average percentage deviations of the TTDs obtained with RTS Sweep from the av-

erage benchmark TTDs aggregated over both loading approaches.2 The results support

the findings from the 1D tests (Table 3) indicating that RTS Sav slightly outperforms

RTS Sweep. The TTDs obtained with RTS Sweep deviate on average 0.55 % from the

TTDs obtained with RTS Sav.

Table 7 provides a comparison of the two different loading approaches. Here, the results

2The average benchmark TTDs refer to the average of the TTDs obtained with the above-mentioned
benchmark procedure over all five runs.
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Table 6: RTS results for 3D instances: Initial solution construction heuristics

Instances
avg dev[%]
RTS Sweep

n Items from RTS Sav

20 small 0.05
60 large 0.13

small 0.36
100 large 1.20

small 0.98

Total 0.55

obtained with LSP and the respective initial solution heuristic were used as benchmark.

In the table, the average deviations (avg dev) of the SL solutions (w.r.t. the TTDs)

from the LSP solutions (aggregated over both initial solution heuristics) and the average

number of used vehicles (v) are reported. Furthermore, the average computing times

(in seconds) are reported in the columns t. Not surprisingly, much better results can be

obtained with the SL approach. The respective TTDs are on average almost 14 % lower

than the TTDs obtained with the LSP and less vehicles are needed. Furthermore, for 262

out of the 300 instances (among them are all instances with large items) the best solutions

were found with the SL approach. These results could be expected as the SL approach

allows making use of the whole loading space whereas half of it is left empty at least at

the very beginning and the very end of a tour if the loading space is separated. However,

differences can be observed among the different instance classes. The SL approach seems

to be particularly beneficial if the items are large (as smaller items can be placed more

easily also within a smaller loading space), and if the share of linehaul and backhaul items

is unequal. Moreover, the differences decrease with an increasing number of customers,

i.e. with a decreasing number of items per customer. For example, in the case of n = 100,

small items and 50 % linehaul customers, the average deviations from the benchmark

TTDs are very low and the average tour numbers are only slightly smaller for the SL

approach.

Moreover, the RTS with the LSP requires less computing time than the RTS with the

SL approach. Two reasons can be identified: On the one hand, checking feasibility for

the SL approach takes longer because not only are two packing plans to be generated,

but these packing plans also need to be compared for each stop of a tour to avoid any

overlapping of linehaul and backhaul items. On the other hand, the SL approach allows
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Table 7: RTS results for 3D instances: Loading approaches

Instances
avg dev[%]

v t[s]
of SL

n Items LH from LSP LSP SL LSP SL

20 small 50% −5.39 2.8 2.1 8.1 22.3
80% −11.37 3.6 2.5 6.0 23.6

60 large 50% −28.99 20.3 11.8 10.7 15.9
80% −35.32 30.5 16.1 12.5 12.8

small 50% −0.84 2.9 2.6 246.9 286.7
80% −4.57 3.5 2.7 150.9 247.6

100 large 50% −20.33 19.0 13.0 43.7 71.3
80% −30.88 29.2 16.6 32.3 53.9

small 50% 0.13 2.9 2.8 1, 778.2 1, 719.0
80% −2.36 3.6 2.9 1, 088.1 1, 606.4

Total −13.93 11.8 7.3 337.7 406.0

to form longer tours (see below) which also require a higher packing effort. Independently

of the loading approach, it can be observed that the computing times increase with the

size of the underlying VRP, i.e. with the number of customers, and that the computing

times depend on the item sizes. Instances with large items can be solved much faster

than instances with small items. In the case of small items, much more customers can be

merged into one tour (resulting in more items per tour) which requires higher efforts for

the packing checks.

6 Conclusions

Transporting linehaul and backhaul goods in the same tours can be a useful mean to reduce

empty running trucks, travelled distances, fuel consumption and, in consequence, to re-

duce costs. Although the integration of backhauls into the VRP was studied frequently in

the research, the transported goods and available capacities were mostly considered to be

one-dimensional. Applying solutions obtained by solving such problems could turn out to

be infeasible when the transported goods are bulky. Therefore, we present a 3L-VRPMB

which includes not only the backhauls into the VRP but also three-dimensional loading

constraints so that, for example, load stability or loading sequences can be considered. In

order to solve it, a hybrid algorithm consisting of a reactive tabu search (which was origi-

nally developed for the one-dimensional VRPMB) combined with a packing construction

heuristic was implemented.
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The procedure was tested for both one-dimensional and three-dimensional test instances.

The one-dimensional tests indicate that the implemented RTS is comparable to the orig-

inal approach. Moreover, a second heuristic for constructing initial solutions was applied

which led to further improvements of the results.

New instances were generated for the 3L-VRPMB since there are no benchmark instances

available from the literature. Different packing construction heuristics were implemented

and compared. The final hybrid algorithm combined the RTS with variants of the deepest-

bottom-left-fill approach. Since linehaul and backhaul customers can be visited in any

sequence in the VRPMB, linehaul and backhaul items are (partly) transported simultane-

ously. In the hybrid approach, this is realized by two different loading approaches which

ensure that any reloading during a tour is avoided. They include rear-loaded vehicles with

horizontally separated loading spaces into linehaul and backhaul sections, and side-loaded

vehicles. The best results – both in terms of total travel distance and number of tours

– were obtained with the side loading approach. However, the loading space partition is

implemented easier and requires, on average, less computing time.

Integrating backhauls into 3L-VRPs and, in particular, dealing with the simultaneous

transport of delivery and pickup products are very interesting topics. Further VRP vari-

ants which include such a problem are, for example, the VRP with simultaneous delivery

and pickup or the pickup and delivery problem. Whereas reloading had to be avoided

in the problem variants presented here, allowing reloading during a tour could also be

a promising approach. This way, more tours might be feasible and the travelling costs

could be further reduced.

Appendix

Followingly, the detailed results of the one-dimensional tests are presented. Tables 8 to 10

state the instance characteristics in the first columns. The column BKS contains the best

known solution from the literature with the respective reference in the column Ref. The

next columns contain the average (avg) and the best found solutions (best) of our RTS

and the number of vehicles corresponding to the best solution. The last column states

whether the best solution was obtained in connection with the Sweep (Sw) heuristic, the

Saving (Sav) heuristic, or both.

The references are the following: H92 - Halse (1992), W02 - Wade and Salhi (2002),
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WS04 - Wade and Salhi (2004), RP06 - Ropke and Pisinger (2006), WNA08 - Wassan

et al. (2008), TCB09 - Tütüncü et al. (2009), JK12 - Jun and Kim (2012), NWS13 - Nagy

et al. (2013), GBG15 - Garćıa-Nájera et al. (2015).

Table 8: Results RTS for GJB89 instance set

Inst. n LH[%] vmax BKS v Ref avg best v init

A1 25 80 8 223,088 8 WS04 223,325.32 223,088 8 both
A2 25 80 5 169,450 5 WNA08 169,499.78 169,500 5 both
A3 25 80 4 141,984 3 WNA08 142,033.89 142,034 3 both
A4 25 80 3 141,984 3 WNA08 142,033.89 142,034 3 both
B1 30 66 7 232,371 7 WNA08 233,039.31 232,436 7 both
B2 30 66 5 179,194 4 WNA08 179,944.00 179,194 4 Sav
B3 30 66 3 145,583 3 WNA08 145,701.96 145,702 3 both
C1 40 50 7 237,100 7 WNA08 238,178.31 237,110 7 both
C2 40 50 5 196,683 5 WNA08 198,543.21 196,683 5 Sw
C3 40 50 5 164,794 3 WNA08 166,673.33 164,891 3 both
C4 40 50 4 164,794 3 WNA08 167,307.77 164,891 3 Sw
D1 38 80 12 307,109 11 WNA08 307,109.60 307,110 11 both
D2 38 80 11 307,109 11 WNA08 307,109.60 307,110 11 both
D3 38 80 7 220,700 7 WNA08 221,523.54 220,751 7 both
D4 38 80 5 182,496 5 NWS13 185,686.79 182,928 5 both
E1 45 66 7 220,742 7 WNA08 222,093.97 220,742 7 both
E2 45 66 4 190,048 4 H92 191,253.72 190,049 4 Sav
E3 45 66 4 182,804 4 WS04 183,125.52 181,941 4 Sav
F1 60 50 6 243,599 6 NWS13 248,266.23 244,353 6 Sav
F2 60 50 7 243,599 6 NWS13 248,655.93 244,353 6 Sav
F3 60 50 5 212,296 4 NWS13 213,704.38 212,296 4 Sw
F4 60 50 4 200,964 4 WS04 203,940.59 198,709 4 Sav
G1 57 80 10 297,707 10 WNA08 302,177.04 297,656 9 Sav
G2 57 80 6 234,653 6 NWS13 234,620.30 234,101 6 Sw
G3 57 80 5 213,757 5 H92 215,246.11 212,748 5 both
G4 57 80 6 213,757 5 H92 215,048.95 212,748 5 both
G5 57 80 5 202,610 4 H92 204,412.95 200,521 4 Sav
G6 57 80 4 188,823 3 NWS13 193,181.71 188,696 3 Sw
H1 68 66 6 235,269 6 H92 238,854.46 236,427 6 Sav
H2 68 66 5 214,908 5 WNA08 218,519.64 213,732 5 Sav
H3 68 66 4 202,971 4 H92 205,365.49 204,794 4 both
H4 68 66 5 202,971 4 H92 205,287.93 204,794 4 both
H5 68 66 4 201,896 4 H92 202,399.25 196,446 4 Sav
H6 68 66 5 201,896 4 H92 202,206.22 196,446 4 Sav
I1 90 50 10 320,703 9 WNA08 322,052.95 320,217 10 Sav
I2 90 50 7 272,621 7 NWS13 279,804.88 276,519 7 Sav
I3 90 50 5 238,245 5 NWS13 245,919.54 237,662 5 Sw
I4 90 50 6 238,245 5 NWS13 246,280.38 237,662 5 Sw
I5 90 50 7 238,245 5 NWS13 246,303.65 237,662 5 Sw
J1 94 80 10 330,235 10 NWS13 327,558.23 324,265 10 Sav
J2 94 80 8 292,698 8 WS04 297,700.88 294,004 8 Sav
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Table 8: Results RTS for GJB89 instance set (continued)

Inst. n LH[%] vmax BKS v Ref avg best v init

J3 94 80 6 249,931 6 WNA08 261,643.05 255,195 6 Sav
J4 94 80 7 257,895 6 H92 282,182.11 275,311 7 Sav
K1 113 66 10 352,253 10 WNA08 357,108.88 352,729 10 Sw
K2 113 66 8 317,004 8 WNA08 326,955.11 317,274 8 Sav
K3 113 66 9 317,004 8 WNA08 326,983.96 317,562 8 Sav
K4 113 66 7 294,848 7 NWS13 297,758.79 293,621 7 Sw
L1 150 50 10 394,414 10 WNA08 406,513.44 395,803 10 Sav
L2 150 50 8 360,018 8 WS04 372,626.10 365,189 9 Sw
L3 150 50 9 360,018 8 WS04 372,626.10 365,189 9 Sw
L4 150 50 7 337,620 7 WS04 345,706.84 335,186 7 Sav
L5 150 50 8 337,620 7 WS04 346,031.85 335,186 7 Sav
M1 125 80 11 360,897 10 WNA08 372,174.16 366,426 10 Sav
M2 125 80 10 360,897 10 WNA08 372,405.47 364,870 10 Sav
M3 125 80 9 335,486 9 WS04 340,686.24 336,753 9 Sw
M4 125 80 7 300,225 7 NWS13 307,637.90 305,428 7 Sav
N1 150 66 11 370,690 10 WS04 370,682.35 365,724 10 Sav
N2 150 66 10 370,690 10 WS04 370,557.85 365,583 10 Sav
N3 150 66 9 349,516 9 WS04 362,204.84 352,064 9 Sav
N4 150 66 10 349,516 9 WS04 361,061.15 348,956 9 Sav
N5 150 66 7 319,811 7 H92 328,827.84 315,475 7 Sav
N6 150 66 8 319,811 7 H92 328,380.55 315,988 7 Sav

Table 9: Results RTS for TV97 instance set

Inst. n LH[%] vmax BKS v Ref avg best v init

eil22 50 21 50 3 324 3 NWS13 326.02 326 3 both
eil22 66 21 66 3 341 3 NWS13 341.91 342 3 both
eil22 80 21 80 3 341 3 NWS13 342.23 342 3 both
eil23 50 22 50 2 526 2 W02 527.73 527 2 both
eil23 66 22 66 2 526 2 NWS13 529.53 527 2 both
eil23 80 22 80 2 514 2 W02 513.91 514 2 both
eil30 50 29 50 2 417 2 NWS13 421.52 419 2 both
eil30 66 29 66 3 475 3 NWS13 501.35 484 3 Sav
eil30 80 29 80 3 475 3 W02 482.58 478 3 Sw
eil33 50 32 50 3 680 3 NWS13 682.67 681 3 Sw
eil33 66 32 66 3 680 3 NWS13 683.59 681 3 both
eil33 80 32 80 3 686 3 NWS13 712.07 687 3 Sw
eil51 50 50 50 3 466 3 W02 470.12 465 3 Sw
eil51 66 50 66 4 491 4 WNA08 493.56 491 4 Sw
eil51 80 50 80 4 497 4 WNA08 500.33 497 4 Sav
eilA101 50 100 50 4 730 5 WNA08 744.23 739 4 Sw
eilA101 66 100 66 6 754 6 W02 766.88 756 6 Sw
eilA101 80 100 80 6 789 7 W02 807.57 795 6 Sav
eilA76 50 75 50 6 670 6 WNA08 672.69 666 6 Sav

28



Table 9: Results RTS for TV97 instance set (continued)

Inst. n LH[%] vmax BKS v Ref avg best v init

eilA76 66 75 66 7 719 7 WNA08 713.48 704 7 Sav
eilA76 80 75 80 8 759 8 TCB09 766.26 761 8 Sav
eilB101 50 100 50 7 861 8 WNA08 867.27 854 8 Sw
eilB101 66 100 66 9 923 10 WNA08 940.88 931 10 Sw
eilB101 80 100 80 11 969 11 WNA08 990.00 966 11 Sav
eilB76 50 75 50 8 768 8 WNA08 767.14 757 8 Sav
eilB76 66 75 66 10 826 10 W02 835.27 831 10 Sav
eilB76 80 75 80 12 904 12 WNA08 911.91 897 12 Sw
eilC76 50 75 50 5 629 5 WNA08 635.77 626 5 Sw
eilC76 66 75 66 6 663 6 W02 663.54 660 6 Sw
eilC76 80 75 80 7 697 7 WNA08 700.77 695 7 Sav
eilD76 50 75 50 4 608 4 NWS13 611.13 602 4 Sw
eilD76 66 75 66 5 627 5 WNA08 637.18 627 5 Sw
eilD76 80 75 80 6 653 6 WNA08 654.59 646 6 Sav

Table 10: Results RTS for SN99 instance set

Inst. n LH[%] BKS v Ref avg best v init

CMT01H 50 50 462 3 JK12 471.09 466 3 Sw
CMT01Q 50 75 490 5 RP06 498.64 490 4 Sw
CMT01T 50 90 520 5 RP06 523.67 520 5 Sw
CMT02H 75 50 661 6 JK12 671.84 666 6 Sw
CMT02Q 75 75 732 12 RP06 743.37 733 8 Sw
CMT02T 75 90 783 12 RP06 792.45 785 9 Sw
CMT03H 100 50 701 10 RP06 741.19 723 5 Sw
CMT03Q 100 75 747 10 RP06 770.54 754 6 Sav
CMT03T 100 90 798 10 RP06 814.21 802 7 Sav
CMT04H 150 50 829 14 RP06 876.44 870 7 Sav
CMT04Q 150 75 915 9 JK12 939.15 932 9 Sav
CMT04T 150 90 993 11 GBG15 1,028.29 1,023 11 Sav
CMT05H 199 50 983 20 RP06 1,053.18 1,041 10 Sav
CMT05Q 199 75 1,118 20 RP06 1,171.70 1,157 12 Sav
CMT05T 199 90 1,227 20 RP06 1,295.00 1,280 16 Sw
CMT11H 120 50 818 8 RP06 892.47 847 4 Sav
CMT11Q 120 75 939 8 RP06 1,006.28 944 6 Sav
CMT11T 120 90 999 8 RP06 1,101.16 1,007 7 Sav
CMT12H 100 50 629 12 RP06 651.71 638 5 Sw
CMT12Q 100 75 729 12 RP06 760.62 749 8 Sav
CMT12T 100 90 788 12 RP06 801.70 788 9 Sav
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Española para la Inteligencia Artificial (CAEPIA).

30
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