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Abstract

Analyzing static lot sizing problems has always attracted a considerable inter-

est in scientific literature. A commonly applied methodology to solve the trade-off

between setup and holding costs is to order the Economic Order Quantity (EOQ)

whenever the corresponding inventory is depleted. Yet, this simple proceeding

can only be applied as long as there is only a single source of supply. Recov-

ery systems, however, obtain in general two sources of supply, remanufacturing

product returns and fabricating new products. Therefore, a more sophisticated

approach needs to be taken into account for this kind of problem setting. This

contribution focusses on extending the current knowledge in this field of research

by showing that non-equal remanufacturing batches propose a significant cost

reduction for some parameter classes. Furthermore, a more general optimization

approach is introduced that allows to evaluate the solution quality of the preset

policy structures.

1 Introduction

The growing environmental concern of their customers combined with an increasing

price consciousness poses a challenging task for many manufacturing companies. This

development in customer behavior supports the manufacturing companies to consider

product recovery as a viable alternative to satisfy customer demand. Depending on the

degree of disassembly and material reuse, Thierry et al. (1995) classify five different

recovery options. Among these options, remanufacturing returned products seems to

be of special interest since it addresses both issues demanded by their customers. On

the one hand, remanufacturing a returned product reduces landfill space as it needs not
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to be disposed of. On the other hand, as a part of the value embedded in the product

is saved, the manufacturer is able to offer his customers a significant price discount on

the remanufactured product. When accepting this offer, the customer does not face a

disadvantage compared to buying a new product since in general the same warranty is

issued for both.

In literature, a variety of real-life industrial applications for remanufacturing has

been presented ranging from car engines (as in Seitz and Wells, 2006) over photo-

copiers (as in Thierry et al., 1995) to water pumps for diesel engines (as in Tang and

Teunter, 2006). Common to all industrial applications is that remanufacturing a re-

turned product requires a large number of different processing operations. After return,

each product is disassembled to obtain its components. All components are inspected

whether they can be reused or not. If necessary, mechanical rework processes ensure

the required quality standards. Complemented by new components, the remanufac-

tured components are assembled into remanufactured products which can be offered

for sale.

For establishing an efficient remanufacturing system, a multitude of planning tasks

has to be taken into account. Guide (2000) illustrates in his work the complexity of

possible obstacles to overcome during this planning process. One of the most com-

plex issues mentioned in his work is lot sizing for remanufacturing, i.e. the question

of when to remanufacture returned products and how many items to include in each

remanufacturing batch. As, in general, the entire customer demand cannot be satisfied

by remanufacturing, a number of new products needs to be manufactured in addition.

Incurring a setup cost for initiating a remanufacturing/manufacturing batch and hold-

ing cost for storing a returned/final product, a lot sizing problem results that needs to

integrate remanufacturing and manufacturing decisions. This objective represents the

main focus of this contribution.

The first attempt to find a solution to this problem has been proposed by Schrady

(1967). He abstracts from a possible real-life remanufacturing system by imposing a

number of assumptions to facilitate the solution finding. Most importantly, his assump-

tion of a static product demand and return flow of products over an infinite planning

horizon results in a multi-level EOQ problem setting (with EOQ being the Economic

Order Quantity). In order to find a solution to this problem, Schrady separates the

infinite planning horizon into equal cycles. All cycles contain the same sequence of

lot sizing decisions and are repeated identically over the entire planning horizon. As

commonly applied to EOQ-type lot sizing problems, the cycle needs to be determined

that minimizes the total cost per time unit. Schrady recommends a cyclic solution

in which R equal remanufacturing lots precede a single manufacturing lot. For this

kind of policy he derives closed-form expressions for the (re)manufacturing batch sizes.

Further on, Schrady’s proposed solution is referred to as the (R, 1) policy indicating
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that R remanufacturing batches and one manufacturing batch are set up in a cycle.

Nahmias and Rivera (1979) extend Schrady’s contribution by incorporating a finite

recovery rate while keeping the production rate infinitely large. In their contribution,

they adjust the closed-form expressions for both lot sizes to respect their change to

the model setting. Another extension to Schrady’s basic model has been proposed by

Richter (1996a,b). He includes the option to decide whether to dispose of returned

products or not. While in the basic model remanufacturing is assumed to be always

beneficial, Richter shows that this solution depends on the size of the variable cost

of (re)manufacturing. Therefore, a variable disposal rate can influence the solution

to this problem setting significantly when remanufacturing might not be beneficial in

general. Coming back to Schrady’s original problem setting, Teunter (2001) proposes

another policy structure that promises better results for some parameter combinations.

Teunter derives closed-form expressions for both lot sizes when one remanufacturing

batch is succeeded by M equal manufacturing lots. His solution will, thus, be referred

to as the (1,M) policy. Later on, Teunter (2004) extends in another contribution

the work of Nahmias and Rivera to include finite recovery and production rates into

the closed-form expressions for both the (R, 1) and (1,M) policies. All contributions

introduced so far obtain closed-form expressions for the (re)manufacturing batch sizes

under the assumption of a non-integer value for R and M , respectively. Since R and

M have to be integer to ensure feasibility, Minner (2002) proposes a methodology to

correctly consider the issue of integrality.

In his first work, Teunter mentions two opportunities to improve the solutions

proposed until then. First, he conjectures a more general (R,M) policy (with R,M > 1

simultaneously) that can decrease the total cost incurred compared to the (R, 1) and

(1,M) policies. This conjecture has been tested by Choi et al. (2007). They introduce

a solution procedure that is able to derive the minimum total cost value for a more

general (R,M) solution while keeping all (re)manufacturing batches equal. In addition,

a numerical experiment has been conducted to evaluate the possible improvements the

more general (R,M) policy offers. In their study, the (R,M) policy is able to improve

the currently proposed policies in about 0.2% of all instances with a maximum deviation

of less than 0.5%. These findings have been, among other things, confirmed by Liu

et al. (2009). Moreover, Konstantaras and Skouri (2010) extend the (R,M) policy to

include possible shortages. In order to do that, they adapt and facilitate the solution

procedure introduced by Choi et al. As a result, their solution approach is valid for

both the non-shortage and the shortage case.

Next to creating a more general (R,M) policy structure, Teunter (2001) conjectures

to allow for differently sized remanufacturing batches within a cycle to improve the

solution even further. By using a Lagrange-multiplier approach, Minner and Lindner

(2004) proved Teunter’s conjecture to be true, i.e. policies containing differently sized
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remanufacturing batches can outperform policies with equal ones. Yet, they have

not evaluated the potential gain differently sized remanufacturing batches can have.

Feng and Viswanathan (2011) extend in their contribution the general (R,M) policy

by Choi et al. to include differently sized remanufacturing batches. Their approach

proposes to split the entire (R,M) cycle into two subcycles. Thereafter, an enumerative

procedure tests whether the solution can be improved when the remanufacturing lot

sizes are altered in both subcycles. Yet, within a subcycle all remanufacturing batch

sizes remain equal. The main contribution of this work is to show that scheduling non-

equal remanufacturing batches in a cycle proposes a significant cost reduction for some

parameter classes. Furthermore, a more general optimization approach is introduced

that allows to evaluate the solution quality of the preset policy structures.

The remainder of this work is organized as follows. After elaborating all assump-

tions required of the general problem setting in Section 2.1, Schrady’s (R, 1) policy

and Teunter’s (1,M) policy are presented as in the original contributions in Sections

2.2 and 2.3. The only difference to their presentations is that a yield parameter β is

included in our contribution to consider the influence of an imperfect remanufacturing

process. Afterwards, Section 2.4 presents the alternative formulation of the total cost

function proposed by Minner (2002) to derive a closed-form expression for the integer

number of remanufacturing and manufacturing batches in a cycle. Such a formulation

has neither been included in Schrady’s nor in Teunter’s work. While Section 2.5 dis-

cusses the results of the preceding subsections in greater detail, Section 2.6 introduces

a new policy structure, the (R, 1)g policy. Deviating from the formerly introduced

(R, 1) policy, this policy allows for differently sized remanufacturing lots in a cycle.

More precisely, the amount to be remanufactured in a batch decreases geometrically

throughout the cycle. This characteristic permits to fulfill the zero inventory property

in both inventory levels, i.e. each remanufacturing lot remanufactures all returns in

stock. Contrary, implementing an (R, 1) policy with equal remanufacturing lots means

that not necessarily all returns are remanufactured in a batch and a positive number

can remain in stock. However, the (R, 1)g policy structure is a predefined structure

like the (R, 1) and (1,M) policies which only allows to compare different policies. As

no general optimization approach has yet been formulated in literature to evaluate

the predefined policy structures properly, Section 3 provides an approach to obtain a

benchmark solution by solving the underlying problem without presuming predefined

structural characteristics. Thereafter, Section 4 conducts a numerical study by pre-

senting a base case from literature and varying its parameters in a sensitivity analysis

to assess the influence of each parameter on the solution quality. In this study, the sim-

plified policy structures are compared to the benchmark solution in order to evaluate

their performance. Finally, this work is concluded in Section 5 with a short summary

and an outlook on future research opportunities.
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2 Predefined policy structures for the two stage re-

manufacturing system

2.1 General model setting

Before analyzing the two stage remanufacturing system intensively, all necessary as-

sumptions have to be stated. In general, the model setting presented subsequently

concurs (with one exception) to the model setting introduced by Schrady. In it, an

original equipment manufacturer (OEM) engaged in the area of remanufacturing rep-

resents the background. Figure 1 presents its general structure.
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Figure 1: Inventory system in a two stage remanufacturing environment

The OEM sells one product A to his customers. Demand for product A is assumed

to be constant and depletes the finished goods inventory continuously at a rate of λ

units per time unit. A fraction α of used products in the market (denoted by A′)

returns to the manufacturer when his customers have no further use for it. Therefore,

a continuous inflow of λα returned products per time unit is observed for the used

product inventory. Storing an unit of A′ in this inventory results in a holding cost hR

per time unit. Due to different stages of wear, not all returned products can be brought

to an as-good-as-new condition which is a prerequisite to resell the product. Hence,

β denotes the deterministic fraction of returned products that can be successfully

reworked. Thus, α as well as β must not exceed one while being non-negative. All

products that cannot be remanufactured sufficiently are recycled. Recycling a returned

product is assumed to be free of charge. This assumption can be imposed when the

value of all materials contained in A′ is about the same as the value of work required to
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separate these materials. Setting up the mechanical rework and cleaning tools incurs

a setup cost KR. All successfully remanufactured products are held in a final product

inventory at a cost of hM per unit per time unit. In order to secure demand for A

is always met, some new products have to be manufactured in addition (as α and β

are usually smaller than one). The relevant setup cost is denoted by KM representing

the cost for initiating a manufacturing lot for product A. This model includes neither

processing nor lead times, i.e. whenever a (re)manufacturing batch is issued it arrives

instantly. Newly manufactured products are held in the same serviceables inventory

as remanufactured ones. Regarding the cost of storage, both remanufactured and

new products are evaluated with the same holding cost parameter hM . As two levels

of inventory are considered (used product and final product) the resulting system is

defined as a two stage remanufacturing system.

In general, the holding costs of both inventory levels (when interpreted as oppor-

tunity cost of capital) are connected by the following condition. Since an increasing

product value indicates more tied-up capital, the holding cost parameter hM must be

larger than hR as the remanufacturing process provides a significant increase in value.

Yet, only the fraction β of all products returned can be sufficiently remanufactured. In

other words, at an average 1/β products have to be remanufactured to obtain one sell-

able product. As it cannot be observed before remanufacturing whether this process is

successful, the following condition for both holding cost parameters has to hold to as-

sure validity: hR/β < hM . On the other hand, no condition is imposed for the process

related setup costs KR and KM . Contrary to these fixed cost parameters, the subse-

quent model omits the use of variable costs for manufacturing and remanufacturing

product A. By assumption, remanufacturing a unit of A is always less expensive than

manufacturing it. Consequently, the OEM commences the remanufacturing process for

all returns (whether it is successful or not) and disposes no return in advance.

Figure 2 presents the levels of inventory for the analyzed framework and depicts

whether the inflows to and outflows from each level are continuous or discrete. The

entire system has a continuous inflow and outflow of goods amounting to λα and λ

units per time unit, respectively. All parameters remain constant over an infinite plan-

ning horizon which leads to an EOQ-type model (as setup and holding costs prevail).

The standard single level EOQ approach recommends to replenish the inventory with

a certain amount (known as the economic order quantity) whenever it is depleted.

By following this simple rule over the infinite planning horizon and thereby creating

identically repeated cycles, the EOQ approach minimizes the total cost per time unit.

This chapter adopts the standard EOQ procedure to the more sophisticated two stage

inventory problem presented above. In it, six decisions of interest have to be evaluated:

the length of a cycle (T ) as well as the number of lots scheduled therein, i.e. the num-

ber of remanufacturing (R) and manufacturing lots (M). Moreover, to define a cycle
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Figure 2: Two stocking points and their inflows and outflows

unambiguously, further information is required on the sequence of batch scheduling and

on the quantities of individual lot sizes (denoted by QR for remanufacturing and QM

for manufacturing lots) that need not be integer. Since all lot sizes within a cycle can

be different, a complex policy structure can result. Yet, by imposing restrictions on

some of these decisions, simple policy structures can be derived that facilitate finding

a solution to this problem setting.

2.2 Schrady’s (R, 1) policy

The first attempt to define a simple policy structure for this problem has been under-

taken by Schrady (1967). In his work, the author elaborates a set of formulae for a

cyclic pattern in which one manufacturing lot is succeeded by a number of equally sized

remanufacturing lots R. Therefore, this policy is referred to as the (R, 1) policy. The

simplifying assumption of having remanufacturing lots of equal size is, among other

things, relaxed later on. Before doing this, the (R, 1) policy with equal remanufac-

turing lots is presented. Figure 3 illustrates, for example, a cyclic pattern with one

manufacturing and three remanufacturing lots. All lots are arranged in the way that

both the used product and the final product inventories are entirely depleted at the

beginning of a cycle. Thus, a cycle starts with a remanufacturing batch containing QR

returned products. Since the fraction β can be brought to an as-good-as-new condition,

QR · β products enter the final product inventory at the beginning of each cycle. After
QR·β

λ
time units the final product inventory is depleted and the sole manufacturing lot

containing QM final products is scheduled. Thereafter, the remaining remanufacturing

lots are initiated until the end of the cycle is reached and the next, identical cycle

commences. Since all remanufacturing lots are presumed to be equal, not all remanu-

facturable returns available in stock are remanufactured at all times. Hence, the used

product level is only depleted at the beginning/end of a cycle.
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Figure 3: Used product and final product level corresponding to a (3,1) policy

Each (R, 1) policy structure is unambiguously outlined by two decision variables.

In his work, Schrady chooses the lot sizes QR and QM to evaluate the total cost of

his policy structure. The remaining relevant decisions (number of remanufacturing

lots R and cycle length T ) can be deduced from QR and QM as follows. A cyclic

structure results if both inventory levels at the beginning of each cycle are equal to

their respective level at the corresponding cycle’s end. To ensure this, the number

of returned products collected in a cycle must be equal to the amount of products

remanufactured in it. Since the OEM receives λα products per time unit and each

cycle has a length of T time units, λαT products are remanufactured in R identical

batches of size QR, i.e.

R ·QR = λαT. (1)

As can be derived from Figure 3, the length of a cycle T is computed by

T (QR, QM) =
R ·QR · β +QM

λ
. (2)

By combining equations (1) and (2), analytical expressions can be formulated for both

R and T that depend only on the relevant decision variables QR and QM .

R(QR, QM) =
α ·QM

(1− αβ) ·QR

and T (QM) =
QM

λ (1− αβ)
. (3)

To obtain the smallest total cost of the predetermined (R, 1) policy structure, the

sum of a setup and a holding cost term has to be minimized. Starting with the setup

cost term, the number of remanufacturing lots R needs to be multiplied by KR and

added to the setup cost for initiating the manufacturing batch KM . The resulting value
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needs to be divided by the cycle length T to compute the setup cost per time unit.

Using equations (2) and (3), this results in1:

Km +R ·KR

T
= λ ·

(
(1− αβ) ·KM

QM

+
α ·KR

QR

)
. (4)

Regarding the holding cost term, the following analysis considers both inventories

separately. The holding cost per time unit for the used product inventory can be

determined by evaluating the average inventory during a cycle. In static lot sizing

problems, the average inventory can be computed by dividing the maximum inventory

level within a cycle ymax
R by two. Yet, this can only be done when the inventory level

of the corresponding stock is zero at the beginning and at the end of a cycle but never

within. Due to the policy prerequisite of having remanufacturing lots of equal size,

this is always given for an (R, 1) policy structure in the used product inventory. As

depicted in Figure 3, the maximum inventory in the used product stock prevails after

the products fabricated in the cycle’s manufacturing lot run out. At this point in time,

the inventory contains all products returning to the OEM while one remanufacturing

and the manufacturing lot have satisfied customer demand. As λα products return per

time unit, the holding cost for the used product stock is

1

2
ymax
R · hR =

1

2
· α · (QR · β +QM) · hR. (5)

The average holding cost in the final product inventory, on the other hand, cannot

be determined by dividing the maximum inventory level during a cycle by two since

it drops to zero several times in it. Generally speaking, the holding cost in a cycle is

determined by multiplying the inventory during this cycle by the corresponding holding

cost. The inventory during a cycle is computed by assessing the region bounded by the

inventory level. For instance, to determine the holding cost of the final product level

the area of the observed triangles in Figure 3 has to be evaluated. This term has to be

multiplied by hR and divided by T as the holding cost per time unit is required. By

using equations (2) and (3), this gives2(
1

2
· R · (QR · β)2

λ
+
1

2
· (QM)2

λ

)
· hM · 1

T
=

1

2

(
αβ2 ·QR+(1−αβ) ·QM

)
hM . (6)

After establishing the relevant setup and holding cost terms, the total cost function

for Schrady’s (R, 1) policy depending on both lot sizes QR and QM is formulated by

summarizing the cost components in (4), (5), and (6). Henceforth, this total cost

1For details, please refer to the Appendix, page 54
2For details, please refer to the Appendix, page 54
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function is denoted by TCR1. It is

TCR1(QR, QM ) =λ ·
(
(1− αβ) ·KM

QM

+
α ·KR

QR

)
+

1

2
· α · (QR · β +QM) · hR+

1

2
· (αβ2 ·QR + (1− αβ) ·QM

) · hM . (7)

This total cost function (7) is jointly convex3 in both decision variables QR and QM ,

i.e. the smallest total cost can be determined by exploiting its partial derivatives.

For instance, by computing the partial derivative of (7) with respect to QR, the best

remanufacturing lot size Q+
R for the (R, 1) policy structure is obtained. This gives

∂TCR1

∂QR

= −λαKR

(QR)
2 +

1

2
· αβ · (hR + β · hM) = 0 and results in

Q+
R =

√
2λ ·KR

β · (hR + β · hM)
. (8)

Similarly, the best manufacturing lot size Q+
M for an (R, 1) policy structure is calculated

by

∂TCR1

∂QM

= −λ (1− αβ)KM

(QM)2
+

1

2
· (α · hR + (1− αβ) · hM) = 0 and results in

Q+
M =

√
2λ · (1− αβ) ·KM

α · hR + (1− αβ) · hM

. (9)

The information about the best remanufacturing and manufacturing batch sizes can be

inserted into the equations (3) to obtain the cost minimizing number of remanufacturing

lots R+ and cycle length T+:

R+ =
α

1− αβ
·
√

(1− αβ) ·KM · β · (hR + β · hM)

KR · (α · hR + (1− αβ) · hM)
(10)

T+ =

√
2 ·KM

λ · (1− αβ) · (α · hR + (1− αβ) · hM)
. (11)

When determining the optimal (R, 1) policy, the number of remanufacturing lots

needs to be determined as in (10). However, the number of remanufacturing lots is

not necessarily integer which is a prerequisite for obtaining a feasible solution. In this

case, Schrady recommends a simple rounding procedure (without exactly specifying

the required rounding operations) to determine the optimal policy. In Section 2.4, an

exact approach is elaborated to find a solution to this problem.

In his original work, Schrady did not consider an imperfect remanufacturing process

as he assumes the yield fraction β to be one. By introducing this fraction in the

3For the mathematical proof, please refer to the Appendix, page 54
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above analysis, several conclusions can be drawn when comparing a situation with

yield loss to a situation without it. All conclusions are supported by analyzing the first

derivatives of the respective formulae with respect to β. When β is smaller than one,

a shorter cycle is recommended. As the overall number of returns decreases due to a

shorter cycle, the number of remanufacturing lots per cycle decreases as well. Yet, to

compensate for the yield loss and to use each remanufacturing setup efficiently, more

returns are remanufactured in a setup which decreases the number of remanufacturing

lots even further. Regarding the manufacturing lot size QM , no general conclusion can

be drawn as the sign of the first derivative w.r.t β depends on KM and both holding

cost parameters.

Schrady’s idea of creating cycles with one manufacturing lot and at least one re-

manufacturing lot has been discussed in literature later on. Teunter (2001) extends

Schrady’s work by proposing that it might be better to deviate from Schrady’s (R, 1)

policy in some cases. His approach is introduced subsequently.

2.3 Teunter’s (1,M) policy

Contrary to Schrady’s approach, Teunter proposes a preset policy structure which

contains one remanufacturing and M (with M ≥ 1) manufacturing batches. This

policy structure is, thus, denoted as the (1,M) policy. To give an example, Figure

4 depicts a (1,2) policy. At the beginning of a cycle, the sole remanufacturing lot

containing QR returned products is initiated. Due to the imperfect remanufacturing

process, only the fraction β can be sufficiently remanufactured, i.e. QR · β products

enter the final product stock. Since the OEM’s customers request λ products per time

unit, this lot lasts for QR·β

λ
time units. Thereafter, M manufacturing lots of equal size

(each comprehending QM final products) are scheduled, each lasting for QM

λ
time units.

Similar to the (R, 1) policy by Schrady, Teunter uses both lot sizes QR and QM to

formulate the (1,M) policy unambiguously, i.e. the number of manufacturing lots in

a cycle (M) and the cycle length (T ) can be deduced directly from these lot sizes. To

guarantee a perfect cyclic structure, each remanufacturing lot must be of equal size.

Therefore, the number of returned products in a cycle is as large as the remanufacturing

lot at its beginning. Since λα products return per time unit, the subsequent condition

has to hold

QR = λαT. (12)

As can be observed in Figure 4 the cycle length T is computed by

T (QR, QM) =
QR · β +M ·QM

λ
. (13)
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Figure 4: Used product and final product level corresponding to a (1,2) policy

Combining equations (12) and (13) provides two formulae to describe the number of

manufacturing lots M and the cycle length T depending on QR and QM .

M(QR, QM) =
QR · (1− αβ)

α ·QM

and T (QR) =
QR

λα
. (14)

When comparing conditions (3) and (14), the number of manufacturing lots M for

a (1,M) policy is the inverse of the number of remanufacturing lots R for an (R, 1)

policy when both are formulated depending on QR and QM . In order to pursue the

objective of minimizing the total cost per time unit, a setup and a holding cost term

have to be assessed again. The former comprises the setup cost of a cycle (M times the

setup cost for manufacturing KM plus once the setup cost for remanufacturing KR)

divided by the cycle length T . By transformation using equations (13) and (14), the

following expression is derived4:

M ·Km +KR

T
= λ ·

(
KM · (1− αβ)

QM

+
KR · α
QR

)
. (15)

After formulating the setup cost, the relevant holding cost per time unit is determined.

To do this, the formerly applied methodology of calculating the area bounded by both

inventories during a cycle has to be used. Hence, by using equations (13) and (14), the

holding cost per time unit for both inventory levels is calculated as5:[
1

2
·QR · T · hR +

(
1

2
· (QR · β)2

λ
+M · 1

2
· (QM)2

λ

)
· hM

]
· 1
T

=
1

2
· (QR · hR +

(
αβ2 ·QR + (1− αβ) ·QM

) · hM

)
. (16)

4For details, please refer to the Appendix, page 55
5For details, please refer to the Appendix, page 55
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Next, the total cost function for Teunter’s (1,M) policy (indicated by the subindex

1M) is formulated by summarizing the cost components of (15) and (16). It is

TC1M(QR, QM) =λ ·
(
KM · (1− αβ)

QM

+
KR · α
QR

)
+

1

2
· (QR · hR +

(
αβ2 ·QR + (1− αβ) ·QM

) · hM

)
. (17)

Like the cost function TCR1, the total cost function (17) is jointly convex6 in both

QR and QM . Interestingly, the only difference between both cost functions is the

evaluation of the used product’s inventory which has no influence on the curvature

of the total cost function but on its cost minimizing decision variables. By utilizing

calculus, these variables can be computed. For instance, deriving the total cost function

(17) with respect to QR provides the optimal size of the remanufacturing lot Q+
R for a

(1,M) policy structure:

∂TC1M

∂QR

= −λαKR

(QR)
2 +

1

2
· (hR + αβ2 · hM

)
= 0 and, thus,

Q+
R =

√
2λα ·KR

hR + αβ2 · hM

. (18)

Apparently, the same procedure can be applied to determine QM as well. Thus, the

optimal size of each manufacturing lot Q+
M when presuming a (1,M) policy structure

is derived from

∂TC1M

∂QM

= −λ (1− αβ)KM

(QM)2
+

1

2
· (1− αβ) · hM = 0 which results in

Q+
M =

√
2λ ·KM

hM

. (19)

Inserting the optimal values of Q+
R and Q+

M into conditions (14) gives the cost

minimizing number of manufacturing lots per cycle M+ and cycle length T+ for a

(1,M) policy structure:

M+ =
(1− αβ)

α
·
√

α ·KR · hM

KM · (hR + αβ2 · hM)
(20)

T+ =

√
2 ·KR

λα · (hR + αβ2 · hM)
. (21)

Like for the (R, 1) policy structure, the influence of including an imperfect yield β

when initiating an (1,M) policy is analyzed. For instance, the cost minimizing manu-

facturing lot size Q+
M is not influenced at all. On the contrary, the remanufacturing lot

size Q+
R increases to efficiently compensate the yield loss with respect to the setup cost.

6For the mathematical proof, please refer to the Appendix, page 55
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Hence, the cycle length T increases as more returns need to be collected. A longer cycle

means that more new products are required to satisfy customer demand which results

in an increasing number of manufacturing lots per cycle as the manufacturing lot size

remains constant. As in the preceding subsection, these logically drawn conclusions

can be derived as well by analyzing the slope of the respective cost minimizing formulae

with respect to β.

After establishing the (1,M) and (R, 1) policy structures, it is worth mentioning

that both total cost functions yield the same result in a (1,1) scenario. However, using

both policies to determine a feasible solution requires both R+ and M+ to be integer.

Considering the cost minimizing values for R+ in equation (10) and M+ in equation

(20) depicts that this is not the case in general. While Teunter omits to discuss this is-

sue in his contribution, Schrady mentions it briefly by proposing a rounding procedure

without clearly specifying the exact rounding operation. Minner (2002) continues the

discussion and elaborates an interesting result by alternatively formulating the total

cost functions of both policy structures. In his contribution, both total cost functions

are formulated to depend on only R or M , respectively. By doing this, the obstacle

of obtaining non-integer values for R and M is avoided since the total cost function

depends on the sole variable that is required to be integer. The next subsection focuses

on deriving his findings.

2.4 Alternative formulation of the (R, 1) and (1,M) policies

To define the total cost function of their policy structures unambiguously, Schrady and

Teunter use both lot sizes QR and QM as their relevant decision variables. However, by

inserting one of the cost minimizing lot sizesQ+
R (or alternativelyQ+

M) into the total cost

function, the number of relevant decision variables can be reduced by one. Nevertheless,

the obstacle of ensuring the number of remanufacturing (or manufacturing) lots to be

integer remains to be solved. Therefore, Minner reformulates the total cost functions

of both policy structures to depend on either R for an (R, 1) policy or M for a (1,M)

policy structure. As two decision variables are required at the beginning, Minner

chooses the cycle length T to be the second one.

For the (R, 1) policy, the number of remanufacturing lots per cycle can exceed one

while the number of manufacturing lots is exactly equal to one. Since all remanufac-

turing batches are of equal size, the amount of products returning in a cycle (λαT )

has to be divided by R to obtain the size of each individual lot. Likewise, the amount

to be manufactured in each cycle is given by the demand for the considered product

that cannot be met by remanufacturing returned products, i.e. (1− αβ) of the entire

demand. Therefore, the corresponding lot sizes can be reformulated (depending on R

14



and T ) according to formulae (1) and (3) as

QR =
λαT

R
and QM = λ (1− αβ)T. (22)

The setup cost per time unit is defined according to formula (4) which gives

R ·KR +KM

T
. (23)

Both holding cost elements can be simplified as well. Starting with the holding cost for

the used product stock, the maximum inventory level in a cycle has to be evaluated.

Corresponding to equation (5) this results in

1

2
· α · (QR · β +QM) · hR =

1

2
· α ·
(
λαT

R
· β + λ · (1− αβ)T

)
· hR

=
1

2
λT

(
1 + αβ

(
1

R
− 1

))
· αhR. (24)

In compliance with equation (6), the holding cost per time unit for the final product

inventory is reformulated as

1

2
· (αβ2 ·QR + (1− αβ) ·QM

) · hM =
1

2
·
(
αβ2 · λαT

R
+ λ · (1− αβ)2 T

)
· hM

=
1

2
λT ·

(
α2β2

R
+ (1− αβ)2

)
· hM . (25)

By adding up the setup and holding cost terms, the total cost function for the (R, 1)

policy is established such that it depends on both R and T :

TCR1(R, T ) =
RKR +KM

T
+

1

2
λT

((
1 + αβ

(
1

R
− 1

))
αhR +

(
α2β2

R
+(1− αβ)2

)
hM

)
.

(26)

For any given value of R, the optimal cycle length T can be computed by calculus.

Thereby, the cycle length needs to be determined for which the partial derivative of

the total cost function with respect to T is zero. This gives

∂TCR1

∂T
= −RKR +KM

T 2
+

1

2
λ

((
1 + αβ

(
1

R
− 1

))
αhR +

(
α2β2

R
+(1− αβ)2

)
hM

)
= 0

and, thus, T+
R1(R) =

√√√√ 2 (RKR +KM)

λ
((

1 + αβ
(
1
R
− 1
))

αhR +
(

α2β2

R
+ (1− αβ)2

)
hM

) . (27)

Inserting T+
R1 into the total cost function TCR1 yields an expression that only depends

on the number of remanufacturing lots R

TC+
R1(R) =

√
2λ(RKR+KM)

((
1+αβ

(
1

R
−1

))
αhR+

(
α2β2

R
+(1−αβ)2

)
hM

)
. (28)
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The cost minimizing number of remanufacturing lots R can, thus, be computed by

deriving function (28) with respect to R. Not surprisingly, this value matches exactly

equation (10) and is therefore omitted to be presented again. Yet, the reformulation

of the total cost function allows to determine the cost minimizing integer value of R.

When analyzing function (28) in the relevant range (R > 0), several characteristics

can be derived. First, formula (10) proves that there is only a single optimal value

for R minimizing the total cost function. Moreover, the total cost function approaches

infinity when R moves closer both to zero as well as to +∞7. From that it follows that

the local minimum determined by (10) is a global minimum for the relevant range.

Exploiting these characteristics, a general procedure can be applied to determine the

cost minimizing integer value R∗. Figure 5 depicts the optimal total cost function TC+
R1

around its optimal non-integer value R+. In it, we can observe that R+ and R∗ lie

between R̂ and R̂+ 1 which do not have to be integer but have to fulfill the condition

TC+
R1(R̂) = TC+

R1(R̂ + 1). This means the total cost function yields the same result

for both values.

� 	

�

�



� � 
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�
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Figure 5: Total cost function TC+
R1

There is only one integer value for R between R̂ and R̂+1. This value must therefore

be the cost minimizing integer solution R∗. Consequently, the value of R̂ simply needs

to be rounded up to compute R∗. In the case that R̂ is an integer itself, R̂ as well as

R̂ + 1 are both cost minimizing. R∗ is determined by8

TC+
R1(R̂) = TC+

R1(R̂ + 1) which results in

R∗ =

⌈
−1

2
±
√

1

4
+

KMα2β · (hR + hMβ)

KR · (α (1− αβ)hR + (1− αβ)2 hM

)
⌉
. (29)

7For the mathematical proof, please refer to the Appendix, page 56
8For details, please refer to the Appendix, page 56
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Since only a positive number of remanufacturing lots is allowed, an unequivocal

value for R∗ can be determined. Moreover, the general function �−0.5 + x� describes

the same term as if x is rounded to the nearest integer. Thus, the cost minimizing

integer number of remanufacturing lots for an (R, 1) policy structure is computed by

the following value (� indicates rounding to the nearest integer)

R∗ =

√
1

4
+

KMα2β · (hR + hMβ)

KR · (α (1− αβ)hR + (1− αβ)2 hM

) � . (30)

This value corresponds to the optimal value of R+ determined by Schrady in equation

(10) except that a quarter is added to the radicand and the resulting value is rounded

to the nearest integer afterwards. The same kind of analysis can be conducted for a

(1,M) policy.

For the (1,M) policy structure, the decision variables introduced by Teunter (QR

and QM) are replaced as well by functional expressions depending on the cycle length T

and the number of manufacturing lots M . Similar to the adaptations presented above,

the (re)manufacturing batch sizes QR and QM are reformulated according to formulae

(12) and (13) as

QR = λαT and QM =
λ(1− αβ)T

M
. (31)

By implementing equations (31), the reformulation of the setup cost per time unit

is facilitated. Analogous to equation (15), this results in

KR +M ·KM

T
. (32)

To obtain the holding cost per time unit for a (1,M) policy in the alternative formu-

lation, formulae (31) are used to adapt equation (16):[
1

2
·QR · T · hR +

(
1

2
· (QR · β)2

λ
+M · 1

2
· (QM)2

λ

)
· hM

]
· 1
T

=
1

2
λT ·

(
αhR +

(
α2β2 +

(1− αβ)2

M

)
· hM

)
. (33)

The total cost per time unit results from the sum of the setup cost (32) and holding

cost (33) per time unit. Hence,

TC1M(M,T ) =
KR +M ·KM

T
+

1

2
λT ·

(
αhR +

(
α2β2 +

(1− αβ)2

M

)
· hM

)
. (34)

In analogy to the procedure for the (R, 1) policy structure, the optimal cycle length

T+
1M and the corresponding minimizing total cost function TC+

1M depending only on

17



the number of manufacturing lots M can be determined.

T+
1M(M) =

√√√√ 2 · (KR +M ·KM)

λ ·
(
αhR +

(
α2β2 + (1−αβ)2

M

)
· hM

)

TC+
1M(M) =

√√√√2λ · (KR +M ·KM) ·
(
αhR +

(
α2β2 +

(1− αβ)2

M

)
· hM

)
. (35)

The total cost function (35) reveals the same characteristics as the total cost func-

tion for an (R, 1) policy structure, i.e. it has a single minimum and approaches infinity

for M → 0 and M → ∞9. Therefore, the same methodology can be applied as for the

(R, 1) policy. Let M̂ denote the value of M that needs to be rounded up to obtain the

cost minimizing integer number of manufacturing batches in a cycle. We find10

TC+
1M(M̂) = TC+

1M(M̂ + 1) and, thus,

M∗ =

⎡
⎢⎢⎢−

1

2
±
√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)

⎤
⎥⎥⎥ . (36)

When comparing the results of the (R, 1) policy with the results of the (1,M) policy in

equation (36), the outcome is quite similar. Thus, the cost minimizing integer number

of manufacturing lots in a cycle is computed by adding a quarter to the radicand of

Teunter’s solution in equation (20) and rounding the resulting value to the nearest

integer. This means

M∗ =

√
1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)
� . (37)

Deriving closed-form expressions for R∗ and M∗ has been one of the main results

of Minner’s contribution. However, both values can never be smaller than 1 (as he

presumed) since the radicand is at least 0.25, i.e. its square root is at least 0.5. As

this value has to be rounded to the nearest integer afterwards, the optimal values for

R∗ and M∗ are always at least equal to 1.

Concluding, the optimal parameter R∗ for an (R, 1) policy can be determined by

equation (30). Likewise, M∗ can be computed using (37) to get the optimal (1,M) pol-

icy. For a given set of parameters, the resulting optimal total cost functions TC+
R1(R

∗)

and TC+
1M(M∗) would have to be compared to find the better solution. The next sub-

section proves that this is not necessary as R∗ and M∗ cannot exceed a value of one

simultaneously when restricting oneself to the (R, 1) and (1,M) policies.

9We omit to present the mathematical proof as it is similar to the proof for the (R, 1) policy
10For details, please refer to the Appendix, page 57
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2.5 Comparison of the optimal values for R∗ and M∗

At the beginning of this subsection, a small example illustrates the implications when

R∗ and M∗ would not be larger than one at the same time. Assume that by applying

formula (30) to an exemplary set of parameters, two remanufacturing lots should be

initiated when considering an (R, 1) policy structure, i.e. R∗ = 2. Consequently, M∗

would have to be one as the conjecture to be proven states that both R∗ and M∗ cannot

be larger than one simultaneously. Therefore, the best (1,M) policy structure would be

a (1,1) policy. This policy is, however, outperformed by the (2,1) policy structure since

a (1,1) policy is a possible (R, 1) policy structure as well. Thus, the decision maker

would simply need to calculate the optimal values for R∗ and M∗ using formulae (30)

and (37) to obtain the best policy parameters for the predetermined policy structures.

Hence, a comparison of both minimal cost values of the (R, 1) and (1,M) policies could

be omitted.

In order to prove the above conjecture, two inequalities would have to hold simul-

taneously. At first, R∗ determined by formula (30) has to be larger than 1.5 since its

value rounded to the nearest integer is consequently greater or equal to two. This gives√
1

4
+

KMα2β · (hR + hMβ)

KR · (α (1− αβ)hR + (1− αβ)2 hM

) ≥ 1.5 and, thus,

1

2
KMα2β · (hR + hMβ)−KR · α (1− αβ)hR ≥ KR · (1− αβ)2 hM . (38)

If condition (38) is fulfilled, more than one remanufacturing lot should be initiated

in a cycle (R∗ ≥ 2) when applying the (R, 1) policy. In this case, the number of

manufacturing lots is set to one due its predefined policy structure.

Next, the same analysis is put forth for the (1,M) policy by accordingly evaluating

condition (37). We find√
1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)
≥ 1.5 which results in

2KM · (αhR + α2β2hM

) ≤ KR · (1− αβ)2 · hM . (39)

Condition (39) needs to hold if more than one manufacturing lot should be scheduled

in a cycle (M∗ ≥ 2) when applying the (1,M) policy. Without loss of generality, the

non-strict inequalities are replaced by strict inequalities. If two strict inequalities have

to hold at the same time, it is possible to subtract them and analyze the validity of

the resulting inequality. This gives

1

2
KMα2β · (hR + hMβ)−KR · α (1− αβ)hR − 2KM · (αhR + α2β2hM

)
> 0

KMα ·
((

1

2
αβ − 2

)
hR − 3

2
αβ2hM

)
−KR · α (1− αβ)hR > 0. (40)
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As all parameters are positive and αβ cannot exceed one, the term on the left hand

side of inequality (40) is always negative. Hence, this inequality is never satisfied, i.e.

conditions (38) and (39) never hold simultaneously. This means, R∗ and M∗ can never

be larger than one at the same time when restricting oneself to the preset (R, 1) and

(1,M) policies. However, this result is only valid for these two policy structures. Choi

et al. (2007) have shown in their work, for instance, that a more general (R,M) policy

with both R and M larger than one can reduce the resulting total cost.

After introducing the (R, 1) and (1,M) policy structures it has to be mentioned

that their solution quality is hardly discussed in literature. Minner and Lindner (2004),

for instance, elaborate in their contribution that it might not be optimal to choose re-

manufacturing lots of equal size in a cycle. This topic is discussed more intensively in

the next subsection. There, a third preset policy structure is introduced which allows

for different remanufacturing batches in a cycle.

2.6 The (R, 1)g policy

When non-equal remanufacturing lots are allowed in a cycle, a multitude of alternative

policy structures can be formulated. In their article, Minner and Lindner apply a

Lagrange-multiplier approach to investigate the optimality of having remanufacturing

lots of equal size in an (R, 1) policy. As a result, they identify three cases which have in

common that differently sized remanufacturing batches are initiated within each cycle.

The first case is to have R− 1 remanufacturing lots of equal size which are succeeded

by a smaller last one. The second case comprises that all remanufacturing lots in a

cycle decrease geometrically. Finally, the third case incorporates a mix of the first

two, i.e. a number of equally sized remanufacturing batches is followed by a number

of geometrically decreasing ones.

Minner and Lindner restrict their analysis to identifying these three cases. However,

the subsequent analysis focuses on the second case as this case is the only one having a

special characteristic. When scheduling geometrically decreasing remanufacturing lots

in a cycle, each lot remanufactures all currently available returns. Such a schedule (that

fulfills the zero inventory property) is easy to apply and can neither be implemented for

a regular (R, 1) policy with equal remanufacturing lots (see, for instance, Figure 3) nor

for the remaining two cases identified by Minner and Lindner. Figure 6 presents the

used product and final product inventories in a cycle when two geometrically decreasing

remanufacturing lots are initiated. To differ this policy from a regular (2, 1) policy, it

is denoted by (2, 1)g to indicate the geometrically decreasing remanufacturing batches.

By definition, the largest remanufacturing batch in a cycle is denoted by QR,1. It

comprehends all products collected by the OEM while the smallest remanufacturing lot
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Figure 6: Used product and final product level corresponding to a (2,1)g policy

(denoted by QR,R) and the manufacturing lot satisfy customer demand. Beginning with

the largest remanufacturing batch, each subsequently scheduled lot remanufactures

only αβ of its predecessor’s lot size. This fact is illustrated using QR,1 and QR,2 from

Figure 6. QR,1 satisfies demand for exactly QR,1 · β/λ time units. During that time

interval, the collection of returns for the second remanufacturing lot QR,2 takes place.

Over a time span of QR,1 · β/λ time units λα products are accumulated per time

unit. Therefore, as all collected products have to be remanufactured, QR,2 comprises

λα · QR,1 · β/λ = αβ · QR,1 units. To implement geometrically decreasing lots, two

conditions have to be respected. First, as shown previously each remanufacturing lot

(except QR,1) remanufactures αβ of its predecessor’s batch size. Second, all returned

products must be remanufactured during a cycle, i.e.
∑R

i=1QR,i = λαT . Respecting

these two conditions, an expression can be derived which describes the size of each

remanufacturing lot for the (R, 1)g policy. Hence11,

QR,i =
λαiβi−1T · (1− αβ)

1− αRβR
∀i = 1, .., R. (41)

After formulating the amount to be remanufactured in each lot, the total cost

function is established. The setup cost per time unit can be computed similar to an

(R, 1) policy structure by the following formula:

R ·KR +KM

T
. (42)

Due to their complexity, the holding cost terms for both inventories are analyzed sepa-

rately. Starting with the used product inventory and using equations (41), the holding

11For details, please refer to the Appendix, page 58
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cost per time unit for this inventory is formulated as12

1

2
λαThR ·

(
1− αβ

1 + αβ
· 1 + αRβR

1− αRβR

)
. (43)

Similarly, the holding cost for the final product inventory is computed. The size of

the cycle’s manufacturing lot corresponds to its size for a regular (R, 1) policy, i.e.

QM = λ(1− αβ)T . Therefore, we obtain13

1

2
λThM

(
α2β2 · 1− αβ

1 + αβ
· 1 + αRβR

1− αRβR
+ (1− αβ)2

)
. (44)

The total cost per time unit for a (R, 1)g policy is then calculated by summing up the

cost components (42), (43), and (44). Until now, the total cost function depends on

both the number of remanufacturing batches R and the cycle length T . It is

TCR1g(R, T ) =
RKR+KM

T
+
1

2
λT

((
αhR+α2β2hM

)·(1−αβ

1+αβ
· 1+αRβR

1−αRβR

)
+hM(1−αβ)2

)
.

(45)

Similar to the approaches presented above, the total cost can be adapted to depend

only on the number of remanufacturing lots in a cycle R. For this, the cost minimizing

cycle length T+
R1g needs to be computed and inserted into the total cost function. This

gives

T+
R1g(R) =

√√√√ 2 · (RKR +KM)

λ
(
(αhR + α2β2hM) ·

(
1−αβ

1+αβ
· 1+αRβR

1−αRβR

)
+hM (1− αβ)2

) and, thus,

TC+
R1g(R) =

√
2λ(RKR+KM)

(
(αhR+α2β2hM)

(
1−αβ

1+αβ
· 1+αRβR

1−αRβR

)
+hM(1−αβ)2

)
.

(46)

Although depending only on R, no closed-form expression exists to calculate the

cost minimizing value of R since it can be found both in the base and exponent of

equation (46). To obtain a greater insight into the total cost function’s behavior, a

large set of different problem instances has been created. Without exception, the cost

function always had only one cost minimum. Based on this observation, a simple local

search method is recommended to determine the optimal value for R.

After formulating the total cost function for an (R, 1)g policy structure, two inter-

esting insights can be derived. At first, the condition required for a (2, 1)g policy to

outperform a (1,1) policy is depicted. When setting R equal to one, the total cost func-

tion of the (R, 1)g policy matches exactly the total cost function of the (R, 1) policy.

12For details, please refer to the Appendix, page 58
13For details, please refer to the Appendix, page 59

22



Therefore, after replacing 1−αβ

1+αβ
· 1+α2β2

1−α2β2 by V , the following condition results14

from TC+
R1g(1)− TC+

R1g(2) >0 :

KR

(
αhR+α2β2hM

)
(1−2V)−KRhM(1−αβ)2+KM

(
αhR+α2β2hM

)
(1−V)>0. (47)

If condition (47) holds, the number of remanufacturing lots in an (R, 1)g policy should

be larger than one. The preceding subsection 2.5 has proven that R and M can never

be larger than one simultaneously when restricting to the (R, 1) and (1,M) policy

structures. An interesting question arises whether the same can be proven for the

(R, 1)g and (1,M) policies. For this to be true, conditions (39) and (47) must not hold

simultaneously. As before, this can be examined by subtracting these inequalities and

analyzing the resulting inequality. We find

KR

(
αhR + α2β2hM

)
(1− 2V )−KM

(
αhR + α2β2hM

)
(1 + V ) > 0. (48)

The resulting inequality (48) can never be fulfilled as long as V is always larger than 0.5

since then both terms on the left hand side of (48) are strictly negative. The following

calculations prove that this is the case15:

1− αβ

1 + αβ
· 1 + α2β2

1− α2β2
>

1

2
which results in

(1− αβ)3 > 0. (49)

Since αβ always lies between zero and one, (1−αβ)3 is always positive. Inequality (48),

thus, is never fulfilled. Therefore, if the local search applied to equation (46) computes

a cost minimizing value of R larger than one, the best possible (1,M) policy would be

a (1,1) structure which is in this case outperformed by the best (R, 1)g policy.

The (R, 1)g policy structure cannot only be compared to the (1,M) policy but also

to the (R, 1) policy with equal remanufacturing lots. As this cannot be done in general,

a condition is derived at which a (2, 1)g policy outperforms a (2, 1) policy. To do so,

the total cost functions (28) and (46) have to be subtracted for R=2. From16

TC+
R1(2)− TC+

R1g(2) > 0 we find

hM

hR

<
3 + αβ

β (1− αβ)
. (50)

Four parameters determine whether a (2, 1)g policy with geometrically decreasing

remanufacturing lots outperforms a (2,1) policy with equal remanufacturing batches:

both holding cost parameters and their relation as well as the return and yield fractions

14For details, please refer to the Appendix, page 59
15For details, please refer to the Appendix, page 59
16For details, please refer to the Appendix, page 60
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α and β. The relation between hM and hR influences the result of the analysis sub-

stantially. It says that for large values of hM compared to hR, equal remanufacturing

batches are preferred. Otherwise, geometrically decreasing remanufacturing batches

should be initiated when the ratio between hM and hR is comparably small. The exact

value is depicted for R = 2 in (50). Interestingly, the value of the right hand side

of (50) approaches infinity when α and β move closer to either zero or one. In these

settings, geometrically decreasing remanufacturing lots are mostly preferred over lots

of equal size. In the following, the right hand side of inequality (50) is analyzed in

greater detail. By deriving it with respect to α the impact of the return fraction is

evaluated. It gives

∂ 3+αβ

β(1−αβ)

∂α
=

4

(1− αβ)2
. (51)

Since this term is strictly positive, 3+αβ

β(1−αβ)
increases if α becomes larger. Hence, a

larger return fraction benefits the (2, 1)g policy over the (2,1) structure. The same

kind of analysis is also conducted for the yield parameter β.

∂ 3+αβ

β(1−αβ)

∂β
=

−3 + 6αβ + α2β2

β2 (1− αβ)2
. (52)

Contrary to the analysis of the return fraction, an ambiguous result is derived for β.

While the denominator of (52) is positive, the numerator’s sign depends on the value of

α. If the return fraction α is smaller than −3+
√
12 (around 46.4%), the right hand side

of (50) decreases continuously as larger β becomes, i.e. a (2,1) policy becomes more

attractive as β rises. If, on the other hand, α is larger than −3 +
√
12, an increasing

β lets the value of 3+αβ

β(1−αβ)
fall until it reaches a minimum but begins to rise thereafter

until β approaches one.

The results regarding α and β are supported by logical conclusions. Figure 7

confronts the result of a (2,1) with a (2, 1)g policy. Both policies represent trade-off

solutions when regarding them from an efficiency point of view. Implementing a (2,1)

policy, for instance, is the perfect (because least costly) policy with one manufacturing

and two remanufacturing batches for the final product level. Yet, the used product

level needs to deviate from a good solution by scheduling a remanufacturing lot that

does not remanufacture all returned products on hand. Contrary, a (2, 1)g policy

accepts a worse solution in the final product stock by allowing to remanufacture in

differently sized lots. By doing this, an efficient remanufacturing process from the used

product inventory’s point of view is obtained since no return remains in stock after

initiating a remanufacturing batch. Hence, if holding returned products in the used

product stock is relatively expensive compared to holding finished products in the final

product inventory, it becomes more interesting to find an efficient solution for the used
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Figure 7: Comparison of a (2,1) policy to a (2, 1)g policy

product level (geometrically decreasing remanufacturing lots). On the other hand, if

holding finished products is very costly compared to holding returned products, the

best solution for the final product level is chosen (equal remanufacturing lots).

These conclusions can be used to analyze the results with respect to α and β.

When the fraction of returned products per time unit rises, more returns need to be

held and, thus, the importance of the used product stock increases. Hence, a (2, 1)g

policy becomes more attractive as it focuses on an efficient solution for this inventory

level. If the quality parameter β rises, the effects cannot be seen as clearly. An increase

in β leads, ceteris paribus, to less manufactured but more remanufactured products to

satisfy customer demand. Since this only shifts the batches of the final product level

but has no direct influence on the used product level, a logical conclusion cannot be

drawn in general.

As mentioned above, comparing a (2,1) to a (2, 1)g policy structure can only give

some structural insights since these results cannot be generalized. Yet, similar results

as in (50) can be derived when comparing other policy structures. In Table 1, the

conditions for an (R, 1)g policy to dominate an (R, 1) policy are presented (for R ≤ 5).

Unfortunately, no bounds can be determined on the maximum error of applying

an (R, 1) instead of an (R, 1)g policy. To illustrate the complexity of this situation,

a small example is presented. For an exemplary parameter set, a policy with one

manufacturing and two equal remanufacturing lots is the best option considering all

(R, 1) and (1,M) policies. For the same parameter set, three geometrically decreasing

remanufacturing lots are the best solution of all possible (R, 1)g policies, i.e. a (2, 1)

policy would have to be compared to a (3, 1)g policy for this parameter set. As the

interdependence of all policies has to be respected, i.e. general conditions would have

to be derived describing which preset policy is the best for each parameter combina-
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Table 1: Comparison of policies with and without remanufacturing lots of equal size

Condition that needs to hold when TC+
R1(R)− TC+

R1g(R) > 0

For R = 2
hM

hR

<
3 + αβ

β (1− αβ)

For R = 3
hM

hR

<
2 + αβ

β (1− αβ)

For R = 4
hM

hR

<
3α3β3 + 9α2β2 + 7αβ + 5

β (−3α3β3 − α2β2 + αβ + 3)

For R = 5
hM

hR

<
2α3β3 + 4α2β2 + αβ + 3

β (−2α3β3 + α2β2 − αβ + 2)

tion, a closed-form expression on the percentage gain cannot be formulated. Therefore,

a small numerical study is conducted in Section 4 to evaluate the (R, 1)g policy with

respect to the (R, 1) structure. In this study, a number of instances revealed a perfor-

mance gain of more than 5 % when initiating geometrically decreasing instead of equal

remanufacturing batches. However, no contribution has yet established a methodology

to evaluate the performance of the introduced policy structures in general. Hence,

the upcoming Section 3 establishes a benchmark solution that determines for a given

R and M the optimal solution without imposing additional constraints on the lot sizes.

3 Establishing a benchmark solution

In order to define a policy structure unambiguously, six decisions need to be deter-

mined: the cycle length (T ), the number of (re)manufacturing batches (R and M),

the sequence of batch scheduling, and the corresponding (re)manufacturing batch sizes

(QR and QM). When establishing a preset policy structure, a number of decisions is

fixed in advance. For the (R, 1)g policy, for instance, the number of manufacturing

lots per cycle is fixed to one. Furthermore, the batch sequence in a cycle is prede-

fined and the remanufacturing lot sizes are geometrically decreasing. The exact size of

the (re)manufacturing batches depends, however, on the not yet known cycle length

and the number of remanufacturing lots R. Therefore, by fixing the number of man-

ufacturing lots and assuming a characteristic pattern for all remanufacturing batch

sizes, the best (R, 1)g policy is obtained. Likewise, the best (R, 1) and (1,M) policy

can be determined. The subsequently introduced optimization approach deviates from

this procedure as it fixes next to the number (re)manufacturing lots (R and M) also

the cycle length. By computing the optimal solutions for a possible set of (R,M)

combinations, a benchmark solution can be found.
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In general, the total cost of a cycle consists of its total setup cost (SC) that is

added to the corresponding total holding cost (HC). As the total cost per time unit

(TC) represents the objective of optimization, the sum of both costs has to be divided

by the cycle length T :

TC =
SC +HC

T
(53)

While the setup cost SC depends on the number of remanufacturing and manu-

facturing batches in a cycle but not on the cycle length itself, the holding cost HC

depends on the cycle length, i.e. HC = HC(T ). Obtaining the benchmark solution

to this problem exploits the dependency of HC with respect to T . First, by fixing

the number of R and M in a cycle, the setup cost value is also fixed. Therefore, only

the size of the holding cost per cycle needs to be minimized to determine the optimal

solution. Interestingly, the holding cost per cycle depends quadratically on the cycle

length. This can be explained by the fact that the relative scheduling of remanufactur-

ing and manufacturing batches in a cycle (e.g. remanufacture 20% of all returns after

60% of the cycle has passed) does not depend on its overall length. For instance, if T

is doubled all batch sizes are doubled, too. Hence, the time to collect the appropriate

returns doubles as well as the time a (re)manufacturing lot is able to satisfy customer

demand. Thus, HC is going to be four times its initial value if T is doubled. By

defining HC1 as the holding cost for a cycle length of one time unit, the condition

HC(T ) = HC1 ·T 2 can be established. After inserting this condition into formula (53)

the optimal cycle length and total cost can be determined by:

TC =
SC +HC1 · T 2

T
=

SC

T
+HC1 · T

⇒ T ∗ =

√
SC

HC1

⇒ TC∗ = 2 ·
√

SC ·HC1 (54)

By fixing the cycle length to one time unit, the optimal batch sequence and the cor-

responding (re)manufacturing batch sizes can be determined as long as R and M are

given. The most interesting aspect of this approach is that no direct relation between

the (re)manufacturing batches of a cycle are imposed. In order to calculate the optimal

solution for any (R,M) combination, the problem is solved sequentially in two steps.

These are:

Step 1 : For a given (R,M) combination, minimize HC1 w.r.t. the lot sequence

and (re)manufacturing lot sizes.

Step 2: Compute the optimal total cost and cycle length for HC∗

1 using formula

(54).
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To obtain the optimal solution for HC1, the concept of subcycle-oriented opti-

mization is employed. In this concept, the whole cycle is separated into R subcycles

(denoted by s) in which the following presumptions are required to hold. At the begin-

ning of each subcycle the sole remanufacturing lot is initiated. It contains exactly QR,s

items that are remanufactured at once. If the number of remanufactured components

is not sufficient to satisfy the subcycle’s demand, a number of components (denoted

by ΘM,s) has to be manufactured in νM,s equal manufacturing lots. All manufacturing

lots in a subcycle should be of equal size since deviating from equal manufacturing lots

in a subcycle would increase the holding cost incurred. This is shown in Appendix B

of Schulz and Ferretti (2008). The individual lot size of a manufacturing lot QM,s is

therefore determined by ΘM,s/νM,s. However, it is possible that no new component is

fabricated in a subcycle, i.e. ΘM,s = 0. To summarize, each subcycle contains exactly

one remanufacturing lot and zero, one, or more manufacturing lots.

To determine the optimal cycle when R and M are given, no further assumptions

regarding the (re)manufacturing batches are imposed. This includes the option to have

used products left in stock at the end of a subcycle as depicted in Figure 3. By in-

cluding this possibility, not all products available in stock have to be remanufactured

at the end of a subcycle. In the following model, Vs denotes the used product inven-

tory level at the end of subcycle s. On the other hand, the final product level has to

be depleted at the end of each subcycle. Due to the flexibility in timing and sizing

the (re)manufacturing batches, initiating one of these batches before the final product

level is empty would increase the holding cost incurred since holding final products is

more expensive than holding returns. Figure 8 presents a possible solution when the

subcycle-oriented optimization approach is applied to a policy structure with three re-

manufacturing and two manufacturing lots. Without loss of generality, both inventories

are set to zero at the beginning/end of a cycle, i.e. VR = 0.

For a given policy structure, the minimal holding cost for a cycle length of one time

unit HC∗

1 can be determined by the following optimization approach:

minHC1 =
1

2λ
·
(
hR

α
·
[
(QR,1 + V1)

2 +
R∑

s=2

[
(QR,s + Vs)

2 − (Vs−1)
2]]+

hM ·
R∑

s=1

[
(QR,s · β)2 + (ΘM,s)

2

νM,s

])
(55)

subject to

QR,s = α (QR,s−1 · β +ΘM,s)− (Vs − Vs−1) ∀s = 2..R (56)

QR,1 = α (QR,R · β +ΘM,1)− V1 (57)

R∑
s=1

QR,s = λαβ (58)
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Figure 8: Exemplary cycle with R = 3 and M = 2

R∑
s=1

ΘM,s = λ (1− αβ) (59)

R∑
s=1

νM,s = max(R,M) (60)

R∑
s=1

γM,s = M (61)

ΘM,s ≤ λγM,s ∀s = 1..R (62)

νM,s ≥ 1 and integer ∀s = 1..R (63)

γM,s ≥ 0 and integer ∀s = 1..R (64)

QR,s,ΘM,s, Vs ≥ 0 ∀s = 1..R (65)

The objective function HC1 (55) represents the holding cost of both inventories for

a cycle length of one time unit and needs to be minimized. Beginning with the final

product level, the relevant area of this inventory has to be calculated which consists of

R+M right-angled triangles. Because of the imperfect remanufacturing process, only

the fraction β of all remanufactured products meets the requested quality standards to

be resold to the customers. Therefore, each subcycle’s remanufacturing batch satisfies

customer demand for QR,s · β/λ time units. On the other hand, the amount to be

manufactured in subcycle s is divided into νM,s lots of equal size. Each lot contains,

thus, ΘM,s/νM,s products to fulfill the demand for a period of ΘM,s/(νM,s ·λ) time units.

Therefore, the area of the final product inventory is computed by
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R∑
s=1

[
1

2
· (QR,s · β) · (QR,s · β)

λ
+ νM,s · 1

2
· ΘM,s

νM,s

· ΘM,s

νM,s · λ
]

=
1

2λ
·

R∑
s=1

[
(QR,s · β)2 + (ΘM,s)

2

νM,s

]
.

Analyzing the used product level is more complicated due to the possibility of having

an initial inventory (Vs−1) as well as a final inventory of used products (Vs) in each

subcycle s. Therefore, the area to be analyzed can take on a trapezoidal shape when

both Vs−1 and Vs are positive (as for the second subcycle of Figure 8). The relevant

area is then computed by the general formula 0.5 ·(a+b) ·h in which h is the trapezoid’s

height, and a as well as b represent the lengths of its parallel sides. For subcycle s the

parallel sides are Vs−1 and QR,s+Vs, respectively. The trapezoid’s height is equal to the

subcycle’s duration. As the number of products returning to the OEM in a subcycle

is defined by QR,s + Vs − Vs−1, a subcycle lasts for (QR,s + Vs − Vs−1)/λα time units.

The area of the used product inventory can, thus, be computed for each subcycle by:

1

2
(Vs−1 +QR,s + Vs) · QR,s + Vs − Vs−1

λα

=
1

2λα

(
Vs−1QR,s + Vs−1Vs − V 2

s−1 +Q2
R,s +QR,sVs −QR,sVs−1 + VsQR,s + V 2

s − VsVs−1

)
=

1

2λα

(
(QR,s + Vs)

2 − (Vs−1)
2) . (66)

Due to the overall cyclic structure, equation (66) has to be adapted for the first

subcycle. In this case, the predecessor of the first subcycle would be the last subcycle

of the preceding cycle. Therefore, equation (66) becomes 1
2λα

· (QR,1 + V1)
2 for s = 1

since VR is set to zero. By multiplying each area with the respective holding cost

parameter and summing up over all subcycles, the objective function (55) is established.

It represents for a given policy structure (i.e. R and M are preset) the holding cost

HC1.

In order to guarantee feasibility of the solution, constraints (56) to (65) have to

be met. The restrictions in (56) represent the inventory balance constraints of the

used product level. They describe the inventory at the end of subcycle s (Vs) as the

inventory at its beginning (Vs−1) plus its inflows and minus its outflows. The inflows

include all used products arriving in this subcycle. As subcycle s has a length of

(QR,s−1 · β+ΘM,s)/λ time units and λα used products arrive per time unit, altogether

α · (QR,s−1 · β + ΘM,s) used products reach the OEM in subcycle s. The outflows are

computed by the remanufacturing lot initiated at the end of subcycle s which comprises

QR,s products to be remanufactured. Using these inventory balance equations, one can

derive constraint (56) after the following manipulation

Vs = Vs−1 + α · (QR,s−1 · β +ΘM,s)−QR,s

QR,s = α (QR,s−1 · β +ΘM,s)− (Vs − Vs−1) .
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Constraint (57) has to be incorporated to reflect the cyclic structure of the underlying

problem, i.e. a cycle’s last subcycle is the predecessor of the successive cycle’s first

subcycle. Constraint (58) guarantees that all products returning during a cycle are

remanufactured. Since demand cannot be met solely by remanufacturing, restriction

(59) assures the missing components to be manufactured.

To apply the subcycle-oriented optimization approach, the number of remanufac-

turing and manufacturing lots has to be fixed in advance. As R can be smaller than

M , not all subcycles have to include a manufacturing lot. If, for instance, no manu-

facturing lot is scheduled in subcycle s, the value νM,s will be zero which would make

the objective function infeasible (division by zero). In this case, constraints (60) to

(64) ensure that no new product is fabricated, i.e. ΘM,s = 0. Moreover, νM,s is forced

to be equal to one to avoid division by zero in the objective function. Forcing ΘM,s

and νM,s to zero and one, respectively, can be achieved by introducing another integer

decision variable γM,s that decides whether a subcycle contains a manufacturing lot or

not. If not, γM,s is zero and constraint (62) restricts ΘM,s to be zero. Otherwise, if a

subcycle contains at least one manufacturing lot, γM,s can take on any positive integer

value as it does not affect the objective function. Yet, restriction (61) ensures the sum

of γM,s over all subcycles to equate M . This combined with constraint (60) guarantees

that at least R − M (for R > M) subcycles do not contain a manufacturing batch.

Constraints (63) to (65) restrict all decision variables to non-negative values. While

this is sufficient for QR,s,ΘM,s, and Vs, the remaining variables νM,s and γM,s have to

be integer in addition. Furthermore, to ensure validity νM,s must be greater or equal

to one.

The subcycle-oriented optimization approach can be applied to a multitude of pol-

icy structures to compute a benchmark solution. In order to do that, a number of

non-linear optimization problems has to be solved. Although all constraints are lin-

ear, the objective function is non-linear because of the νM,s decision variables in its

denominator. Therefore, a standard linear solver cannot be applied to generate the

benchmark solution. Instead, the software package GAMS provides a number of solvers

that can handle non-linearity quite efficiently. To determine the benchmark solution,

the mixed-integer non-linear programming solver SBB has been applied. This solver

uses a combination of the Branch&Bound methodology known from linear program-

ming combined with one of the GAMS NLP solvers (for further details on the SBB

solver please refer to SBB, 2009). With respect to time and solution quality, the NLP

solver CONOPT3 worked best for this problem setting (see Drud, 2009, for additional

details). As no NLP solver can guarantee to find the optimal solution to the NLP relax-

ations (the integrality constraint is relaxed), it cannot be proven that an optimization

run provides the true optimal solution to a problem. Nevertheless, it is possible to

compare the results of the predefined policy structures (R, 1), (1,M), and (R, 1)g with
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this benchmark solution to get an idea on their performance. To evaluate the potential

benefits the benchmark solution is able to offer in comparison to the predefined policy

structures, a numerical study is presented in the following Section 4.

4 Numerical study

Comparing the predefined policy structures with the benchmark solution in a numerical

study requires appropriate test instances. Rardin and Uzsoy (2001) describe four dif-

ferent options on how to generate test instances properly. First, they name real world

data sets as a viable source of information. Data sets taken from real applications

promise the most realistic evaluation of the tested algorithms as all conclusions drawn

from the experiments can be almost directly transferred to the real application. How-

ever, there are several pitfalls concerning real data sets. For example, gathering this

kind of data can be extraordinarily difficult. In our problem context, estimating setup

and holding cost parameters is sometimes a challenging task in a real-life environment.

Furthermore, as there is only a limited number of real-life problems, the considered

algorithms cannot be tested extensively with a large number of different parameter

sets. Hence, Rardin and Uzsoy name random variants of real world data sets as a

second source of generating problem instances. By maintaining most of the structural

properties, the random variation of one or several parameters avoids the pitfall of not

having enough real-life parameter sets. If no practical data is available at all, the third

option of exploiting published and online libraries becomes interesting. Although being

a rich source of different test instances for some problem settings, it may occur that

a new algorithm is proposed performing only well on these instances. Thus, it must

be ensured that a large number of different instances is tested with a new algorithm.

Finally, a random instance generation provides the simplest and fastest way to generate

a huge number of test instances. This fourth option becomes interesting when none of

the other options (exclusive or combined) is able to establish a comprehensive set of

experiments.

The numerical study conducted in this section uses the second methodology, vari-

ation of real world data. Yet, regarding this problem setting there are only a few

contributions in literature presenting practical data. Tang and Teunter (2006), for

instance, analyze the operations of a company that (re)manufactures water pumps for

diesel engines. They provide data on five different types of water pumps including

setup and holding cost parameters. In another contribution, Ashayeri et al. (1996)

present the case of remanufacturing computers. As well, they illustrate a practical ex-

ample including setup and holding cost parameters. Their example is taken as a base

case scenario in this section. To evaluate the influence of all parameters, the base case
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scenario is modified in a sensitivity analysis afterwards. Of course, the data published

in Tang and Teunter could have been taken as well for a base case scenario. At the

end of this section, a short analysis of this data set is presented and compared to the

results of the base case scenario. Interestingly, the important parameter constellation

describing the ratio of hM to hR is the same in both contributions, i.e. holding a final

product for one time unit in stock is twice as expensive as holding a returned product

in the used product inventory. However, both contributions discuss that determining

hR is especially difficult for practical applications.

Base case scenario of Ashayeri et al.

Ashayeri et al. present the following parameters which have been used for the base

case scenario. The OEM faces a constant and continuous demand of 100 products per

time unit which comprises in this case 3 days. Initiating a remanufacturing batch costs

50 Dutch guilders while setting up a manufacturing lot is a little more expensive with

150 guilders. Holding a used computer for three days costs 1 guilder, while holding

a new or remanufactured computer costs 2 guilders. For the sake of simplicity, the

currency is omitted in the following analysis. Over the infinite planning horizon, 60 %

of the demand per time unit is returned to the computer remanufacturer. As Ashayeri

et al. did not include a possible yield loss from remanufacturing, they assumed that

all returns can be successfully remanufactured. In order to incorporate an imperfect

remanufacturing process, we set β to 80% for the base case scenario. This change to

the original Ashayeri et al. scenario can be imposed as this parameter is altered later

on to observe its influence on the performance of the preset policy structures compared

to the benchmark solution. Table 2 summarizes all base case parameters. Applying

Table 2: Base case parameters

λ α β KR KM hR hM

100 60 % 80 % 50 150 1 2

equations (30) and (37) provides the cost minimizing parameters R∗ and M∗ for the

predefined (R, 1) and (1,M) policy structures. We obtain

M∗ =

√
1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)
�= 0.648 �= 1 and

R∗ =

√
1

4
+

KMα2β · (hR + hMβ)

KR · (α (1− αβ)hR + (1− αβ)2 hM

) �= 1.698 �= 2.
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While a (1, 1) policy is the cost minimizing of all (1,M) policies for the base case

scenario, the best (R, 1) policy structure would be a (2, 1) policy. As elaborated in Sec-

tion 2.5, the (2, 1) policy has to outperform the (1,1) policy. Thus, by using equations

(27) and (28) the optimal cycle length T ∗

R1(2) and the optimal total cost TC∗

R1(2) are

computed

T ∗

R1(2) =

√√√√ 2 · (R ·KR +KM)

λ ·
((

1 + αβ
(
1
R
− 1
)) · αhR +

(
α2β2

R
+ (1− αβ)2

)
· hM

)
T ∗

R1(2) = 2.0185 time units ≈ 6 days

TC∗

R1 =

√
2λ · (RKR+KM) ·

((
1+αβ

(
1

R
−1

))
αhR+

(
α2β2

R
+(1−αβ)2

)
hM

)

TC∗

R1(2) = 247.71

Regarding the predefined (R, 1)g policy with geometrically decreasing remanufac-

turing batches, the cost minimizing number of remanufacturing lots R∗ is determined

by equation (46). As no closed-form expression exists to compute R∗, a local search

procedure has been proposed to determine this value. This procedure begins to com-

pute the total cost for R = 1. Thereafter, the total cost value is computed for R + 1

until the total cost increases for the first time. When this happens, the local search

procedure terminates. The total cost function for an (R, 1)g policy is

TC∗

R1g =

√
2λ (RKR +KM)

(
(αhR + α2β2hM)

(
1− αβ

1 + αβ
· 1 + αRβR

1− αRβR

)
+ hM (1− αβ)2

)

Table 3 presents the results for all R values between one and five. It can be seen that

the total cost value for R=2 is the smallest with 238.40 and that it constantly increases

for R ≥ 2. Therefore, the best (R, 1)g policy is a (2, 1)g policy.

Table 3: Total cost values for the base case scenario for 1 ≤ R ≤ 5

R=1 R=2 R=3 R=4 R=5

253.11 238.40 245.71 258.60 273.20

By switching to geometrically decreasing remanufacturing lots, a cost saving of

around 3.91% (247.71−238.40
238.40

-1) is realized. The relevant decision variables are summa-

rized in Table 4. The optimal cycle length for the (2, 1)g policy is a little longer than for

the (2,1) policy with remanufacturing lots of equal size. When applying a (2, 1) policy
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all returns in a cycle are remanufactured in two equal lots, i.e. QR,1 = QR,2 = 0.5 ·λαT .
On the other hand, the remanufacturing lot sizes of the (2, 1)g policy are geometri-

cally decreasing and can be computed according to equations (41). For both policy

structures, the only manufacturing lot in a cycle comprises exactly λ(1− αβ)T newly

fabricated products.

Table 4: Decision variables for the (2, 1) and (2, 1)g policy structures

(2,1)

policy

(2, 1)g

policy

T 2.0184 2.0973

QR,1 60.552 85.0257

QR,2 60.552 40.8123

QM,1 104.9568 109.061

We omit to present the results of the (2, 1) and (2, 1)g policies graphically as they

correspond to the inventory developments of Figure 7. In order to evaluate whether

these policies obtained good solutions, the benchmark solution to the base case has

been calculated as well. Altogether, 100 different combinations of R and M have been

analyzed in which each parameter could take on integer values between 1 and 10. The

result has been that the benchmark solution obtained a solution corresponding to the

(2, 1)g policy’s solution and is, thus, not able to improve the solution obtained by the

predefined policies.

The remainder of this subsection presents the results of a one parameter sensitivity

analysis. While keeping six of the seven parameters (please refer again to Table 2 for

a short overview) constant, the residual parameter is altered in a reasonable range.

This sensitivity analysis is conducted for all parameters except λ since this parameter

does not influence the solution structure which can be seen in the benchmark solution’s

objective function (55). At first, the influence of the return fraction α is examined.

Return fraction α

The fraction of used products returning to the OEM α can vary theoretically be-

tween 0 % and 100%. As the extreme values do not seem to be reasonable since the

entire demand would be satisfied by either remanufacturing or manufacturing only, the

sensitivity analysis considers all α values between 1 % and 99 % in steps of 0.5%. The

three predefined policy structures (R, 1), (1,M), and (R, 1)g have been tested with this

data and the minimum total cost value for each preset policy structure is presented

graphically in Figure 9. There, the best preset policy structure is indicated below the
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minimum total cost of all policies.
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Figure 9: Minimum total cost of the preset policy structures for different α values

For small values of α (α ≤ 19%), the (1,M) policy dominates the structures that

propose to initiate more than one remanufacturing lot in a cycle. If α is low, there are

not many returns to remanufacture. Hence, a large fraction of customer demand needs

to be satisfied by manufacturing product A. Since all returned products have to be

remanufactured as the option to dispose them of is prohibited, the cycle length is quite

long to collect a sufficient number of returns to remanufacture in a single batch. Thus,

the total amount to be manufactured increases which lets the number of manufacturing

lots become larger in a cycle as well. By exploiting condition (39) the exact value of

α is calculated at which the optimal number of manufacturing lots switches from two

to one. When α is smaller than 19.18% it is better to schedule two manufacturing lots

instead of one in a cycle17.

For α between 19.18 % and around 48 % all preset policies determine the same

minimum total cost. In this range, a (1, 1) policy is the best choice for all preset policy

structures, i.e. they coincide. For α larger than 48 % the (R, 1)g policy dominates the

other policy structures. Therefore, condition (47) provides the exact α value for which

an (R, 1)g policy begins to outperform both the (1,M) and (R, 1) policies. By applying

the bisection method to this method an exact α of 47.65 % has been computed.

In order to evaluate whether the total cost values determined by the preset policy

structures might be far from optimal, the benchmark solution has been obtained for

all problem instances as well. Since the optimization approach requires that R and

17For details on how to determine this value, please refer to the Appendix, page 61
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M are set in advance, the number of examined combinations has to be limited to

keep the computational effort controllable. Altogether, the mixed-integer non-linear

optimization problem has calculated the benchmark solution for 36 policy structures

where R as well as M could take on any integer value between 1 and 6. By restricting

the number of combinations and as no NLP solver can guarantee to provide the true

optimal solution to a problem, it cannot be guaranteed to find the optimal solution

to the entire problem. However, this approach offers an opportunity to evaluate the

performance of the preset policies on a general level what is not found in literature up

to now.

The benchmark solution is able to improve the preset policies’ solutions in some

cases but not in general. In order to elaborate the influence of equal remanufacturing

lots, the benchmark solution is compared on the one hand to the minimum total cost of

the (R, 1) and (1,M) policies. On the other hand, the benchmark solution is confronted

with the best result from the (R, 1), the (1,M), and the new (R, 1)g policy. Figure 10

presents these results.
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Figure 10: Deviation from benchmark solution for different α values

Applying the (R, 1) and (1,M) policy structures leads to an error of more than

9% for large return fractions when compared to the benchmark. Furthermore, by

including the (R, 1)g policy structure into the decision making process, the deviation

from the benchmark solution can be limited to less than 1% over all instances tested

for a variation of α for the base case. For instance, the maximum deviation of the best

preset policy structure to the benchmark solution has been around 0.75% for a return

fraction of 47.5%. For this return fraction, the benchmark solution proposed a (3,2)
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Figure 11: (1, 1) and (3, 2) policies for base case with α=0.475

policy while a (1, 1) policy has been the best suggestion by the preset policies. The

proposed cycles of the (1, 1) and (3, 2) policies are depicted in Figure 11 while their

relevant decision variables are presented in Table 5.

Table 5: Decision variables for the (1, 1) and (3, 2) policies

preset policy structure benchmark solution

(1, 1) policy (3, 2) policy

TC 247.59 245.76

T 1.6155 3.6621

QR,1 76.7363 78.7352

QR,2 / 29.9194

QR,3 / 65.2952

QM,1 100.161 113.5251

QM,2 / /

QM,3 / 113.5251

The most striking difference between both solutions is their divergent cycle length.

It can be seen that the (1, 1) policy’s cycle length is much shorter than the cycle length

for the benchmark (3, 2) policy. This is because the benchmark solution needs to divide

the much larger setup cost of scheduling and therefore needs a longer cycle to do this

efficiently. Comparing the total cost values between both solutions, the (1, 1) policy

obtained a total cost of 247.59 per time unit while the (3, 2) structure is able to reduce

the total cost to 245.76 per time unit. The relative deviation between both values

is, thus, around 0.75%. When analyzing the benchmark in greater detail, the (3, 2)
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solution can be separated into two smaller cycles. The first smaller cycle consists of

QR,3, QR,1, andQM,1 which coincide with a (2, 1)g policy structure, i.e. QR,2 = αβ·QR,1.

Thereafter, QR,2 and QM,3 correspond to a (1, 1) policy. Moreover, the manufacturing

lots of both smaller cycles are of equal size.

Interestingly, the deviation of the best preset policy to the benchmark solution

follows a characteristic pattern. For a multitude of instances, at least one of the preset

structures obtains the benchmark solution. This might not be the case when the overall

optimal solution to each instance could be obtained which is not possible due to its

computational complexity. However, in some areas the benchmark solution is already

better than the best preset policy structures of which four areas can be identified

in Figure 10. Although hardly recognizable, the first return fraction for which this

happens is 8.5%. Moreover, around the return fractions 18%, 45%, and 70% the other

deviations can be found.

Without loss of generality, either the ratio of R to M or its inverse is an integer

number for all preset policy structures as either R or M is one. Yet, if the benchmark

solution deviates from these policy structures, both the ratio of the benchmark’s R

and M as well as its inverse are not integer. This fact has been depicted in Figure 12

which exhibits the benchmark solution’s ratio of R to M depending on α.
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Figure 12: Ratio of R to M for the benchmark solution

It can be seen that the ratio of R to M never decreases when α becomes larger.

For instance, around α = 45% the value of this ratio is between one and two. Due

to the experimental design (restricting the maximum value of R and M to six) only

five different policy structures can be found that show a ratio between one and two:
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the (3,2) [and therefore also the (6,4) policy which yields the same result], (4,3), (5,3),

(5,4), and (6,5) policies. Except for the last one, all policy structures have been chosen

by the benchmark solution for at least one α value. When varying the other parame-

ters in the remaining sensitivity analysis, the same general monotonic behavior can be

observed. This leads to the conjecture that the ratio of R to M for the exact solution

increases monotonically when α increases. However, this conjecture cannot be proven

since it is unlikely to determine the optimal solution, e.g., for a (201, 100) policy with

the currently existing optimization software. Next, the influence of the yield parameter

β is analyzed.

Yield parameter β

While keeping the remaining base case parameters constant, the fraction of success-

fully remanufactured products β is altered in the following. This parameter has not

been given by Ashayeri et al. and is, thus, of special interest. Like the return fraction,

β can be changed between 0 and 100 %. Yet, for the experiments β is alternated

between 1 and 100 % in steps of 0.5 %. Figure 13 presents the solutions of the preset

policy structures.
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Figure 13: Minimum total cost of the preset policies for different β values

For β smaller than around 60% all preset policies determine the same result, i.e.

a (1,1) policy is suggested. As β become larger, the preset policy structures differ

in their evaluation. Again, the (R, 1)g policy outperforms both the (R, 1) and (1,M)

policies. Interestingly, the performance gain is largest for β = 100% which has been

40



the original assumption of Ashayeri et al. Therefore, the declaration of an imperfect

remanufacturing process as base case scenario has been reasonable. By analyzing

condition (47) the exact value of β is determined at which the (R, 1)g policy’s solution

begins to yield a better result than the other two structures. Using the bisection

method again derives a β of 60.17%.

To compare the solutions of the preset policy structures to the benchmark solution,

Figure 14 depicts the percentage error between both methodologies. The influence of a
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Figure 14: Deviation from benchmark solution for different β values

large β appears not to be as strong as for a large return fraction α. Yet, a percentage

error of more than 5 % compared to the benchmark solution can be observed when

the decision maker omits to check the (R, 1)g policy’s solution. However, including

the (R, 1)g policy’s solution does not always provide the best solution. In this anal-

ysis, there are two regions in which the benchmark solution is better than the preset

structures. The first area can be found around β=60% at which the best preset policy

structure changes from a (1,1) policy to a (2, 1)g policy. Here, as well as for the return

fraction α, the benchmark obtains a solution for which the ratio of R to M lies be-

tween one and two. Consequently, the area around β = 95% shows the transition from

a (2, 1)g to a (3, 1)g policy. In the following, the effects of diverse holding cost values

are examined.

Holding cost parameters hR and hM

Regarding the holding cost parameters hR and hM , not only the absolute values are
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of importance but also the ratio of both values. It has been observed in Table 1, for

instance, that the ratio of the holding cost parameters determines whether an (R, 1)g

policy with geometrically decreasing remanufacturing lots finds a better solution than

an (R, 1) policy with equal remanufacturing lots. At first, the influence of the holding

cost for the used product inventory is examined. As hR must not exceed βhM , it has

been chosen to take on values between 0 and 1.6 in steps of 0.01. Figure 15 presents the

best solutions obtained by the preset policy structures when hR is altered. In contrast
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Figure 15: Minimum total cost of the preset policies for different hR values

to both Figure 9 for the return fraction α and Figure 13 for the quality parameter

β all preset policies determine a different solution, i.e. a (1,1) policy has never been

the best proposed solution. Instead, the (R, 1)g policy dominates both competitors

for most of the hR values except for some small hR values. There, the (R, 1) policy

is the best alternative. Considering the exact value of the change, it must be noticed

that the switch takes place from a (2,1) to a (2, 1)g policy. Therefore, the value of

hR can be computed by exploiting condition (50) which gives an hR of 0.2391. This

means if the holding cost rate for the used product level drops below 0.2391 (which is

around 12 % of the final product level’s holding cost), a policy structure with equal

remanufacturing batches is preferable. As initiating equally sized remanufacturing lots

reduces the inefficiency in the final product’s stock, it is reasonable to take inefficiencies

in the used product level into account when the holding cost hR is comparatively low.

The percentage error when confronted with the benchmark solution is presented

in Figure 16. For hR smaller than 0.2391 both curves are identical as including the

(R, 1)g policy into the decision making process does not yield any benefit. However, if
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Figure 16: Deviation from benchmark solution for different hR values

hR approaches βhM the benefit becomes larger until it reaches around 6 % when they

are almost identical. Furthermore, the (R, 1)g policy coincides with the benchmark

solution for all hR values larger than 0.4 as the benchmark always computes a policy

structure similar to a (2, 1)g policy.

Regarding the holding cost value for the final product inventory, similar conclu-

sions can be drawn. Since hM must not be smaller than hR/β the smallest value for

hM in this sensitivity analysis is 1.2. The maximum value, on the other hand, is set

to be three. Within this range all values in steps of 0.01 have been examined. Figure

17 presents the results of the three preset policies that reflect the findings of Figure

15. Over all instances, the (R, 1)g policy provides the best results of the preset policy

structures. To be more precise, the proposed policy has been a (2, 1)g policy for all

tested hM values. Moreover, the absolute deviation between the (R, 1)g and the (R, 1)

policies is largest for hM values that lie close to hR/β. As the total cost increase the

larger hM becomes, the largest relative deviation is observed for small hM values, too.

If the experiments would have been extended to incorporate hM values larger than

8.3647, the (R, 1)g policy would have been outperformed by the (R, 1) policy. This

value can be derived from the ratio of hM to hR in equation (50) that describes for a

given value of hR the value of hM at which a (2, 1) policy is better than a (2, 1)g policy.

We omit to present the percentage error with respect to the benchmark for a varying

hM as the results can be derived from Figure 17 as well. After analyzing the influence

of both holding cost parameters, the influence of the setup cost parameters KR and

KM is evaluated.
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Figure 17: Minimum total cost of the preset policies for different hM values

Setup cost parameters KR and KM

Next to the holding cost parameters, the setup cost values have a direct influence

on the number of lots in a cycle. In general, when the setup cost falls while keeping

all other parameters constant, the number of lots does not decrease. To verify this

general thought for the underlying problem, both setup cost parameters have been

altered to take on values between 0 and 250 in steps of 1. Starting with the setup

cost for remanufacturing KR, the solutions of the preset policy structures have been

depicted in Figure 18. For the variation of the base case scenario with respect to the

setup cost for remanufacturing, two different phases can be observed. For KR being

larger than 104, all preset policy structures compute the same result, a (1, 1) policy. If,

on the other hand, KR is smaller than 104 the (R, 1)g policy yields the minimum total

cost of these policies. The exact value can be determined by exploiting condition (47)

since this condition describes the transition from a (1,1) to a (2, 1)g policy structure.

In this case, the exact value for KR is 103.8156. Otherwise, by manipulating condition

(39) the exact value of KR can be determined from which a (1, 2) policy dominates

the (1, 1) policy. The value obtained thereby needs to be larger than 250 as the (1,M)

policy does not dominate the other two policy structures in Figure 18. The exact value

is for the base case scenario a KR of 588.4615. A (1,1) policy is, therefore, the best

preset policy structure for all KR values between 103.8156 and 588.4615.

In order to evaluate the overall solution quality of the preset policy structures, they
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Figure 18: Minimum total cost of the preset policies for different KR values

are confronted with the benchmark solution as well. Figure 18 depicts the results.
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Figure 19: Deviation from benchmark solution for different KR values

As has been observed for all parameters until now, neglecting the opportunity to

consider geometrically decreasing remanufacturing lots can lead to a significant error

in the problem’s solution. When varying KR, this can be observed for a relatively small

setup cost of remanufacturing. Yet, even when incorporating the (R, 1)g policy, an error

of up to 1% prevails when comparing the preset policy structures to the benchmark
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solution. Especially for KR between 77 and 134 this error is recognizable.

After elaborating the results for KR, the analysis is put forth for the setup cost

of initiating a manufacturing lot KM . This parameter is altered as well between 0

and 250 in steps of 1. Figure 20 illustrates the results of the experiments regarding

the minimum total cost for each preset policy structure. In this Figure, three different
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Figure 20: Minimum total cost of the preset policies for different KM values

sections can be found. When the setup cost for manufacturing is quite small, the (1,M)

policy calculates the best results since more than one manufacturing lot in a cycle is

beneficial. The second section is represented by a (1,1) policy in which all preset policy

structures determine the same result. Finally, the last section is characterized by the

(R, 1)g policy dominating both the (R, 1) and (1,M) policy structures. The transition

values that limit these sections can be determined by exploiting conditions (39) and

(47). Solving these conditions with respect to KM , condition (39) computes a KM of

12.7451 representing the transition from a (1, 2) to a (1, 1) policy. A KM of 72.2341,

on the other hand, defines the transition from a (1, 1) to a (2, 1)g policy. The second

section of Figure 20 lies therefore between KM=12.7451 and KM=72.2341.

Concluding, the benchmark solution has been obtained as well for all instances

regarding a variation of KM and can now be opposed to the preset policy structures

in Figure 21. This figure presents an almost familiar picture. Omitting geometrically

decreasing remanufacturing lots results in an error of up to 3.9 %. Interestingly, this

percentage deviation has been constant over a multitude of instances from KM = 114

to the upper bound. This is because the best preset policy structures have been the

(2, 1)g and the (2, 1) policies. Since the holding cost per time unit is not affected by
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Figure 21: Deviation from benchmark solution for different KM values

a variation in the setup cost for manufacturing, the total cost value increases propor-

tionally with an increasing KM value. As a matter of fact, this happens independently

from the presumption of considering equal or different remanufacturing lots in a cycle.

The same behavior could also be observed in Figure 19 for the setup cost for reman-

ufacturing. Although not being as prominent as for the setup cost for manufacturing,

the same explanation can be used there.

Parameter settings of Tang and Teunter

Before concluding this chapter, the effects of a different base case scenario are

analyzed in the following. As mentioned above, Tang and Teunter (2006) present

real-life data for the (re)manufacturing process of water pumps for diesel engines. In

their contribution, five different types of water pumps (denoted by TT1 to TT5) are

considered. Table 6 summarizes the relevant setup and holding cost parameters for

these products. For all products, the setup cost to initiate a (re)manufacturing batch

is 20. Furthermore, holding a final product for one time unit costs twice the amount of

holding a returned product for one time unit. The remanufacturer faces only a small

return ratio of water pumps amounting to 20% for all analyzed products. Since the

yield parameter β has not been included by Tang and Teunter, we fix it to 80% as for

the Ashayeri et al. base case. Finally, demand for TT1 to TT5 differs between 3 and

30 units per time unit.

In order to determine the best preset policy structure, equations (30), (37), and
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Table 6: Parameters for TT1 to TT5

Product λ α β KR KM hR hM

TT1 9 20 % 80 % 20 20 0.0088 0.0175

TT2 9 20 % 80 % 20 20 0.0132 0.0263

TT3 9 20 % 80 % 20 20 0.0175 0.035

TT4 30 20 % 80 % 20 20 0.0219 0.0438

TT5 3 20 % 80 % 20 20 0.0263 0.0525

Table 7: Best preset policy structure and benchmark for TT1 to TT5

Best preset policy structure Benchmark solution

Product R M TC R M TC

TT1 1 2 3.0087 2 5 3.0085

TT2 1 2 3.6877 2 5 3.6873

TT3 1 2 4.2524 2 5 4.2517

TT4 1 2 8.6853 2 5 8.6839

TT5 1 2 3.0075 2 5 3.0071

(46) are evaluated for all products. As a result, a (1, 2) policy outperforms both the

(R, 1) and the (R, 1)g policy structures for all parameter sets examined. Afterwards,

by applying the optimization approach presented in Section 3 the benchmark solution

for all products is obtained. Due to the similar parameter structure, the benchmark

solution coincides for all products as well, i.e. a policy with two remanufacturing and

five manufacturing lots in a cycle is recommended. Yet, the error of applying a (1,2)

policy instead of the benchmark solution is less than 0.01 % for all products. Table 7

summarizes the relevant results.

A sensitivity analysis has been conducted for the base case scenario of Ashayeri

et al. to assess the impact of each parameter on the solution structure. This could

be done for the parameter sets of TT1 to TT5 as well. As the results do not differ

significantly with respect to the Ashayeri et al. base case, only a variation of the return

ratio α for product TT1 is presented henceforth. Figure 22 compares the minimum

total cost of the preset policy structures (1,M), (R, 1), and (R, 1)g for TT1 when α is

altered.

In correspondence to Figure 9, the (1,M) policy dominates the policies that pro-

pose to schedule more than one remanufacturing lot for small return rates. When α

lies between 35.31% and 66.3%, a (1, 1) policy is suggested by all preset policy struc-
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Figure 22: Minimum total cost of the preset policy structures for different α values

(TT1)

tures. The exact values for α are computed, again, by evaluating equations (39) and

(47). When α becomes larger than 66.3%, the (R, 1)g policy is the best preset policy

structure. Thus, Figure 23 depicts the deviation of the best preset policy structures

excluding and including the (R, 1)g policy from the benchmark solution. It can be

observed as for the Ashayeri et al. base case that neglecting the (R, 1)g policy in the

decision making process results in a significant error for large return fractions. More-

over, the best preset policy structure does not deviate by more than 1.5% from the

benchmark solution. The worst case deviation of 1.02% can be found when α amounts

to 66.5%.

A similar outcome can be observed when the return ratio is altered for products

TT2 to TT5. Likewise, the findings of varying the remaining parameters correspond to

the Ashayeri et al. base case scenario. Therefore, we omit to present the corresponding

figures and conclude this chapter by a short summary and an outlook on future research

options.

5 Concluding remarks and outlook

After giving a short introduction to the problem setting and presenting the available

literature on this topic in Section 1, two policy structures known from literature have

been presented in the adjacent Section 2, Schrady’s (R, 1) policy and Teunter’s (1,M)

policy. Both policies rely on the assumption of equally sized batches in either the
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Figure 23: Deviation from benchmark solution for different α values (TT1)

remanufacturing (Schrady) or the manufacturing (Teunter) process and formulate the

objective function depending on these lot sizing decisions. By doing this, they neglect

that the number of remanufacturing lots R and manufacturing lots M have to be inte-

ger. Minner avoids this pitfall by reformulating both policies such that their objective

function depends on the cycle length T as well as on R or M , respectively. This re-

formulation allows to derive closed-form expressions to determine the optimal integer

R∗ and M∗ for both policy structures. Subsequently, it has been proven that it is not

possible for R∗ and M∗ to be larger than one simultaneously when restricting oneself

to the (R, 1) and (1,M) policies. This reduces the effort to compute the better of these

policies. In contrast to these policy structures, a third approach has been introduced

in Section 2.6, the (R, 1)g policy. Instead of initiating remanufacturing lots of equal

size as the (R, 1) policy requires, the (R, 1)g policy schedules geometrically decreasing

remanufacturing lots. When doing this, each remanufacturing lot remanufactures all

available returns which depletes the used product inventory after each remanufacturing

run. Yet, a closed-form expression to generate the optimal integer value for R could

not be derived. However, some conditions could be determined at which this preset

policy outperforms the other preset policy structures.

So far, the preset policy structures could only be compared to each other. There-

fore, the main focus of the subsequent Section 3 has been to present an optimization

approach in order to compute the optimal cycle. To do this, a mixed-integer non-linear

problem is introduced that requires the number of remanufacturing and manufactur-

ing batches in a cycle as input. This model has been solved to generate a benchmark
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solution that provides an opportunity to evaluate the performance of the three preset

policy structures. This evaluation has been the subject of Section 4, the numerical

study. Starting with the introduction of a base case scenario (taken from Ashayeri

et al.), a sensitivity analysis is conducted that modifies each parameter individually.

Several interesting aspects have been observed during this study. One of the most

important aspects has been that by neglecting the (R, 1)g policy a significant error of

up to 9 % could be made for some parameter combinations (in this study this was the

case when the return rate α is large). Furthermore, the benchmark solution has in no

instance been worse than the best preset policy structure. This could not be expected

beforehand due to the non-linearity of the objective function and the restriction to 36

different parameter combinations of R and M . Finally, the best solutions of the preset

policies have never been worse than 1 % compared to the benchmark solution which

can be interpreted as a promising result.

Several research questions remain still unanswered and can be addressed in future.

At first, the preset policy structures can be extended to include policies having more

than one remanufacturing and more than one manufacturing batch in a cycle simultane-

ously. Choi et al. (2007) have been the first authors to test this assumption. Although

they restrict their analysis to general (R,M) policy structures with equal remanufac-

turing and equal manufacturing batches, they were able to identify problem instances

for which the solution can be improved. It would be interesting to evaluate the perfor-

mance gain for a more general (R,M)g policy structure in which all remanufacturing

batches use all available returns in stock.

Improving the benchmark solution can be another challenging task. In order to

do this, the properties of the benchmark solutions have to be analyzed in greater de-

tail to incorporate these findings into an improved optimization approach. Another

opportunity would be to drop the integrality constraints of the optimization program

and examine the relaxed solution to determine lower bounds for the optimal solution.

It would be an interesting insight if the monotonicity in the ratio of R∗ and M∗ (as

depicted in Figure 12 for a varying α) can be confirmed when using the relaxed opti-

mization approach instead of the original one.

In addition, several assumptions can be analyzed critically to evaluate their impor-

tance on the results presented in this chapter. In our study, remanufacturing has been

considered a profitable opportunity for the OEM no matter how long the returns are

kept in stock. In reality, disposing of some returns at the beginning of a cycle can be

advantageous as they would have to be stored over a long time before remanufactur-

ing. Several contributions have analyzed this setting as well as a setting with a finite

production and remanufacturing rate and possible lead times. Future research efforts

can examine the effect of introducing differently sized remanufacturing lots for these

settings as well. Moreover, the assumption of static demand and return rates can be
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criticized. Incorporating time variant returns and demand can help to model a more re-

alistic system in this context. Concluding, uncertainties can almost never be neglected

in real-life systems. Uncertainties prevail for remanufacturing systems regarding their

inputs as the OEM does not know how many customers return their product at what

time and in which condition. Furthermore, the output is uncertain, too, since the yield

of remanufacturing and the customer demand can only be estimated in advance.

References

Sbb solver manual. In G. D. Corporation, editor, GAMS - The solver manuals, pages

513–520. 2009.

J. Ashayeri, R. Heuts, A. Jansen, and B. Szczerba. Inventory management of re-

pairable service parts for personal computers. International Journal of Operations

& Production Management, 16(12):74–97, 1996.

D. Choi, H. Hwang, and S. Koh. A generalized ordering and recovery policy for reusable

items. European Journal of Operational Research, 182(2):764–774, 2007.

A. Drud. Conopt solver manual. In G. D. Corporation, editor, GAMS - The solver

manuals, pages 117–161. 2009.

Y. Feng and S. Viswanathan. A new lot-sizing heuristic for manufacturing systems

with product recovery. International Journal of Production Economics, accepted

and forthcoming, 2011.

V. D. R. Guide, Jr. Production planning and control for remanufacturing: industry

practice and research needs. Journal of Operations Management, 18(4):467–483,

2000.

I. Konstantaras and K. Skouri. Lot sizing for a single product recovery system with

variable setup numbers. European Journal of Operational Research, 203(2):326–335,

2010.

N. Liu, Y. Kim, and H. Hwang. An optimal operating policy for the production system

with rework. Computers & Industrial Engineering, 56(3):874–887, 2009.

S. Minner. On the implementation of economic ordering quantities for recoverable

item inventory systems. Technical report, Faculty of Economics and Management,

Otto-von-Guericke University Magdeburg, 2002.

S. Minner and G. Lindner. Lot sizing decisions in product recovery management.

In R. Dekker, M. Fleischmann, K. Inderfurth, and L. Van Wassenhove, editors,

52



Reverse Logistics - Quantitative models for closed-loop supply chains, pages 157–179.

Springer, 2004.

N. Nahmias and H. Rivera. A deterministic model for a repairable item inventory

system with a finite repair rate. International Journal of Production Research, 17

(3):215–221, 1979.

R. Rardin and R. Uzsoy. Experimental evaluation of heuristic optimization algorithms:

A tutorial. Journal of Heuristics, 7:261–304, 2001.

K. Richter. The EOQ repair and waste disposal model with variable setup numbers.

European Journal of Operational Research, 95(2):313–324, 1996a.

K. Richter. The extended EOQ repair and waste disposal model. International Journal

of Production Economics, 45(1-3):443–448, 1996b.

D. Schrady. A deterministic inventory model for reparable items. Naval Research

Logistics Quarterly, 14:391–398, 1967.

T. Schulz and I. Ferretti. On the alignment of lot sizing decisions in a remanufacturing

system in the presence of random yield. Technical Report 34, Faculty of Economics

and Management, Otto-von-Guericke University Magdeburg, 2008.

M. Seitz and P. Wells. Challenging the implementation of corporate sustainability: The

case of automotive engine remanufacturing. Business Process Management Journal,

12(6):822–836, 2006.

O. Tang and R. Teunter. Economic lot scheduling problem with returns. Production

and Operations Management, 15(4):488–497, 2006.

R. Teunter. Economic ordering quantities for recoverable item inventory systems. Naval

Research Logistics, 48(6):484–495, 2001.

R. Teunter. Lot-sizing for inventory systems with product recovery. Computers &

Industrial Engineering, 46(3):431–441, 2004.

M. Thierry, M. Salomon, J. van Nunen, and L. Van Wassenhove. Strategic issues

in product recovery management. California Management Review, 37(2):114–135,

1995.

53



Appendix

Derivation of equation (4):

Km +R ·KR

T
=

Km +R ·KR

QM+R·QR·β

λ

= λ ·
Km + α·QM

(1−αβ)·QR
·KR

QM + α·QM

(1−αβ)·QR
·QR · β

= λ ·
Km + α·QM

(1−αβ)·QR
·KR

QM ·
(
1 + αβ

1−αβ

)

= λ ·
Km + α·QM

(1−αβ)·QR
·KR

QM

1−αβ

= λ ·
(
Km · 1− αβ

QM

+
α ·QM

(1− αβ) ·QR

·KR · 1− αβ

QM

)

= λ ·
(
(1− αβ) ·KM

QM

+
α ·KR

QR

)

Derivation of equation (6):(
1

2
· R · (QR · β)2

λ
+

1

2
· (QM)2

λ

)
· hM · 1

T

=
1

2λ
· R · (QR · β)2 + (QM)2

R·QR·β+QM

λ

· hM

=
1

2
·

α·QM

(1−αβ)·QR
· (QR · β)2 + (QM)2

α·QM

(1−αβ)·QR
·QR · β +QM

· hM manipulation similar to (4)

=
1

2
·

α·QM

(1−αβ)
·QR · β2 + (QM)2

QM

1−αβ

· hM

=
1

2
· (αβ2 ·QR + (1− αβ) ·QM

) · hM .

Proof of convexity of the total cost function in (7): In order to prove the

convexity of the total cost function TCR1, its Hessian matrix has to be elaborated.

This results in:

H(TCR1) =

⎡
⎣ ∂2TCR1

∂(QR)2
∂2TCR1

∂QR∂QM

∂2TCR1

∂QM∂QR

∂2TCR1

∂(QM )2

⎤
⎦ =

⎡
⎣ 2λαKR

(QR)3
0

0 2λ(1−αβ)KM

(QM )3

⎤
⎦

This Hessian is positive definite as its leading principal minors are strictly positive,

i.e. 2λαKR

(QR)3
> 0 and 4λ2αKrKm(1−αβ)

(QR)3·(QM )3
> 0. Therefore, the total cost function TCR1 is
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jointly convex in both decision variables QR and QM .

Derivation of equation (15):

M ·Km +KR

T
=

M ·Km +KR

M ·QM+QR·β

λ

= λ ·
QR·(1−αβ)

α·QM
·Km +KR

QR·(1−αβ)
α·QM

·QM +QR · β

= λ ·
QR·(1−αβ)

α·QM
·Km +KR

QR · (1−αβ

α
+ β
)

= λ ·
QR·(1−αβ)

α·QM
·Km +KR

QR

α

= λ ·
(
QR · (1− αβ)

α ·QM

·Km · α

QR

+KR · α

QR

)

= λ ·
(
KM · (1− αβ)

QM

+
KR · α
QR

)

Derivation of equation (16):[
1

2
·QR · T · hR +

(
1

2
· (QR · β)2

λ
+M · 1

2
· (QM)2

λ

)
· hM

]
· 1
T

=
1

2
·QR · hR +

(
1
2
· (QR·β)2

λ
+M · 1

2
· (QM )2

λ

)
M ·QM+QR·β

λ

· hM

=
1

2
·QR · hR +

1

2
· (QR · β)2 + QR·(1−αβ)

α·QM
· (QM)2

QR·(1−αβ)
α·QM

·QM +QR · β
· hM manipulation similar to (15)

=
1

2
·QR · hR +

1

2
· (QR · β)2 + QR·(1−αβ)

α
·QM

QR

α

· hM

=
1

2
· (QR · hR +

(
αβ2 ·QR + (1− αβ) ·QM

) · hM

)
.

Proof of convexity of the total cost function in (17):

As for the (R, 1) policy, the Hessian matrix of the total cost function has to be

computed to analyze its properties. The Hessian matrix of TC1M is:

H(TC1M) =

⎡
⎣ ∂2TC1M

∂(QR)2
∂2TC1M

∂QR∂QM

∂2TC1M

∂QM∂QR

∂2TC1M

∂(QM )2

⎤
⎦ =

⎡
⎣ 2λαKR

(QR)3
0

0 2λ(1−αβ)KM

(QM )3

⎤
⎦

The Hessian matrix of TC1M coincides with the matrix for TCR1. Thus, all leading

principal minors are strictly positive again and the joint convexity (regarding QR and
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QM) of the total cost function TC1M is proven.

Behavior of equation (28) near 0 and ∞ :

TC+
R1(R) =

√
2λ(R ·KR+KM)

((
1+αβ

(
1

R
−1

))
αhR+

(
α2β2

R
+(1−αβ)2

)
hM

)

TC+
R1(R) =

√
2λ

(
A ·R +B +

C

R

)

with A = KR · (αhR (1− αβ) + (1− αβ)2
) ≥ 0

B = KRα
2β (hR + βhM) +KM

(
αhR (1− αβ) + (1− αβ)2 hM

) ≥ 0

C = KMα2β (hR + βhM)

lim
R→0

TC+
R1(R) =

√
2λ

(
A ·R +B +

C

R

)
= ∞

lim
R→∞

TC+
R1(R) =

√
2λ

(
A ·R +B +

C

R

)
= ∞

Derivation of equation (29):

TC+
R1(R̂) = TC+

R1(R̂ + 1)

√
2λ
(
R̂KR +KM

)((
1 + αβ

(
1

R̂
− 1

))
αhR +

(
α2β2

R̂
+ (1− αβ)2

)
hM

)

=

√
2λ
((

R̂+1
)
KR+KM

)((
1+αβ

(
1

R̂+1
−1

))
αhR+

(
α2β2

R̂+1
+(1−αβ)2

)
hM

)

(
R̂KR +KM

)((
1 + αβ

(
1

R̂
− 1

))
αhR +

(
α2β2

R̂
+ (1− αβ)2

)
hM

)

=
((

R̂+1
)
KR+KM

)((
1+αβ

(
1

R̂+1
−1

))
αhR+

(
α2β2

R̂+1
+(1−αβ)2

)
hM

)

KM ·
(
α2β

1

R̂
hR + α2β2 1

R̂
hM

)
−KM ·

(
α2β

1

R̂ + 1
hR + α2β2 1

R̂ + 1
hM

)
−KR · (α (1− αβ)hR + (1− αβ)2 hM

)
= 0

KMα2β ·
(
hR

R̂
− hR

R̂ + 1
+

hMβ

R̂
− hMβ

R̂ + 1

)
−KR · (α (1− αβ)hR + (1− αβ)2 hM

)
= 0

56



KMα2β · (hR + hMβ) ·
(
1

R̂
− 1

R̂ + 1

)
−KR · (α (1− αβ)hR + (1− αβ)2 hM

)
= 0

R̂ + 1− R̂

R̂ ·
(
R̂ + 1

) − KR · (α (1− αβ)hR + (1− αβ)2 hM

)
KMα2β · (hR + hMβ)

= 0

R̂2 + R̂− KMα2β · (hR + hMβ)

KR · (α (1− αβ)hR + (1− αβ)2 hM

) = 0

R̂ = −1

2
±
√

1

4
+

KMα2β · (hR + hMβ)

KR · (α (1− αβ)hR + (1− αβ)2 hM

)

R∗ =

⌈
−1

2
±
√

1

4
+

KMα2β · (hR + hMβ)

KR · (α (1− αβ)hR + (1− αβ)2 hM

)
⌉
.

Derivation of equation (36):

TC+
1M(M̂) = TC+

1M(M̂ + 1)

√√√√2λ ·
(
KR + M̂ ·KM

)
·
(
αhR +

(
α2β2 +

(1− αβ)2

M̂

)
· hM

)

=

√√√√2λ ·
(
KR +

(
M̂ + 1

)
·KM

)
·
(
αhR +

(
α2β2 +

(1− αβ)2

M̂ + 1

)
· hM

)

(
KR + M̂ ·KM

)
·
(
αhR +

(
α2β2 +

(1− αβ)2

M̂

)
· hM

)

−
(
KR +

(
M̂ + 1

)
·KM

)
·
(
αhR +

(
α2β2 +

(1− αβ)2

M̂ + 1

)
· hM

)
= 0

KR · (1− αβ)2 · hM ·
(

1

M̂
− 1

M̂ + 1

)
−KM · (αhR + α2β2hM

)
= 0

M̂ + 1− M̂

M̂ ·
(
M̂ + 1

) − KM · (αhR + α2β2hM)

KR · (1− αβ)2 · hM

= 0

M̂2 + M̂ − KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)
= 0
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M̂ = −1

2
±
√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)

M∗ =

⎡
⎢⎢⎢−

1

2
±
√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)

⎤
⎥⎥⎥ .

Derivation of equation (41):

λαT = QR,1 +QR,2 +QR,3 + ..+QR,R

λαT = QR,1 + αβQR,1 + α2β2QR,1 + ..+ αR−1βR−1QR,1

λαT = QR,1 ·
(
1 + αβ + α2β2 + ..+ αR−1βR−1

)
λαT = QR,1 ·

R−1∑
i=0

αiβi

λαT = QR,1 · 1− αRβR

1− αβ

QR,1 =
λαT · (1− αβ)

1− αRβR
.

In the transformations, the convenient formula for a geometric series has been used.

In general, this formula states that sn = a0
∑n

k=0 q
k = a0

1−qn+1

1−q
(for q �= 1), where a0

denotes the initial value and q the common ratio. Here, the initial value is equal to

QR,1 while the common ratio is αβ. The remaining remanufacturing batches can be

calculated by using the first condition explained above. Therefore,

QR,i =
λαT · (1− αβ)

1− αRβR
· αi−1βi−1 =

λαiβi−1T · (1− αβ)

1− αRβR
∀i = 1, .., R.

Derivation of equation (43):[
1

2

R∑
i=1

(
QR,i · QR,i

λα

)
hR

]
· 1
T

=

[
hR

2λα

R∑
i=1

(
λαiβi−1T · (1− αβ)

1− αRβR

)2
]
· 1
T

=
hRT

2λα

λ2 · (1− αβ)2

(1− αRβR)2
·

R∑
i=1

α2iβ2·(i−1)

=
hRT

2α

λ · (1− αβ)2

(1− αRβR)2
· 1

β2

R∑
i=1

(
α2
)i (

β2
)i

=
hRT

2α

λ · (1− αβ)2

(1− αRβR)2
· α

2β2

β2

R−1∑
i=0

(
α2
)i (

β2
)i

[formula for geometric series]
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=
hRT

2

λα · (1− αβ)2

(1− αRβR)2
· 1− α2Rβ2R

1− α2β2

=
hRT

2

λα · (1− αβ)2

(1− αRβR)2
·
(
1− αRβR

) · (1 + αRβR
)

(1− αβ) · (1 + αβ)

=
1

2
λαThR ·

(
1− αβ

1 + αβ
· 1 + αRβR

1− αRβR

)
.

Derivation of equation (44):[
1

2

(
R∑
i=1

(
QR,i · β · QR,i · β

λ

)
+QM · QM

λ

)
hM

]
1

T

=

[
hM

2λ

(
β2

R∑
i=1

(
λαiβi−1T · (1− αβ)

1− αRβR

)2

+ λ2 · (1− αβ)2 T 2

)]
1

T

=
hMT

2λ

(
λ2 · (1− αβ)2

(1− αRβR)2

R∑
i=1

(
α2
)i (

β2
)i
+ λ2 · (1− αβ)2

)

=
λhMT

2

(
α2β2 · (1− αβ)2

(1− αRβR)2

R−1∑
i=0

(
α2
)i (

β2
)i
+ (1− αβ)2

)

=
λhMT

2

(
α2β2 · (1− αβ)2

(1− αRβR)2
· 1− α2Rβ2R

1− α2β2
+ (1− αβ)2

)

=
1

2
λThM

(
α2β2 · 1− αβ

1 + αβ
· 1 + αRβR

1− αRβR
+ (1− αβ)2

)
.

Derivation of inequality (47):

TC+
R1g(1)− TC+

R1g(2) > 0

√
2λ · (KR +KM) · (αhR + α2β2hM + hM (1− αβ)2

)
−
√

2λ · (2KR +KM) · ((αhR + α2β2hM) · V + hM (1− αβ)2
)
> 0

(KR +KM) · (αhR + α2β2hM + hM (1− αβ)2
)

− (2KR +KM) · ((αhR + α2β2hM

) · V + hM (1− αβ)2
)
> 0

KR

(
αhR+α2β2hM

)
(1−2V)−KRhM(1−αβ)2+KM

(
αhR+α2β2hM

)
(1−V)> 0.

Derivation of inequality (49):

1− αβ

1 + αβ
· 1 + α2β2

1− α2β2
) >

1

2
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2 (1− αβ)
(
1 + α2β2

)
> (1 + αβ)

(
1− α2β2

)
2− 2αβ + 2α2β2 − 2α3β3 > 1 + αβ − α2β2 − α3β3

1− 3αβ − 3α2β2 − α3β3 > 0

(1− αβ)3 > 0

Derivation of inequality (50):

TC+
R1(2)− TC+

R1g(2) > 0

√
2λ · (2KR +KM) ·

((
1 + αβ

(
1

2
− 1

))
· αhR +

(
α2β2

2
+ (1− αβ)2

)
· hM

)

−
√

2λ · (2KR +KM) · ((αhR + α2β2hM) · V + hM (1− αβ)2
)
> 0

(
1 + αβ

(
1

2
− 1

))
· αhR +

α2β2

2
· hM − (αhR + α2β2hM

) · V > 0

hMα2β2V − αhR

(
−1 +

1

2
αβ + V

)
> 0

Since V is larger than 0.5 which has been shown in condition (49), the direction of the

inequality is reversed. Hence, when replacing V by 1−αβ

1+αβ
· 1+α2β2

1−α2β2

hM

hR

<
α
(

1−αβ

1+αβ
· 1+α2β2

1−α2β2 − 1 + 1
2
αβ
)

α2β2
(

1
2
− 1−αβ

1+αβ
· 1+α2β2

1−α2β2

)
hM

hR

<

(
1−αβ

1+αβ
· 1+α2β2

(1−αβ)·(1+αβ)
− 1 + 1

2
αβ
)

αβ2
(

1
2
− 1−αβ

1+αβ
· 1+α2β2

(1−αβ)·(1+αβ)

)
hM

hR

<

(
1+α2β2

(1+αβ)2
− 1 + 1

2
αβ
)

αβ2
(

1
2
− 1+α2β2

(1+αβ)2

)
hM

hR

<

1+α2β2
−(1+αβ)2+ 1

2
αβ·(1+αβ)2

(1+αβ)2

αβ2
(

(1+αβ)2−2·(1+α2β2)

2·(1+αβ)2

)
hM

hR

<
1 + α2β2 − 1− 2αβ − α2β2 + 1

2
αβ + α2β2 + 1

2
α3β3

1
2
αβ2 (1 + 2αβ + α2β2 − 2− 2α2β2)

hM

hR

<
−3

2
αβ + α2β2 + 1

2
α3β3

1
2
αβ2 (−1 + 2αβ − α2β2)

hM

hR

<
−1

2
αβ (3− 2αβ − α2β2)

−1
2
αβ2 (1− αβ)2

hM

hR

<
(3 + αβ) · (1− αβ)

β (1− αβ)2
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hM

hR

<
3 + αβ

β (1− αβ)

Basecase analysis: Determination of α when it is better to initiate two

instead of one manufacturing lots in a cycle (page 36)

KR · (1− αβ)2 · hM − 2KM · (αhR + α2β2hM

)
= 0

KRhM − 2KRαβhM +KRα
2β2hM − 2KMαhR − 2KMα2β2hM = 0

α2
(
KRhMβ2 − 2KMhMβ2

)− α (2KRhMβ + 2KMhR) +KRhM = 0

α1,2 =
KRhMβ +KMhR

KRhMβ2−2KMhMβ2
±
√(

KRhMβ +KMhR

KRhMβ2−2KMhMβ2

)2

− KRhM

KRhMβ2−2KMhMβ2

α1,2 = −230

320
±
√(

230

320

)2

+
100

320

α1 = 0.1918 α2 = −1.6291

As only α1 lies within the relevant range between 0 and 1, the value of α at which

it is better to have only one manufacturing lot instead of two lies for the base case at

19.18 %.
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