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Abstract 
 

We consider a manufacturer’s stochastic production/inventory problem under periodic 

review and present concepts for safety stock determination to cope with uncertainties 

that are caused by stochastic demand and different types of yield randomness. Order 

releases follow a linear control rule. Taking manufacturing lead times into account it 

turns out that safety stocks have to be considered that vary from period to period. We 

present an approach for calculating these dynamic safety stocks. Additionally, to 

support practical manageability we suggest two approaches for determining appropriate 

static safety stocks that are easier to apply. 
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1 Introduction 
 

In environments where not only customer demand is stochastic but also production is 

exposed to random yields, inventory control becomes an extremely challenging task. 

The semiconductor manufacturing in the electronic goods industry for example has high 

yield losses of about 80 % on average (see Nahias (2009), p. 392). Yield problems are 

also known in chemical production or for disassembly operations in the 

remanufacturing industry. What is even worse is that these losses are hard to predict so 

that their variances are too high to be ignored. To cope with the influence of risks that 

concern demand and yield variability two control parameters can be used in an MRP-

type production control system: a safety stock and a yield inflation factor that accounts 

for yield losses (see Inderfurth (2009); Nahmias (2009), p. 392; Vollmann et al. (2004), 

p. 485). In general, it is not necessary to implement safety stocks for all items of a 

multi-level MRP-system since a safety stock for the final product automatically 

increases the requirements for products on the lower stages (see Nahmias (2009), p. 

388). However, for items with significantly variable yield it is strongly recommended to 

install safety stocks (see Silver et al. (1998), p. 613). Considering a single-item 

inventory problem under periodic review several authors (see Gerchak et al. (1988); 

Henig and Gerchak (1990)) have analyzed that the optimal policy for cost minimization 

results in a critical stock (CS) rule in combination with a non-linear order release 

function which however is cumbersome to calculate and difficult to apply in practice. 

So it is not surprising that the way how demand and yield risks are handled in practical 

MRP systems results in applying a CS-rule with a linear order release function where 

the CS is composed of a safety stock and the expected demand during lead time and 

control period (see Inderfurth (2009)). Based on a myopic newsvendor-type approach 

Bollapragada and Morton (1999) develop approaches for determining linear 

approximations to the non-linear order release function and present an advanced linear 

heuristic for the multi-period case under zero production lead time and linear costs for 

production, stock-keeping, and backlogging. Following this approach the CS is 

calculated from an extended newsvendor analysis where the yield risk is also 

incorporated. The expected yield loss is taken into account by inflating the stock 

deviation from CS by a yield inflation factor (denoted by YIF) which is chosen as the 

reciprocal of the mean yield rate. In a numerical study using dynamic programming 
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Bollapragada and Morton compare the results of the linear heuristic with the optimal 

non-linear order release rule and show that their heuristic performs very well in most 

instances. Inderfurth and Transchel (2007) detect an error in the analytic procedure of 

Bollapragada and Morton that is responsible for a steady deterioration of their heuristic 

for parameter constellations which correspond to increasing service levels. Using a 

fixed YIF as in Bollapragada and Morton and a time-dependent CS Inderfurth and 

Gotzel (2004) and Inderfurth (2009) extend the parameter determination approach in 

Bollapragada and Morton to cases with arbitrary lead times. The main idea is to 

determine appropriate safety stocks as parameter for the linear control rule that enable a 

quite good approximation to the non-linear order release function also in case of 

outstanding past orders which generate an additional yield risk. Just recently Huh and 

Nagarajan (2010) revisited the linear control rule problem under zero lead time in 

Bollapragada and Morton and developed an approach for calculating optimal values of 

CS for a given YIF. They proof that for any given YIF the average costs are convex in 

CS and exploit this property in deriving a fairly simple calculation procedure. They also 

compare the performance of different methods for determining the YIF suggested in 

literature by a comprehensive simulation study.  

Up to now all contributions in this research context are restricted in two ways. First, 

except for Inderfurth (2009) all contributions are only dealing with the zero lead time 

case which is regularly not met in practice, particularly in an MRP environment. 

Second, all papers refer to production environments with process risks that result in 

stochastically proportional yields. In our study we consider arbitrary lead times and 

extend the approaches for safety stock determination to two additional well-known 

types of yield randomness (see Yano and Lee (1995)), namely binomial and interrupted 

geometric yield. The three yield models under consideration mainly differ in the level of 

correlation existing for individual unit yields within a single production lot. We show 

how for all three yield models safety stocks can easily be determined following the 

same theoretical concept when using a linear order release rule with a YIF that is the 

reciprocal of the mean yield rate. We will show that in case of non-zero lead time even 

under stationary conditions safety stocks will vary from period to period. In order to 

facilitate applicability of safety stock usage, we additionally present alternative 

approaches of how these dynamic safety stocks can be transformed into static ones.  
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2 Linear Control Rule 
 

In the sequel we present a control mechanism which enables us to cope with demand 

and yield risks in the multi-period unlimited-horizon case. In order to develop a concept 

for the determination of appropriate dynamic safety stocks (SST) for a general stochastic 

yield model the following notation is used:    

tQ  : released order quantity in period t 

tCS  : critical stock for period t  

tx  : inventory position in period t 

tSST  : safety stock for period t  

YIF  : yield inflation factor 

�  : production lead time 

( )Y Q( )Y (  : random yield (number of good units from a production batch size Q) 

( )Y Q  : expected yield ( [ ( )]E Y Q� ( )](( ) 

ZZ  : random yield rate with expectation Z�  and variance 2

Z�  

tDtDt  : i.i.d. random demand in period t with expectation D�  and variance 
2

D�  

�  :  critical ratio (depending on holding and backlogging cost). 

 

Following a critical stock rule with a linear order release function, an order tQ  in period 

t is released if the expected inventory position tx  falls below a critical stock tCS . If so 

we order up to tCS  and choose tQ  by multiplying the deviation of critical stock and 

inventory position with a YIF  to compensate for the expected yield losses. According 

to that the linear control rule is given by 

� �( ) max ( )· ;0t t t tQ x CS x YIF� 	 , 

where the critical stock contains the safety stock plus expected demand during the 

respective risk period: ( 1)t t DCS SST � �� 
 
 � . The expected inventory position at the 

beginning of period t is calculated by aggregating the net inventory and the yield 

expectation of all outstanding orders. It is assumed that the sequence of events is such 

that the order decision tQ  in period t is made after arrival of order tQ �	  from period t-λ. 

So the respective yield realization is known and becomes part of the inventory 
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position tx . The yield risk is considered jointly with the demand risk by solely installing 

an appropriate safety stock. So we choose the yield inflation factor to be 1/ ZYIF �� and 

determine the safety stock tSST  from  

 Prob{ }t tSST� � �t t}}} . (1) 

Here t�t�  is a random variable that covers the net deviations of outflows and inflows to 

stock from their means over the complete risk period defined by 

 
1

0 0

[ ] [ ( ) ( )]t t i D t i t i
i i

D Y Q Y Q
� �

� �
	


 	 	
� �

� 	 	 	� �t

�

�t �[[�[[
1

[ ( ) (t i t i[ ( ) (( ) ([ ( ) (( ) (
�	

t i t[ ( ) () ([ ( ) () (( ) ([ ( )�i D ]]i D ]i �]]tt  (2) 

with expectation [ ] 0tE � �] 0t�  and variance  

 
1

2

0

[ ] ( 1)· [ ( )] .t D t i
i

Var Var Y Q
�

� � �
	

	
�

� 
 
�t ] (� ] ( 1] (t (] ( 1] (] ( 1( 1(( 1 ( )] .t i((((  (3) 

It is just this variability risk that has to be coped by a safety stock as described in (1) 

where α stands for the critical ratio from penalty and holding cost (see Bollapragada and 

Morton (1999)) or for some level of service requirement. Assuming additionally that t�t�  

is approximately normally distributed we can solve equation (1) for tSST  resulting in 

 [ ]t tSST k Var �� � ]t�  (4) 

with 
1( )k �	�� , where ( )� �  denotes the standard normal cdf. 

 

3 Types of Yield Randomness 
 

In literature (see Yano and Lee (1995) for a comprehensive review) three basic types of 

yield randomness are introduced that capture different levels of correlation of individual 

unit yields within a production lot. 

 

3.1 Stochastically Proportional (= SP) Yield 

Most of the literature on random yield problems deals with the stochastically 

proportional modeling approach that is most easy to handle in analytical studies. Under 

SP yield the production yield ( )Y Q( )Y (  from a production batch of size Q is given by 

( )Y Q Z Q� �( )Y Q Z Q( ) ZZ , where the yield rate ZZ  is a random number from interval [0,1] with an 

arbitrary probability distribution and with mean Z�  and variance 
2

Z� . This yield type 
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presumes that yield rate and batch size are independent. The total yield expectation and 

variance are given by [ ( )] [ ] · ZE Y Q Y Q Q �� �( )] [( )] [( )] [  and 2 2[ ( )] · ZVar Y Q Q �� 2( )] 2( )]( )]  respectively. 

Though the amount of usable units can differ from production batch to production batch 

the yield correlation coefficient is equal to one. This yield type applies when yield 

losses are caused by limited abilities of a production system to react on random changes 

of the production environment. 

 

3.2 Binomial (= BI) Yield 

Binomial yield assumes that the generation of good units within a batch forms a 

Bernoulli process and the production yield ( )Y Q( )Y (  is a random number following a 

binomial distribution with success probability p: 

Prob{ } (1 ) ( 0,1,2,..., ) .k Q kQ
Y k p p k Q

k
	� �

� � � � 	 �� �
� �

 

In this modeling approach the appearance of a defective product within a production 

batch is independent from unit to unit, what implies that there is no yield 

autocorrelation. Based on the total yield expectation [ ( )]E Y Q p Q� �( )Y Q p( )] p  and yield variance 

[ ( )] ·(1 ))·Var Y Q p p Q� 	( )] p( )] ·( )] ·  from the binomial distribution we can determine the 

corresponding yield rate parameters 

[ ( )] /Z E Y Q Q p� � �( )] /Y Q Q( )] /( Q( )] /(  and 

2 2 2[ ( )]/ ·(1 ) / ( )Z ZVar Y Q Q p p Q Q� � 	 �22( )]/( )]/( )]/( )]/( )]/( )]/ 22( )]/( )]/� � . 

Here the mean yield rate is independent from the production batch size Q, but the yield 

rate variance – different from the SP yield type – depends on Q and obviously decreases 

with increasing batch size  

 

3.3 Interrupted Geometric (= IG) yield 

This modeling approach differs from the other ones insofar as good units are produced 

independently with a success probability p only until a failure occurs. Thereafter all 

units of a batch turn out to be defective. This resembles a situation where a production 

process moves from an in-control to an out-of-control state. Here the individual unit 

yields within a batch are positively correlated with a correlation coefficient less than 
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one. The production yield ( )Y Q( )Y (  from a batch of Q units then is a random number 

following an interrupted geometric distribution with probabilities 

(1 ) , 0,1,..., 1
Prob{ }

.

k

Q

p p k Q
Y k

p k Q
� � 	 � 	

� � �
��

}
p�

�} �
��

�
��

 

From total yield expectation 

[ ( )] (1 )
1

QpE Y Q p
p

� � 	
	1

( )]
p

( )]
1  

and yield variance 

1 2 1

2

1
[ ( )] (1 ) (1 ) (1 2 )

(1 )

Q QVar Y Q p p p Q p
p


 
� �� � � 	 	 	 � 
 �� �	(1
( )]( )](

(1  

we can develop the corresponding yield rate parameters 

(1 )
( )

(1 )

Q

Z Z
p p Q

p Q
� �� 	

� �
	 �  

and 

1 2 1
2 2

2 2

·(1 ) (1 )·(1 2 )·
( ).

(1 ) ·

Q Q

Z Z
p p p Q p Q

p Q
� �


 
	 	 	 

� �

	
 

Both the mean and variance of the yield rate depend on the batch size Q. While the 

mean ( )Z Q� decreases with increasing Q due to 
( )

0Zd Q
dQ
�

�  the direction of the impact 

of Q on the variance 2 ( )Z Q�  is ambiguous.  

 

3.4 Graphical Comparison of Yield Models 

For protecting against yield risks under different types of yield randomness it is 

important to take into account how the batch size affects mean and variance of the yield 

rate. To give a picture how the order size impact might look like Figure 1 presents a 

graphical comparison for the three yield models under a specific data set. For sake of 

comparability, these data are chosen such that for SP and BI yield the mean yield rate 

Z�
 
is identical while yield variability Z�

 
is equal for Q = 10. IG yield has the same 

yield rate parameters as BI yield for Q = 1. In detail the parameters are fixed as follows: 

SP yield: 0.80Z� �  and 0.13Z� �  

BI yield: 0.80p �  � 0.80Z� � , ( 1) 0.40Z Q� � �  and ( 10) 0.13Z Q� � �
 

IG yield: 0.80p �  � ( 1) 0.80Z Q� � �  and ( 1) 0.40Z Q� � �
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Figure 1: Graphical Comparison of Yield Rate Parameters 

Figure 1 shows that yield rate parameters remain constant for SP yield while yield rate 

variability is steadily decreasing with increasing batch size for BI yield so that for the 

chosen success parameter p it can be larger or smaller than in the SP case. For IG yield 

not only yield rate variability but also – and even more significant – the mean yield rate 

level is falling when the batch size will increase. Considering this different behavior of 

yield rate parameters, it is obvious that for different types of yield randomness the 

parameters of a linear control rule including the safety stock have to be determined in 

different ways because they depend on the batch sizes of past orders and influence the 

size of future ones. 

 

4 Safety Stock Formulas for Different Types of Yield Randomness 

In order to develop an appropriate batch size, taking arbitrary lead times into account, 

we have to determine two parameters for the linear control rule: a safety stock and a 

yield inflation factor. Following the theoretical concept from Section 2 we choose the 

yield inflation factor reciprocal to the mean yield rate, i.e. 1/ ZYIF �� , and determine 

the safety stock appropriately for each yield modeling approach given in the previous 

section. 
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4.1 Safety Stock Determination for SP Yield  

First we apply the SST determination procedure to the SP yield model with 

( )Y Q Z Q� �( )Y Z Q( ) Z . By using formulae (2) and (3) in combination with the SP yield properties 

we find 

1

0 1

t t i D t i t i Z t i t t Z t
i i

D Z Q Q Z Q Q
� �

� � � �
	


 	 	 	
� �

� � � � � �� 	 	 � 	 � 	 � 	 �� � � � � �� �t

�

�t ����D�DDD
1�	

� � � � �QZ Q Q Z QZ Q Q� � � �t i t i Z t i t t Z tt i t i Z t i Z tti t ti t ttt i t i Z tt i t i Z tt i t i Z tt i Z ti t i Z ��tQZ tZ Q Q Z QQ Z QZ Q QZ Q QZ Q Qt i t i Z t i t t Zt i t i Z t i tZ t i t t Zt i t i Z t it i t i Z t it i t i Z t it i t i Z tt i t i ZZZ Q Q Z QQ Z QZ Q QQ Q Z QZ Q QZ Q Q��t i Dtt i Di Di Dt i DDi DDDtttDtDD
 

and 
1

2 2 2 2 2

1

( 1)t D Z t i Z t
i

Var Q Q
�

� � � � �
	

	
�

� � � 
 � 
 � 
 �� � �((( 1( 1�� ( 1( 1�t�ttt .
 

Here the past orders  ( 1,..., 1)t iQ i	 � 	�  are distinguished from the current order tQ  

which just has to be determined in period t. This order size is estimated for SST 

calculation in period t by the mean order quantity which results from the inflated mean 

demand D YIF� � . As described before, we determine the YIF by 1/ Z�
 
so that in the SP 

yield case the current order quantity is approximated by /t D ZQ � ��
 
which results in a 

dynamic SST formula for any period t  

 
1

2 2 2 2 2

1

( 1)t D Z t i Z D
i

SST k Q
�

� � � � �
	

	
�

� � 
 � 
 � 
 ��  (5) 

with /Z Z Z� � ��  as coefficient of variation. The first term under the square root 

considers the demand risk during the risk period (lead time plus one control period) 

whereas the second and the third term represent the yield risk from open orders and 

from the current order respectively. Obviously, even if demand and yield rate 

parameters remain constant over time the safety stock will vary because of varying 

order quantities ( 1,., 1)t iQ i �	 � 	  from the past.  

Static SST approximations might be useful to simplify the application of the proposed 

approach in practice, particularly if a production planner wants to fix certain parameters 

in MRP systems like safety stocks for a longer time horizon. We develop two methods 

for transferring dynamic safety stocks in static ones, one which ignores the variability of 

past orders and another which explicitly takes it into consideration.  

In the first approach all past order quantities t iQ 	  in (5) are replaced by their expected 

values /D Z� �  (as it is done for the current order) leading to a safety stock formula 

which is constant over time: 

 
#1 2 2 2( 1) max{ ;1} .D Z DSST k � � � � �� � 
 � 
 � �  (6) 
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Here the second and third term from the dynamic SST are combined. The � �max ;1� -

term is used to come up with a single safety stock formula that also holds for zero lead 

time.  

The second approach is more sophisticated and takes into account the variability of 

open orders ( 1,., 1)t iQ i �	 � 	  which is neglected by only considering their expectations 

as it is done for the #1SST  calculation. To this end we treat an order in an arbitrary 

period τ as a (a-priori) random variable QQ  and analyze its total variability (risk) which 

depends on the demand and yield variability. We determine the risk contribution !!  of 

a single order in a period τ as ( )·ZZ Q! � 	( )Z Q)·! � ( Q  � . For a linear control rule with a critical 

stock level CS which is constant under static safety stocks, the stochastic order quantity 

QQ  is generated by 1 1( ) / ZQ D 		� 	 !((Q (( 1) /1 Z111    � . Thus, a recursive relationship for !!  

appears in the form of 11( )·( ) /Z ZZ D 	 	! � 	 	!( )·( ) /1Z Z11) ( ) /11! � ( )·( 1) ( 1)·()·() (    � � . Because of the independence of 

yield rate and order quantity we find 

2 2

1 12

2 2

1

1

1

1

1
[ ] · ( [ ] [ ] )·( [ ] [ ] )

[ ] · [ ] .

Z Z
Z

Z

Var Var Z E Z Var D E D

E Z E D

  

 

  

 

 � �
�

�

	 	

	

	 	

	

�! 	 
 	 	 ! 
 	 !�

�	 	 	 !

�

�

1
] ( [

1
( [( [[
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]

2
]

2
�( [( [( [[]

1
] ·

2

1
]

2 �
2 2

1 1] [ ] )·( [ ] [ ] )2 2

1 1   11] [ ] ) ( [Z Z ] ) ( [[ 1Z ] [] [[] [ ] )·( [ ] [2

1] [ ] )·( [ ] [··2

1] ) ( [[ 1] [[] [[] [[] [] [[

.1] [ 1Z  
2� ] · [2

1] · [] · [2

�
2

1]
2

1 ��

 

Due to  [ ] 0ZE Z �	 �] 0Z� ]]  and 1[ ] 0E 	! �1] 01]]1  we get:  

2 2 2

2 1

1
[ ] · ( [ ] )Z D D

Z

Var Var 	� �! � 
 ! 
� �
11

2
]

2
]

2
� �2 2 2( [ ] )2 2 22]

1
] ·

2

1 2 222 2

� �( [ ] )Z D D1( [ ]( [ ]1(( ��)2[ ]1(( [ ]]1[ ]]1(2 2((  � � �
�

. 

Under steady-state conditions of an infinite horizon case we have 

1[ ] [ ] [ ]Var Var Var	! � ! � !1] [ ] [ ]1] [ ]1] [ ] [] [ ] [] [ ][ ]] [ ]1  , so that under solving this equation for [ ]Var !]  we get 

2
2 2

2
[ ] ( )

1

Z
D D

Z

Var � � �
�

! � 

	

2

2
]

21

Z�
]]

2
, which holds for each yield rate coefficient of variation 

satisfying 1Zv � . 

By treating risks from all �  order sizes t iQ 	  ( 0,1,..., 1)i �� 	  in the same way, the total 

risk adds to 2( 1) max{ ;1} [ ]D Var� � �
 � 
 � !], resulting in our second static safety stock 

formula 

 
2

#2 2 2 2

2
( 1) max{ ;1} ( ) .

1

Z
D D D

Z

SST k �� � � � �
�

� � 
 � 
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 (7) 
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A comparison of the two static safety stocks reveals that # 2SST  is larger than #1SST . 

This reflects that # 2SST  also covers the risk of varying order quantities during the lead 

time and their impact on the yield risk.  

 

4.2. Safety Stock Determination for BI Yield  

By applying the same methodology as in the case of SP yield we choose 

1/ 1/ZYIF p�� �  and calculate the risk variable tt�  from (2) as  

1

0 1

( ( ) ( ) ( ( ) ( )t t i D t i t i t t
i i

D Y Q Y Q Y Q Y Q
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� �
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so that the corresponding variance can be written as 

1
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Replacing tQ  again by /D DYIF p� �� �  and using (4) we find as dynamic safety stock 

formula in this case 

 
1

2

1

( 1) (1 ) (1 ) .t D t i D
i

SST k p p Q p
�

� � �
	

	
�

� � 
 � 
 � 	 � 
 	 ��  (8) 

As static safety stock formula when ignoring order variability by replacing all past 

orders t iQ 	  by (inflated) mean demand values /D p�  we get 

 #1 2( 1) max{ ;1} (1 ) .D DSST k p� � � �� � 
 � 
 � 	 �  (9) 

For # 2SST  calculation we need to analyze the risk contribution ( ) ( )Y Q Y Q! � 	 ( )((Y ((! � Y ( ) () ())    of a 

random order in any period τ. In the case of BI yield such a random order is given by 

1 1( ) /Q D p		� 	 !(Q D(( 1) / p1) /11111    . So for the total order risk contribution !!  we again find a 

recursive relationship in form of " #1 1 1 1( ) / ( )Y D p D	 	 	 	! � 	! 	 	!" #1 1 1 1#( ) / ( )# 1 1Y D" 1 1 #( 1 1 # 111 1 #! � "( ) / (# 1Y "( ) / () / () / #1 1 #     .  

Because both terms in  ! !  are correlated under BI yield the variance of  ! !  is given by  
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((((((  1111(( 11
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1) / ),( )] .1   1 11 1111 1111 111 1) / ) () (1 11
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Thus, for evaluating the variance in (10) we first have to determine 

" #" #1 1 /Var Y D p  	 	
� �	!� �

�" #" #/Y D p" #" / �" #" #1Y D p" #" 1 1 /  1DD 11
��#p# /Y D"" , which is the variance of a binomially distributed random 

number with a random number " #" #1 1 /D p  	 		! # #1 /D p#1 1 /  1D 11 !  of trials. This variance turns out to be 

equal to 
1 1(1 ) [ ]Dp Var D 	 		 � 
 	 !1 1]1 111  �  (see Appendix A). An analysis of the covariance 

term 
1 1 1 1[ (( ) / ),( )]Cov Y D p D	 	 	 		 ! 	!1 1 1 1(( ) / ),( )]1 11 1(( ) / ),((( ) / ),(1 1 111 1 1) / ) () (1     in (10) reveals that it is simply equal to 

1 1[ ]Var D 	 		 !1 1]1 11   (see also Appendix A). Thus, the complete variance of  ! !  in (10) 

reduces to (1 ) Dp	 � �  and is obviously independent of τ so that we find as result 

 [ ] [ ] (1 ) .DVar Var p �! � ! � 	 �] [ ] (1 )p] [ ] (11 �] [ ] (1 )] [ ] (1 )] [ ] (1[ ] (1] [ ] (1  (11) 

So we come to the surprising conclusion that, different from the finding for SP yield, in 

the BI yield case the variability of past orders has no impact on the risk variable  ! ! . 

This property is caused by the fact that the order variability does not affect the order risk 

when a linear control rule is used in the case of proportionality of yield variance and 

order size as for BI yield. As consequence, the static safety stocks with and without 

considering order variability are equal when we face a situation with BI yield, i.e. 

#2 #1SST SST� . 

 

4.3 SST and YIF Determination for IG Yield  

Since for IG yield also the expected yield rate Z�  varies with the batch size Q, i.e. 

( )Z Z Q� �� , the yield inflation factor chosen as 1/ ZYIF ��  will also vary over time, 

depending on the currently required output from the linear control rule t tCS x	 . For a 

required expected output quantity X we can calculate the respective batch size Q as 

input quantity from 

[ ( )] (1 )
1

QpX E Y Q p
p

� � � 	
	1

( )](
1

( )]
p

( )]( )](  

resulting in  

(1 (1 ) / )

 

ln X p pQ
ln p

	 � 	
� . 

We see that this order size is only feasible if / (1 )X p p� 	 . This restriction results 

from the specific type of underlying failure process which does not allow to produce an 
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arbitrary number of expected good items within a single batch. For an expected yield X 

we get as mean yield rate  

[ ( )]  

(1 (1 ) / )
Z

E Y Q X X ln p
Q Q ln X p p

�
� � �

	 � 	
( )]( )]

��
 

. 

From 1/ ZYIF ��  and t tX CS x� 	
 
we find a dynamic yield inflation factor that has to 

be recalculated in every period 

(1 ( ) (1 ) / )

( )  

t t
t

t t

ln CS x p pYIF
CS x ln p

	 	 � 	
�

	 �
. 

For applicability in practice we limit our approach to a static YIF. By replacing the 

period wise required output t tCS x	
 
by the mean demand (= mean required output) we 

get a static YIF formula 

(1 (1 ) / )

 

D

D

ln p pYIF
ln p

�
�

	 � 	
�

�
, 

which is restricted to /(1 )D p p� � 	 . A higher mean demand cannot be met under IG 

yield when only a single production run is allowed per period.  

Following the methodology used for SP and BI yield we describe the risk variable tt�  by 

1

0 1

( ) ( ) ( ( ) ( )t t i D t i t i t t
i i

D Y Q Y Q Y Q Y Q
� �

� �
	


 	 	
� �

� � � � � �� 	 	 	 	 	� � � � � �� �t

�

�t ����D�DDD
1�	

� � � � �( ) ( ) ( ( ) ( )Y ( ) ( ) ( ( ) () ( ) ( ( ) (� � � �)t i t i t tt i t i ) ( ( ) () ( ( ) () ( ( ) () ( ( ) (( ) (t i t( ) () (( ) () () () ( ��)Y ( ) ( ) ( ( ) () ( ) ( ( ) (( ) ( ) ( ( ) () ( ) ( ( ) () ( ) ( ( ) (( ) () () (Y ( ) ( ) ( ( )) ( ) ( (( ) ( ( )��t i Dtt i DDii Dt i DDDi DDtttDtDD . 

Taking the variance  

1
2

1

[ ] ( 1) ( ) ( )t D t i t
i

Var Var Y Q Var Y Q
�

� � �
	

	
�

� � � �� 
 � 
 
� � � ��] ( 1t� ] ( 1t (] ( 1] ( 1( 1(( 1( � � �( ) ( )( ) (� � �)t i t( ) () (( ) () () ( ��)( ) (( ) (( ) (( )(( )  

we calculate the dynamic SST after inserting the IG yield variance formula and 

replacing tQ  by D YIF� �  which results in 

 2( 1)t DSST k B C� �� � 
 � 
 
  (12) 

with 
1

1 2 1

2
1

1
(1 ) (1 ) (1 2 )

(1 )
t i t iQ Q

t i
i

B p p p Q p
p

	 	

	

 


	
�

� �� � 	 	 	 � 
 �� �	 �
�

 

and 1 2 1

2

1
(1 ) (1 ) (1 2 )

(1 )
D DYIF YIF

DC p p p YIF p
p


 � 
 �� �� � 	 	 	 � 
 � � �� �	
� �� . 

Ignoring the order variability by replacing all past orders t iQ 	  
by D YIF� �

 
we find as 

first static safety stock formula 

 #1 2( 1) max{ ;1} .DSST k C� � �� � 
 � 
 �  (13) 
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For including order variability in the static safety stock determination we again start 

with the recursive relationship for risk variable !!  given here by 

" #1 1 1 1( ) ( )Y D YIF D	 	 	 	! � 	! � 	 	 !" #1 1 1 1#( ) ( )#1 1 1 1#1 1 11 1#! � "( ) () (# 1Y "( ) () () #1 1 #     . Different from the other yield models, no 

closed-form expressions can be derived for the variance of the risk term !!  
if IG yield 

is considered. Therefore, we have to rely on simplifications to come up with a 

manageable approximation of the variance of steady-state risk !! . To this end we 

neglect the effect of 
1	! 1	!  on !!  and additionally disregard the impact of the covariance 

1 1[ ( ), ]Cov Y D YIF D	 	�1 1( ), ]1 1( )( 11  . As approximation thus remains 

$ % 2 2[ ] [ ( )] Y DVar Var Y D YIF Var D! & � 
 � 
] [ ( )] V] [ ( )]] [ ( )] V] [ ( )][ (] [ ( � � , 

where 2

Y�
 
is calculated as the variance of an IG random variable with a number of 

D YIF�D YIF  random trials. In Appendix B we show how this variance can be calculated. 

Following the same procedure as in the other random yield approaches we can 

determine the second static safety stock formula as 

 " ##2 2 2 2( 1) max{ ;1} .D Y DSST k � � � � �� � 
 � 
 � 
  (14) 

Due to the approximations made in calculating # 2SST  it is not clear in general if this 

static safety stock will be larger than #1SST  as for SP yield.  

To get some insights into the behavior of the dynamic safety stocks and the static safety 

stock variants for all types of yield randomness we give some numerical examples and 

present respective graphical results.  

 

 

5 Graphical Comparison of Safety Stocks 

In order to get some impression of how the proposed concept of safety stock 

determination will work we have chosen some data sets and compared the different 

stock levels for the dynamic case and the static ones as well as for different types of 

yield randomness. In this context, it is of special interest how the dynamic safety stock 

evolves over time. For investigating this we carried out simulation runs over 5000 

periods and selected the results of 100 consecutive periods. As data input we chose 

normally distributed demand with parameters D�  and /D D D� � �� , a lead time �  of 5 

periods and a critical ratio 0.98� �  as basis for each type of yield randomness. As far 
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as possible the yield rate data were fixed such that we have a comparable situation for 

all types of yield models. For the graphical presentation all safety stock values are 

rounded to integers. 

 

5.1 Stochastically Proportional Yield  

For SP yield an 80% mean yield rate is considered in combination with a 20% 

coefficient of variation. The yield rate itself is assumed to be beta-distributed in the 

[0;1] range with parameters 0.80Z� �  and 0.16Z� � . In Figure 2 the results for 

different levels of mean and coefficient of variation of demand are depicted.  

 0.10D� �  0.30D� �  

10D� �  

  

100D� �  

  

Figure 2: Simulation Results of Safety Stocks for SP yield 

The solid lines show the development of dynamic safety stocks for a sample of 100 

periods. It is evident that the safety stock can vary considerably from period to period. 

For small demand variability 0.10D� �
 
the average dynamic safety stock over all 5000 

periods is increasing from 10.66 to 106.31 for tenfold increase of mean demand from 10 

to 100 while the safety stock’s coefficient of variation is slightly decreasing from 9.0 % 

to 8.4 %. An increasing demand level is increasing the order quantities and thereby the 

yield risk from past orders what results in a higher level of safety stocks. Their relative 

variability (measured by the coefficient of variation), in contrast, is hardly affected. 

With rising demand variability (i.e. to 0.30D� �  ) we face a higher demand risk that 
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results in an increase of the average safety stock level from 10.66 to 17.92 and 106.31 to 

179.13, respectively. The safety stock variability, however, goes down from 9.0 % to 

4.7 % for low demand and from 8.4 % to 4.4 % for high demand level. This decrease is 

caused by the fact that the demand risk now is more dominating the yield risk so that the 

impact of past orders’ variability is diminishing. 

Both static safety stock variants have a similar level (for 10D� �  and 0.30D� �  they 

are even identical), and in case of deviation the # 2SST  value (dotted line) is the larger 

one as already has been found when comparing the respective formulas (6) and (7). In 

this case it also turns out that # 2SST is closer to the average dynamic safety stock. So 

for 100D� �  we find # 2SST to be equal to 107 (for 0.10D� � ) and 180 (for 0.30D �� ) 

while #1SST  equals 105 and 177, respectively. This might indicate that the second static 

safety stock variant performs better when it is used as approximation to the dynamic 

one.  

 

5.2 Binomial Yield  

For the simulation run under BI yield we use a success probability 0.80�p  so that we 

consider the same yield rate expectation of 0.80Z� �  like for SP yield. From Figure 3 

we can see that the variability of dynamic safety stocks is much less than under SP 

yield. This holds for each demand level, but is more distinctive for a higher one. The 

reason for this is that – different from the SP yield case –the yield rate variability for BI 

yield is continuously decreasing with increasing batch sizes. So the safety stock needed 

to protect against the yield risk contribution is smaller than under SP yield and becomes 

the smaller the higher the demand and order level will be so that safety stock variability 

is dampened.  

In our examples the fluctuation of dynamic safety stocks is very low with one unit up or 

down in each demand case. This corresponds to the much lower total yield variability of 

BI yield compared to the SP yield case. The static safety stock (remind that #1SST and 

# 2SST  are equal) always corresponds to the (more often observed) lower of the two 

dynamic levels for the presented examples.  
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 0.10D� �  0.30D� �  

10D� �  

7

8

9

10

1 100
period

dyn SST stat SST  
15

16

17

18

1 100
period

dyn SST stat SST  

100D� �  

53

54

55

56

1 100
period

dyn SST stat SST  
151

152

153

154

1 100
period

dyn SST stat SST  

Figure 3: Simulation Results of Safety Stocks for BI yield 
 

5.3 Interrupted Geometric Yield  

Due to specific failure process behind the IG yield model the expected yield from a 

batch is restricted by a maximum level of p/(1-p) as had been shown in section 4.3. So 

in a periodic review context with only a single production batch per period this yield 

type can only be managed satisfactorily if the success parameter p is reasonably high 

and the demand level is reasonably low. For that reason we investigated the alternative 

safety stock formulas in this case for a high yield parameter p = 0.96 resulting in a 

maximum expected yield of 24Y 
 �  and – following the derivations in section 4.3 – a 

respective maximum batch size of 44Q
 � . In this context only a demand level of  

10D� �  is considered which stems from a normal distribution which is truncated at a 

lower level 0D	 �  and an upper level 20D
 � . Since the batch size is not only limited 

from below (at 0Q	 � ) but also from above (at 44Q
 � ) the same holds for the 

dynamic safety stocks. According to formula (12) the upper and lower bounds of the 

sizes of open orders result in respective bounds of the B term. For our problem data this 

leads to safety stock bounds  13tSST 	 �  and 64tSST 
 �  for small demand variability 

( 0.10D� � ) compared to 19tSST 	 �  and 65tSST 
 �  for high one ( 0.30D �� ). 
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According to the concept from section 4.3 the YIF parameter here is fixed to 

1.32YIF � . 

 0.10D� �  0.30D� �  

10D� �  

  

Figure 4: Simulation Results of Safety Stocks for IG yield 

Observing Figure 4 we find that dynamic safety stocks fluctuate in waves between these 

lower and upper bounds. This pattern originates from the fact that whenever we run into 

a shortage due to a very low yield from an early occurrence of a first defective item the 

order size easily increases to an extent that exceeds its maximum level. Thus the target 

inventory level CS cannot be reached and also subsequent orders will likely have to be 

fixed at the Q
  level. At the same time the high batch sizes reduce the mean yield rate 

and increase the risk of low yield figures so that it can happen that for a while the safety 

stock is fixed at its upper bound. If the extremely large batches result in high yield 

outcomes the inventory level quickly goes up, order sizes go down to zero and the 

safety stock falls to its lower bound until orders go up again. This cyclical safety stock 

pattern might indicate that a linear order rule may not be the best way to deal with the 

determination of order quantities under an IG yield process.  

Different from the other two yield situations in the case of IG yield the two static safety 

stock levels deviate quite a lot. While #1SST  is close to the lower dynamic safety stock 

bound the adjusted stock level # 2SST  is a lot larger and near to the average of dynamic 

stock levels. This seems to indicate in case of IG yield it is important to take into 

account the variability of open orders for static safety stock approximation at least to 

some extent. 
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6 Conclusion and Outlook 
In this paper we have developed a concept that can be used to determine safety stocks to 

simultaneously cope with uncertainty in both product demand and production yield. 

This concept is based on a policy of linear order release rules as we find it in MRP 

systems. It is shown that it can be used for determining safety stocks for very different 

types of yield randomness like SP, BI and IG yield. For each yield type we derived quite 

simple closed-form safety stock formulas which result in dynamic stock levels under 

arbitrary production lead times. We also presented several ways of how these dynamic 

safety stocks can be reduced to static ones which are easier to apply in practice. 

Although we showed for some examples how these safety stocks behave under different 

conditions it is an open question how well the static safety stock approaches perform 

compared to the dynamic one under different yield types. A comprehensive simulation 

study, where this is tested for a wide range of demand, yield, lead time and cost 

conditions, however, is beyond the scope of this paper which is devoted to introduce the 

new concept for safety stock determination. The same holds for a simulation study 

which aims to investigate how well the dynamic safety stock approach performs as 

approximation to the best linear control rule which can be evaluated following an 

extension of the approach by Huh and Nagarajan (2010). It remains also to find out how 

well a linear control rule performs compared to the optimal non-linear one for all three 

types of yield models. From such a comparison we could also get more information 

concerning the question if a linear order release rule in particular makes sense under IG 

yield conditions.   
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Appendix

(A) Parameter Determination for a Binomial Distribution with a Random 

Number of Trials 

(A.1)  Notation  

 ( )BIY Q( )BIY (BI : number of successes in Q trials, random number following a binomial 

  distribution with success parameter p and probabilities 

� Prob{ } (1 )l Q lQ
Y l p p

l
	� �

� � � � 	� �
� �

 

:Q :Q  integer number of trials, a random number with range [0, Q
 ] and arbitrary 

 probabilities Prob{ }, 0,1,...,k Q k k Q' 
� � �}},},}} , resulting in parameters 

 
[ ]E Q]Q

 
 and [ ]Var Q]Q .  

( ) :BIX Y Q� (BIX Y (BI ) :  random number of successes in a random number of trials 

( ) :BIZ Q Y Q� �Z QQ ( ) :BIQ Y (BIQ  multiplicative form of trials and successes  

 

(A.2)  Determination of [ ]E X ]  and [ ]Var X ]  

( Independence property: In the context of our problem the number of trials QQ  

and the success probability in each trial are independent. 

( Analysis of XX : From Binomial property of YY  we know that YY  is a sum of 

Bernoulli trials, i.e.  
1

Q

i
i

X B
�

��
QQ

iX Bi�
Q

, where all iBiB  follow a Bernoulli distribution 

with identical success parameter p 
( Parameter determination: Due to independence of iBiB  and QQ  the rules for 

computing expectations by conditioning can be applied (see Ross (2010), pp. 

106-121)
 
 

(1) [ ] [ ] [ ]E X E B E Q� � Q] [ ] [] [ ] [[ ] ]Q  

With [ ]E B p�]B p]  we find [ ] [ ]E X p E Q� � ]Qp Q] [] [
 
.  

(2) 
2[ ] [ ] [ ] ( [ ]) [ ]Var X Var B E Q E B Var Q� � 
 �] [ ] [] [ ] [] [ ] [[ ] [[ ] [[ ] 2] ( [ ]) [ ]2] ( [ ]) [] ( [ ]) [2] ( [ ])] ( [( [ ])2  

With [ ] (1 )Var B p p� � 	] (1p] (1] (1(1  we get 
2[ ] (1 ) [ ] [ ]Var X p p E Q p Var Q� � 	 � 
 �2] [ ]2p] [2]] 2] (p] (1] (1(1

 
. 
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(A.3) Determination of [ ]E Z ] and [ , ]Cov X p Q�p Q,, ]Q  
 

 
� � � �

0 0

2

0 0 0 0

[ ] [ ( )] Prob Prob

       (1 )

Q k

BI
k l

Q Q Qk
l k l

k k k
k l k k

E Z E Q Y Q k l Y l Q k Q k

k
k l p p k p k p k

l





 
 


� �

	

� � � �

� � � � � � � � �

� �
� � � � 	 � ' � � � � ' � � � '� �

� �

��

� � � �

Q k


��] [] [[ ��( )BI ( )](
Q

( )]




( )](( )] ����
 

  

 Thus we find :  2[ ] [ ]E Z p E Q� � 2 ]2Qp] []  
 

 

" #2 2 2 2 2 2

[ , ] [ ( ), ] [ ( ) ] [ ( )] [ ]

                     [ ( )] [ ( )] [ ]

                     [ ] [ ] [ ] [ ] [ ]

BI BI BI

BI BI

Cov X p Q Cov Y Q p Q E p Y Q Q E Y Q E p Q

p E Q Y Q p E Y Q E Q

p E Q p E Q E Q p E Q E Q

� � � � � � 	 � � �

� � � 	 � � �

� � 	 � � � � 	

p,, ] [ ( ), ] [ ( ) ] [ ( )] [ ]BI BI BIp p p] [ ( ), ] [ ( ) ] [ ( )] [,BI BI BIBI( ), ] [ ( ) ] [( ), ] [ ( ) ] [), ] [ ( ) ] [] [ ( ) ] [ ( ) ] [ ( )] [] [ ( ) ] [ ( ) ] [ ( )] [ �]] [ ( ) ] [ ( ) ] [ ( )] [] [ ( ) ] [ ( ) ] [ ( )] [[ ( ) ] [ ( ) ] [ ( )] [

�
BI BI BI

( )] [ ( )] [ ]BI BIp( )] [ ( )] [( )] [ ( )] [BI BI( )] [( )] [)] [ �]( )] [ ( )] [( )] [ ( )] [[ ( )]

" #2 2 2 2 2" ]22Q p Q Q p Q Q"] [ ] [ ] [ ] [] [ ] [ ] [ ] ["2 2 2 22 2 22 2 2 22 2"] [ ] [ ] [ ]] [ ] [ ] [[ ] [ ] [ ]"
 

 So we get :  
2[ ( ), ] [ ]BICov Y Q p Q p Var Q� � �2] [ ]2p] [] [2]BI (((BI ) p),),  

 

(A.4)  Variance of  1 1 1 1(( ) / ) ( )Y D p D  	  	  	  	! � 	! 	 	! 1(( ) / ) ( )1  	  	  	  	1 1 11 111Y D 1 1(( 1 11! � (( ) / ) ( 1Y(( ) / ) () / ) () / )1 1 1Y(( 1 11  

 According to (10) we have 

1 1 1 1

1 1 1 1

[ ] [ (( ) / )] [( )]

2 [ (( ) / ), ( )]

Var Var Y D p Var D

Cov Y D p D
     

    

	 	 	 	

	 	 	 	

! � 	! 
 	!

	 � 	! 	!
1] [ (( ) / )] [( )]1 1] [ (( 1 1  1 1 11 111 1] [ ((] [ (( 1 11 111 11] [ (( ) / )] [(] [ (( ) / )] [( 1] [ (( ) / )] [(1 11

1(( ) / ), ( )]1((     1 1 11 1111 111 11 111 1 1(( ) / ), ((( ) / ), (1 1 11 11

1    1 1 11 1

 

Setting 1 1( ) /Q D p	 	� 	 !(Q (( 1) / p1) /111111   and using (A.2) we receive 

" #
" #

2

1 1 1 1 1 1

1 1 1 1

1 1 1

1 1

[ (( ) / )] (1 ) [( ) / ] [( ) / ]

(1 ) [ ] [ ] [ ]

(1 ) [ ] 0 [ ]

(1 ) [ ]D

Var Y D p p p E D p p Var D p

p E D E Var D

p E D Var D

p Var D

	 	 	 	 	 	

	 	 	 	

	 	 	

	 	

	 ! � � 	 � 	 ! 
 � 	 !

� 	 � 	 ! 
 	 !

� 	 � 	 
 	 !

� 	 � 
 	 !

2

1 1 1 1 1 1(( ) / )] (1 ) [( ) / ] [( ) / ]2p p p p p p1 1 1 1 1 11 1(( / 1 / ) // 1 / /1 1 1 1 1 11 1 1 1 11 11 11 1 1 1) / )] (1 ) [( ) / ] [(2) / )] (1 ) [( ) / ] [()] (1 ) [( ) / ] [() / )] (1 ) [( ) / ] [(2

1 1 1 1111 1 1

#1 1 1 1#] [ ] [ ]# 1 11 1 #1 11 # 111 11 #] [ ] [] [# 1] [ ] [] [ ] [[ ]#1 1111 #
#1 1 1#] 0 [ ]# 1 11 #1 # 111 #] 0 [# 1] 0 [] 0 [0#1 ##

1 1]1 111

      

    

   

  �
 

With the same definition of QQ  and the covariance evaluation in (A.3) we get 

2

1 1 1 1 1 1

1 1

[ (( ) / ), ( )] [( ) / ]

[ ]

Cov Y D p D p Var D p

Var D
      

  

	 	 	 	 	 	

	 	

	! 	! � � 	!

� 	!

2

1(( ) / ), ( )] [( ) / ]2p p p1(( ) / ), ( )] [( ) /(( ) / ), ( )] [( ) /1 1 1 1 1 11 11 1    1 1 1 1 11 1 1 11 1 1 1 11 11 1 1 11 1 1 1 1111 1 11 1 1 1 11 11 11 1 1 11 1 1) / ) ( )] [() ( )] [() / ) ( )] [(2

1 1 1 1111 1

1]1  11111

1  11

 

Thus, considering all terms in the equation for [ ]Var ! ]  the final result is 

[ ] (1 ) DVar p! � 	 �( p] (1] (1] (1] (1 � . 
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(B) Parameter Determination for an Interrupted Geometric Distribution with a 

Random Number of Trials 

(B.1)  Notation and Assumptions 

( ) :IGY Q( ) :IGY (IG   number of successes in Q trials, random number following an interrupted 

 geometric distribution with success parameter p and  probabilities 

� 
(1 ) ,  0,1,..., 1

Prob{ }
,   

k

Q

p p k Q
Y k

p k Q
� 	 � 	

� � �
��

}
p�

�} �
��

�
��  

:Q :Q   integer number of trials, a random number with range [0, Q
 ] and arbitrary 

 probabilities: Prob{ }, 0,1,...,k Q k k Q' 
� � �}},},}}   

( ) :IGX Y Q� (IGX Y (IG ) : random number of successes in a random number of trials 

 

(B.2)  Calculation of Prob{ }kw X k� � }
 

( Independence property: In the context of our problem lot size QQ  and successes 

in each trial are independent. 

( Analysis of XX  

It is evident that min{ , }GX Y Q� min{ ,GX min{ ,, } where GYGYG  follows a geometric distribution 

with success parameter p. Due to independence it holds that   

  
Prob{ } Prob{ } Prob{ }GX k Y k Q k) � ) � ) }} { } {G} Prob{ } Prob{} Prob{ } Prob{} Prob{ } Prob{  . 

 With  1

1 0

Prob{ } (1 ) 1 (1 )
k

i i k
G

i k i
Y k p p p p p

*



� 
 �

) � 	 � 	 	 �� �}G }}} ��    and  

  
1

Prob{ }
Q

i
i k

Q k '



� 


) � �}
Q

�} �   

 we get 
1

1

Prob{ }
Q

k
i

i k
X k p '







� 


) � � �} p} p} . 

Thus Prob{ }kw X k� � }
 
can be calculated by  

 

1

1

1

1 1 1

Prob{ 1} Prob{ }

( ) (1 )

Q Q
k k

k i i
i k i k

Q Q Q
k k k k

k i i k i
i k i k i k

w X k X k p p

p p p p p

' '

' ' ' ' '


 



 
 





� � 





� 
 � 
 � 


� ) 	 	 ) � � 	 �

� � 
 	 � � � 
 � 	 �

� �

� � �

} { }1} Prob{ }1} Prob{
Q

k1} P b{ } kp1} Prob{ }1} P b{1} P b{ k1} Prob{ }1} Prob{1} Prob{ ��
 

1

 Prob{ } (1 )
Q

k
k k i
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(B.3) Determination of [ ]E X ] and [ ]Var X ]
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Two alternative ways can be used to determine the variance of XX . 
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(B.4)  Variance of ( )X Y D YIF� �( )X Y (Y (  

2 ( )Y Var Y D YIF� �� � �� ��( )Y ( �( )��( )Y (Y (  where batch size realizations D YIF�D YIF  are rounded to 

integers and valued by respective demand probabilities 
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