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Abstract

Social and natural sciences employ a number of different measures of distribution
based diversity. This paper presents a unifying (two-parameter) notation for most
of these, which is derived from three different one-parameter generalizations of the
Shannon entropy. The model enables scientists and decision makers to measure
distribution based diversity in a new, more flexible manner, and represents a use-
ful complement to models of generalized feature based diversity, such as Nehring
and Puppe’s (2002) “Theory of Diversity”. It is shown by example how trade-offs
between important diversity properties can be made explicit within such general
framework. Although more than thirty years old, the model seems to be entirely
unknown in economics and ecology.
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1 Introduction

Diversity is a very diverse issue. Ideas of how to measure it vary as much
as the contexts to which they are applied. The most general classification
of diversity measures divides them into two groups: Qualitative diversity is
defined as the degree of differences among diversity units (often: products,
choices, DNA’s or molecules), whereas distribution based diversity is deter-
mined by the abundance distribution among diversity units (often: species,
financial assets or households) 1 . The pioneering work of Weitzman (1992) on

Email address: soenke.hoffmann@ww.uni-magdeburg.de (Sönke Hoffmann).
1 See Baumgärtner (2006) for a conceptual overview.
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qualitative diversity was followed by profound generalizations such as Nehring
and Puppe’s (2002) “Theory of Diversity”. Distribution based diversity, on
the other hand, still lacks a single model, which includes all frequently used
measures of this class. At least two fundamentally different generalized mod-
els of distribution based diversity coexisted during the last decades. The so
called “Rényi diversity” is an additive and non-concave one-parameter gener-
alization of the Shannon entropy (Rényi, 1961). It is successfully applied to
biodiversity measurement (e.g. Ricotta 2003), statistical sampling (Mayoral,
1998), economic diversity modelling (Beran, 1999), and many other contexts.
A second generalization of Shannon entropy, which is concave but not addi-
tive, was independently derived by information theorists Havrda and Charvát
(1967), statisticians Patil and Taillie (1982) and physicist Tsallis (1988) and
recently re-discovered for biodiversity measurement by Keylock (2005) 2 .

We present a unifying two-parameter notation, which includes additive and
concave generalizations of Shannon entropy. The Shannon entropy itself, as
well as most other special indices of distribution based diversity can be simply
recovered by a corresponding pair of parameter values. These include indices
of Rényi diversity, Tsallis diversity, an unknown “Gaussian” one-parameter
diversity class and the well-known “generalized effective number”, being most
often used to measure biological diversity (Hill, 1973), industry concentration
(Hannah and Kay, 1977) or fragmentation (Laakso and Taagepera, 1979).

Some authors find the Rényi class admissible (Ricotta, 2003), some may prefer
the Tsallis model Keylock (2005) and others even regard the effective number
as the only “true” diversity Jost (2006). However, by accepting diversity per
se as a multi-faceted phenomenon that can be defined and measured in many
different ways, conflicts between different ideologies on the measurement of
distribution based diversity could quickly be resolved. The model presented
enables scientists and decision makers to measure distribution based diversity
in a much more flexible and context-driven manner because it provides a
direct link between underlying properties of the measurement concepts and
two simple parameters. To illustrate that, we derive the parameter spaces
for additivity and concavity. Due to its general character the model is very
complementary to generalized models of qualitative diversity and, therefore,
fills a large gap in diversity measurement. Surprisingly, this “new” concept
exists in information theory, ready to use, for more than thirty years but it is
still unknown in most social and natural sciences.

2 This formalism is most widely spread under the name ‘Tsallis’ entropy although
Havrda and Charvát (1967) have derived it more than two decades earlier. Similarly,
the ‘Shannon’ entropy is not due to the father of information theory C.E. Shannon
but due to mathematician von Neumann (1927). However, in this paper we will refer
to the most popular nomenclature. The ‘true’ origin of a mathematical expression
is most often too hard to recover.
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The remainder is organized as follows. Section 2 summarizes some mathemat-
ical and information theoretical background. In the preceding sections 3 to 5
we briefly review three different ways to generalize Shannon entropy, including
the approaches of Rényi and Tsallis. The Sharma-Mittal formalism is intro-
duced in section 6 and additivity and concavity conditions are summarized for
its most important special cases. Finally, sections 7 and 8 conclude and criti-
cally give an outlook. The appendix includes some hypothetical example data,
the formal representation of additivity and concavity properties and proofs.

2 Prerequisite

2.1 Distribution based diversity

Distribution based diversity only depends on the given number of classes n and
the way individuals or abundances are distributed over these n classes. Let P
be the n dimensional unit simplex and p ∈P then V : p → R+ denotes a (dis-
tribution based) diversity function. Throughout this paper superscript letters
of diversity functions will indicate the names typically connected with them,
subscripts represent parameters of that function and/or the index i = 1 . . . n.
The most fundamental assumption on V is that, if all individuals are equally
distributed, the set of classes is maximally diversified and if all individuals are
unified in a single class the set of classes is minimally diversified 3 . In other
words, let p̌ be a completely uneven distribution of abundances (one pi = 1
and all other pk 6=i = 0) and p̄ a completely even distribution (all pi = 1

n
) then

the inequality

0 ≤ V (p̌) ≤ V (p) ≤ V (p̄) (1)

should hold.

2.2 Additivity and concavity

Let A = {Ai}i=1...n and B = {Bj}j=1...m be two non-overlapping classifications
on a set of individuals with pi = {pi}i=1...n ∈ P and pj = {pj}j=1...m ∈ P
denoting the relative abundances of A and B.

3 In other disciplines this diversity property is also known as ‘Maximum Value
Principle’ (Hilderman and Hamilton, 2001). See Rao (1982) for a set of axioms that
characterize distribution based diversity.
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Property 1 (Additivity) V is called additive if

V (pij) = V (pi) + V (pj) (2)

viz. V (A ∩B) = V (A) + V (B).

Property 2 (Non-additivity of degree b) V is called non-additive of de-
gree b if

V (pij) = V (pi) + V (pj) + (1− b)V (pi)V (pj) (3)

Note that additivity is equivalent to non-additivity of degree 1.

Property 3 (Concavity) Let O1 ⊂ Rn be the positive orthant in Rn and
C ⊂ O1 the set of convex sets on O1. Two synonymous concavity criterions
will be used:

• Criterion 1: For all pi,pj ∈ C, m = n and λ ∈ [0, 1] measure V is (Jensen-)
concave if

(1− λ)V (pi) + λv(pj) ≤ V ((1− λ)pi + λpj). (4)

• Criterion 2: For all p ∈ C measure V is (Jensen-) concave if

Hessian HV is negative semidefinite. (5)

A sufficient condition for HV to be negative semidefinite is p(−HV )p′ ≥ 0
(Debreu, 1952). Note, that strict inequality in (4) implies strict concavity of
V on C and V is strictly concave if p(−HV )p′ > 0. Further note, that if V is
concave on C then it is also concave on P ⊂ C.

2.3 Shannon diversity

Trying to find a diversity measure that satisfies (1), we can get in line with
Patil and Taillie (1982), who interpret distribution based diversity as the aver-
age rarity of given classes. The rarity of class i is characterized by two simple
properties.

Theorem 4 Any non-negative and additive rarity function of a single class
takes the form

vi := c log2

(
1

pi

)
, c ∈ R+ (6)

A species having no individual (pi = 0) can be considered infinitely rare (com-
pared to the other species), a species having all available individuals (pi = 1)
can be considered not rare at all (compared to the other species). Formally,
the linear average of rarity (6) is identical to the Shannon entropy (Shannon,
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1948) 4 :

V S(p) :=
n∑

i=1

pi ln

(
1

pi

)
(7)

In the following, we keep up the formal analogy between entropy measures and
diversity measures (average rarities) of kind V and refer to (7) as Shannon
diversity.

Proposition 5 V S(p) is additive.

Proposition 6 V S(p) is strictly concave.

2.4 Quasiliear means

Kolmogorov (1930) and Nagumo (1930) independently derived the most gen-
eral form of a mean that is still compatible with the well-known Kolmogorov
axioms of probability.

Definition 7 (Quasilinear mean) Let x be a random variable and let φ de-
note a continuous and strictly monotone function, referred to as Kolmogorov-
Nagumo function (KN function). If φ−1 is the inverse of φ then

〈x〉φ := φ−1

(
n∑

i=1

piφ(xi)

)
(8)

is called the quasilinear mean of x with respect to φ.

Hardy et al. (1934) prove that 〈·〉φ is unique for given φ but not vice versa.

Theorem 8 (Invariance of quasilinear means) Let φ1 und φ2 be KN func-
tions and c1, c2 constants, then φ1 = c1φ2 + c2, c1 6= 0 ⇒ 〈·〉φ1

= 〈·〉φ2
.

2.5 Deformation

Let exp (x) ≡ zx, where z represents the base of the regular logarithm. Here,
we consider the natural logarithm ln(x) and set z = e (Euler number).

Tsallis (1994) introduced the b-deformed logarithm/exponential

4 Note, however, that we have to set c = 1 in order to measure in ‘bits’, which is the
most common unit in information theory. For measurements apart from information
theory it is more convenient to set c = ln(2) in order to measure in ‘naturals’ (nats)
(cf. Theil 1967).
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lnT
b (x) : =

x1−b − 1

1− b
(9)

and
(
lnT

b

)−1
(x) = ((1− b)x + 1)

1
1−b =: expT

b (x), (10)

which have the properties

lim
b→1

lnT
b (x) = lim

b→1
−x(1−b) ln(x) = ln(x) (11)

and lim
b→1

expT
b (x) = ex. (12)

Based on ln(exp(x)) = lnb(expb(x)) = x we define the following two deforma-
tion functions.

Definition 9 (Exponential and logarithmic deformation) The contin-
uum of functions

τ exp
b (x) : = lnT

b (exp (x)) =
exp ((1− b) x)− 1

1− b
, b 6= 1 (13)

and τ log
b (x) : = ln(expT

b (x)) =
ln ((1− b) x + 1)

1− b
(14)

= (τ exp
b )−1 (x), b 6= 1, b <

1

x
+ 1

will be called the exponential and logarithmic deformation of degree b respec-
tively.

Lemma 10 (Additivity of b-deformed functions) Let V be an additive
function, then τ exp

b (V ) is nonadditive of degree b.

Figure 1 shows the exponential and logarithmic deformations of degree b. In
the following we will consider only concave deformations.

Proposition 11 τ exp
b (x) is strictly concave for b > 1.

Proposition 12 τ log
b (x) is strictly concave for b < 1.

Given these parameter restrictions, τ exp
b (x) and τ log

b (x) only include continu-
ous and monotonically increasing functions, and, therefore, both deformations
could also be used as a one-parameter continuum of KN functions. A useful
relationship between concave deformations and quasilinear means is the fol-
lowing.

Lemma 13 (Deformation- and KN-Functions) Let τ(x) be a concave func-
tion then τ(x) = c1φ

−1(x) + c2, c1 6= 0 ⇔ 〈τ(x)〉φ = τ(〈x〉φlin) and τ(x) =

c1φ(x) + c2, c1 6= 0 ⇔ 〈x〉φ = τ(〈τ−1(x)〉φlin).
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Figure 1. Deformations of x based on Tsallis’ logarithm lnT
b . On the left, the concave

exponential deformation is shown (b > 1), on the right, the concave logarithmic
deformation is shown (b < 1).

3 Quasilinear diversity

Let us consider the simplest of all KN functions, i.e. the linear one,

φlin(x) = c1x + c2, c1 6= 0 (15)

then the quasilinear mean of rarity (6) generated by (15) is

〈vi〉φlin = V S(p). (16)

We see that the Shannon diversity (7) can be expressed in terms of the qua-
silinear mean generated by an arbitrary linear KN function. This finding is a
good starting point for generalization purposes. If we now allow any KN func-
tion to be used as mean generating function we get the class of quasilinear
diversities

〈vi〉φ = φ−1

(
n∑

i=1

piφ(vi)

)
. (17)

3.1 Order generalization of Shannon diversity

3.1.1 Derivation

Now, let us find the most general KN function that generates a diversity
measure which i) is an element of (17) and ii) still has additivity property
(2). Rényi (1961) proved that, besides linear KN functions (15), only linear
transformations of one parameter exponentials are admissible, such that

φexp
a (x) = c1 exp ((1− a)x) + c2, c1 6= 0, (18)
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where a is the generalization parameter, called the order. It follows immedi-
ately from (6), (8) and (18) that 5

〈vi〉φexp
a

=
1

1− a
ln

(
n∑

i=1

pi exp(vi)
1−a

)
=

1

1− a
ln

(
n∑

i=1

pa
i

)

= ln

( n∑
i=1

pa
i

) 1
1−a

 =: V R
a (p), a 6= 1, a ≥ 0 (19)

This exponential mean of rarity vi, usually called ‘Rényi entropy’ or ‘Rényi
diversity’, recovers Shannon diversity for a → 1 6 . Comparing (18) with (13)
we can easily see that φexp

a (x) = τ exp
a (x) for c1 = 1

1−b
= −c2 and, thus,

〈vi〉φexp
a

= 〈vi〉τexp
a

= V R
a (p) must hold. Due to Lemma 13 we may also write

the Rényi diversity as logarithmically deformed function

V R
a (p) = 〈vi〉φexp

a
= τ log

a

(
〈τ exp

a (vi)〉φlin

)
= τ log

a

(
V T

a (p)
)
, (20)

where V T
a (p) is another generalization of Shannon diversity, discussed in sec-

tion 5.

3.1.2 Interpretation

The order a of Rényi diversity represents how much the differences between
class sizes pi are taken into account, when calculating the average rarity of the
entire set of classes. Figure 2 shows that an order-0 diversity vR

0 (p) = ln(n)
does not weight at all. All n classes contribute equally to diversity, no mat-
ter how rare they actually are, and vR

0 (p) is constant over all possible n-
distributions p. For positive orders smaller than 1 differences in the classes
sizes pi are more and more taken into account: The higher the size inequality
between classes, the more weight is given to large classes compared to small
ones. However, orders between zero and one imply that small classes are still
given disproportionately high weights and large classes are given dispropor-
tionately low weights, compared to their actual sizes. Only order-1 diversity
vR

1 (p) =
∑n

i=1 pivi = V S(p) generated by (15) weights the rarity vi of the class
i in exact proportion to the relative abundance pi of that class. Finally, if the
order a becomes larger than 1 then the large classes are weighted dispropor-
tionally high and small classes are weighted disproportionally low. This dis-

5 Because negative orders usually do not make sense in the context of diversity
measurement (cf. Baumgärtner 2002) we restrict our analysis to non-negative orders
a ≥ 0 even if some desirable properties may also be satisfied for a < 0.
6 Note, that the subscript a will be replaced by other letters later on. To indi-
cate that letters other than a still represent the order of the diversity we keep the
superscript letter R (for Rényi).
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proportionality increases with a, such that lima→∞ V R
a (p) = − ln (maxi{pi})

only depends on the largest class available.

3.1.3 Additivity

Proposition 14 For all a ≥ 0 V R
a (p) is additive.

3.1.4 Concavity

Proposition 15 Let p ∈ C and n ≥ 2 then V R
a (p) is strictly concave for all

a ∈ (0, 1].

Proposition 16 Let p ∈ P and n = 2 then V R
a (p) is strictly concave for all

a ∈ (0, 2).

Proposition 17 Let p ∈ P and n = 2 then V R
a (p) is strictly concave for

a = 2 iff 0 < p1 < 1.

Proposition 18 Let n ≥ 2 and a > 2 then V R
a (p) is neither concave nor

convex.

4 Degree deformed diversity

Diversity of order a becomes non-concave for orders larger than two. That
means, V R

a is not an admissible one-parameter generalization of Shannon di-
versity when concavity is the primary requirement in a given context. Now,
the aim is to find a generalization that maintains concavity for increasing
generalization parameter.

4.1 Exponential deformation of Shannon diversity

4.1.1 Derivation

We know from proposition 11 that τ exp
b (x) is strictly concave for b > 1. There-

fore, the degree b-deformed Shannon diversity

τ exp
b (V S(p)) = lnb

(
exp

(
V S(p)

))
=

1

1− b

(
exp

(
(1− b)V S(p)

)
− 1

)
=: V G

b (p) (21)
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must preserve strict concavity for b > 1. V G
b is indeed a generalization of

Shannon diversity because limb→1 V G
b (p) = V S(p) immediately follows from

(11). Lemma 10 indicates that a property “traded in” for concavity is ad-
ditivity. To illustrate this more formally we replace the additivity axiom in
theorem 4 by the non-additivity property (3) and obtain the functional equa-
tion vi(pkpl) = vi(pk) + vi(pl) + (1− b)vi(pk)vi(pl), k, l ∈ {1 . . . n}, k 6= l which
is equivalent to

1 + (1− b)vi(pkpl) = (1 + (1− b)vi(pk)) (1 + (1− b)vi(pl)) . (22)

Defining
f(pk) := 1 + (1− b)vi(pk) (23)

in (22) gives Cauchy’s power equation f(pkpl) = f(pk)f(pl), which is known
to have the nonconstant and continuous solution 7

f(pk) = pc
k, c ∈ R\{0}. (24)

Now, let c = b − 1, b 6= 1 then follows the b-deformed rarity from (23) and
(24):

vi,b := τ exp
b (vi) = lnT

b

(
1

pi

)
. (25)

Recalling Lemma 13, we can conclude that there is a direct link between
V G

b (p) and the b-deformed rarity (25). Indeed, V G
b (p) can be expressed as

a quasilinear mean of vi,b that is generated by any linear transformation of

φ(x) = (τ exp
b (x))−1 = τ log

b (x):

V G
b (p) = τ exp

b (〈vi〉φlin) = 〈τ exp
b (vi)〉φlog

b
(26)

where φlog
b (x) = c1 ln ((1− b) x + 1) + c2 = τ log

b (x) (27)

c1 =
1

1− b
, c2 = 0.

4.1.2 Interpretation

Figure 2 illustrates some major differences between order and degree gener-
alization of Shannon entropy. First, the maximum diversity V G

b (p̄) = lnb(n)
now depends on the generalization parameter. Higher degrees imply smaller
maxima. Second, and most important in the current context, concavity is pre-
served for increasing b. Only if the degree is decreased V G

b may lose its con-
cavity property, once having it. Third, the degree-0 diversity does not weight
classes equally. Different distributions p imply very different values of V G

0 (p).
Such a property is difficult to interpret in the context of distribution based

7 See Aczél et al. (2000) for an extensive review on functional equations and their
solutions.
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diversity measurement, which may be the reason why (21) has not been ex-
plicitly used as diversity measure so far. Nevertheless, we may call V G

b the
Gaussian diversity, simply to stay consistent with the nomenclature of other
related measures 8 . Although Gaussian diversity may not have much practical
relevance in most contexts of diversity measurement it is a quite meaningful
example in generalized diversity theory.

4.1.3 Additivity

Proposition 19 For all b > 0 V G
b (p) is non-additive of degree b.

Proposition 20 V G
b (p) is additive iff b = 1

4.1.4 Concavity

Proposition 21 Let p ∈ C and n ≥ 2 then V G
b (p) is strictly concave for all

b ≥ 1.

Proposition 22 Let p ∈ P with pn = 1 −∑n−1
i=1 pi and n ≥ 2 then V G

b (p) is
strictly concave for all

b ≥ 1− 1− pn

pn (V S(p) + ln (pn))2 .

Example 23 (Approximation of concavity intervals) Let p ∈ P and
n = 2 then V G

b (p) is strictly concave for all

b ≥ 1− 1

(1− p1)p1 ln
(

p1

1−p1

)2 . (28)

Now let the second summand of inequality (28) be denoted g(p1). Since lim+
p1→0 g(p1) =

∞, lim−
p1→1 g(p1) = ∞ and limp1→0.5 g(p1) = ∞, g is always positive and con-

cavity is proved for b ≥ 1. However, we can refine this concavity condition by
finding the lower bound of g.

∂g(p1)

∂p1

=
ln
(

p1

1−p1

)
(1− 2p1) + 2

p2
1 + (1− p1)2 ln

(
p1

1−p1

)3
!
= 0

⇒ ln

(
p1

1− p1

)
(2p1 − 1) = 2 (29)

8 For some negative degree V G
b takes the typical “bell” shape of the Gaussian

distribution.
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Equation (29) is solved numerically by p∗1 ≈ 0.9168 and p∗2 = 1− p∗1 ≈ 0.0832.
The second derivative of g is

∂2g(p1)

∂p2
1

=

>−3︷ ︸︸ ︷
−6p1 (1− p1) ln

(
p1

1− p1

)2

+

>−2︷ ︸︸ ︷
2 ln

(
p1

1− p1

)(
ln

(
p1

1− p1

)
− 6p1 + 3

)
+ 6

p3
1 (1− p1)

3 ln

(
p1

1− p1

)4

︸ ︷︷ ︸
≥0, ≤0.02

> 120 > 0

which means g is minimal at p∗1 and 1− p∗1 and has a lower bound of g(p∗1) =
g(1− p∗1) ≈ 2.2767. Finally, from (28) follows the refined concavity condition
b & −1.2767.

5 “Order = degree” generalization of Shannon diversity

We have seen that an order generalization of Shannon diversity preserves gen-
eral additivity but removes general concavity, and deforming Shannon diver-
sity exponentially by degree b preserves concavity but removes the general
additivity property. This trade-off between valuable features cannot be fully
avoided when generalizing Shannon diversity by quasilinear means or deforma-
tion. However, there are measures “in between” Rényi- and Gaussian diversity.
For example, we may look for a diversity that is concave and non-additive, like
Gaussian diversity, but still has the equivalent weighting property of order-0
diversity, V R

0 (p) = V R
0 (p′) for all p 6= p′ (cf. “Interpretation” in section 3.1).

5.1 Tsallis diversity

5.1.1 Derivation

The general idea is to make order-a diversity b-deformed, while order and
degree depend in the same way on the same parameter b. If we apply the
exponential deformation of degree b to the Rényi diversity and replace a with
b we get with the help of Lemma 13

12



τ exp
b

(
〈vi〉φexp

b

)
= 〈vi,b〉φlin =

n∑
i=1

pivi,b =
n∑

i=1

piτ b(vi)

=
1

1− b

(
n∑

i=1

pb
i − 1

)
=: V T

b (p), b ≥ 0, b 6= 1. (30)

Obviously, V T
b (p) can either be seen as a b-deformed Rényi diversity or equiv-

alently as a Gaussian diversity in which the logarithmic mean generation (27)
is replaced with the linear one (15). Therefore, we may call V T

b (p) the diver-
sity of order and degree b, or, due to its most famous creator Tsallis (1988),
Tsallis diversity.

5.1.2 Interpretation

As figure 2 illustrates, Tsallis diversity V T
b (p) unifies two desirable properties

of Rényi and Gaussian diversity. The property V T
0 (p) = vT

0 (p′) for all p 6= p′

is also satisfied by ‘pure’ order generalization V R
a (p) and the preservation of

concavity for increasing parameter values is also satisfied by ‘pure’ degree
deformation V G

b (p). Note further that V T
b (p̄) = V G

b (p̄) = lnb(n) is another
common feature of Tsallis and Gaussian diversity.

Due to its unification of desirable properties, Tsallis diversity is, in contrast
to Gaussian diversity, quite appealing for practical diversity measurement.
Thus, it is not very suprising that scientists once in a while “re-invent” V T

b

as appropriate diversity measure (e.g. Keylock 2005). More surprising is the
observation that the equivalence between Tsallis diversity and Patil and Tail-
lie’s (1982) quite popular “diversity index of degree β” seems to be largely
unknown 9 . In fact, using V T

b as generalized diversity measure is at least two
decades old.

5.1.3 Additivity

Proposition 24 For all b > 0 V T
b (p) is non-additive of degree b.

Proposition 25 V T
b (p) is additive iff b = 1

5.1.4 Concavity

Proposition 26 Let n ≥ 2, p ∈ C or p ∈ P then V T
b (p) is strictly concave

for all b > 0.

9 It can be obtained by simple paramter transformation b ↔ β− 1 which is, graph-
ically seen, a horizontal left-shift by 1 of the curves in figure 2.
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Figure 2. Graphical representation of different generalizations of Shannon diversity.
The two columns show the generalizations depending on the generalization para-
meter and p1, (n = 2) respectively. Distributions pa to pg are taken from table 2,
p. 21. In the right column the Shannon diversity is marked bold.
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Diversity Generalization Representation Argument τ -defm. φ-weight.

Shannon - 〈vi〉φlin rarity - lin.

Rényi order 〈vi〉φexp
a

rarity - exp.

τ log
a

(
V T

a

)
diversity log. -

Gauss degree
〈
τ exp

b (vi)
〉
φlog

b
defm. rarity - log.

τ exp
b

(
V S
)

diversity exp. -

Tsallis order = degree
〈
τ exp

b (vi)
〉
φlin defm. rarity exp. lin.

τ exp
b

(
V R

b

)
diversity exp. -

Table 1
Three kinds of generalization of the Shannon diversity.

6 “Order 6= degree” generalization of Shannon diversity

6.1 Sharma-Mittal diversity

6.1.1 Derivation

Table 1 summarizes the generalizations of Shannon diversity discussed so far,
including possible transformations between them. The rows show how to derive
the generalization, whereas the last three columns can give an idea of how to
find a unifying notation of all three generalized diversities V R

a , V G
b and V T

b . In
the last column of table 1 we have linear, logarithmic and expontential KN
functions. A first approach could be to introduce a two parameter KN function
that includes all three weighting schemes as special cases. Obviously, the two
parameter deformation τa,b(x) := lnT

a (expT
b (x)) becomes τ log

b (x) for a → 1,
τ exp

b (x) for b → 1 and linear for a = b. Thus, the two parameter KN function

φa,b(x) : = c1 lnT
a (expT

b (x)) + c2

φ−1
a,b(x) = c1 lnT

b (expT
a (x)) + c2

covers all deformations (column 5) and KN functions (column 6) of table 1:
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φa,a(x) = φb,b(x) = c1x + c2 = φlin (Tsallis and Shannon)

lim
a→1

φa,b(x) = : φ1,b(x) = c1 ln(expT
b (x)) + c2 = φlog

b (Gauss)

lim
b→1

φa,b(x) = : φa,1(x) = c1 lnT
a (exp(x)) + c2 = φexp

a (Rényi).

The arguments of the quasilinear mean representations (Column 4) are gener-
alized by the deformed rarity (25) and, therefore, we calculate the quasilinear
mean of vi,b with respect to φa,b . With the help of Lemma 13 we quickly get

〈vi,b〉φa,b
= φ−1

a,b

(
n∑

i=1

piφa,b

(
lnT

b

(
1

pi

)))
= lnT

b

(
expT

a

(
V T

a (p)
))

(31)

=
1

1− b

( n∑
i=1

pa
i

) 1−b
1−a

− 1

 =: V SM
a,b (p). (32)

This two parameter generalization of Shannon diversity was derived first (in
another context and a slightly modified way) by Sharma and Mittal (1975,
1977). We call it the diversity of order a and degree b 10 , or simply Sharma-
Mittal diversity because of the following properties:

lim
a→1

V SM
a,b (p) =

1

1− b

(
e(1−b)V S(p) − 1

)
= V G

b (p) =: V SM
1,b (p) (33)

lim
b→1

V SM
a,b (p) =

1

1− a
ln

(
n∑

i=1

pa
i

)
= V R

a (p) =: V SM
a,1 (p) (34)

lim
a→1

lim
b→1

V SM
a,b (p) =

n∑
i=1

pi ln

(
1

pi

)
= V S(p) =: V SM

1,1 (p) (35)

V SM
a=b (p) =

1

1− b

(
n∑

i=1

pb
i − 1

)
= V T

b (p) =: V SM
b,b (p). (36)

6.1.2 Interpretation

Combining (20) with (31) reveals that the Sharma-Mittal diversity essentially
is a b-deformed diversity of order a. By simply replacing ln(x) with lnT

b (x) in
(19) we can verify indeed that

V SM
a,b (p) = τ exp

b (V R
a ). (37)

Because the Sharma-Mittal diversity is a generalization of V R
a , V G

b and V T
b , it

unifies the typical characteristics identified so far in a single framework. Most
important are (cf. figure 3)

10 In information theory HSM
a,b is usually called information of order a and degree b

(Taneja, 1989) or information of order a und rank b (Aczél, 1984).

16



p1

b0 0.5 1 0
1

2
30

0.2

0.4

0.6

0.8

1

3

1

p1

b

00.51

0

0.2

0.4

0.6

0.8

1

Figure 3. Diversity of order a and degree b given p = (p1, p2) where p2 = 1− p1.
Here, order a ∈ {0, 0.2, 0.4, 1} is used as discrete parameter which causes different
layers of the left plot. The darkened grid repesents all a = 1 diversities V G

b and the
Shannon diversity, again, is marked black-bold. To provide a better comparability
with the right plot, the non-concave diversity V SM

20,1 is marked as a white dotted line.
The right plot shows diversity V SM

20,b and illustrates the transformation of a strictly
concave diversity (dark dotted) to a non-concave and non-convex diversity (white
dotted) depending on b. The Tsallis case b = a, i.e. the all-concave V T

b , is marked
dashed.

• V SM
0,b (p) = V SM

0,b (p′) for all p 6= p′ and all b ≥ 0 (equivalent weighting
property of order-0 diversities).

• Preservation of concavity of order-1 diversities for increasing degree of de-
formation b.

• Monotonically decreasing in order a and degree b.
• Non-negative for all orders a and degrees b.
• Maximum of V SM

0,b (p̄) = logT
b (n) (order-0 maximal)

Moreover, it is quite interesting to see that the degree 0-deformation of Sharma-
Mittal diversity is equivalent to

V SM
a,0 (p) = Na − 1,

where Na is the very classic ‘effective number’ Na (of classes) introduced by
Hill (1973) and recently named ‘true’ diversity by Jost (2006). In economics
Na is widely used to measure (inverse) concentration of an industry (Hannah
and Kay, 1977), in political sciences this number has established as standard
to measure the ‘effective number of parties’ (Laakso and Taagepera, 1979).
However, the major benefits of Na, i.e. a straightforward interpretation of its
unit and a nice “doubling” property (Jost, 2006), again, come at some costs.
It can be easily shown that Na is neither additive, nor generally concave (cf.
figure 4). In other words, for the sake of a straightforward interpretation (of
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the unit of measurement) the ‘effective number’-transformation of entropic
measures is very reasonable, for the sake of two common diversity properties
it is not 11 .

As usual, concavity and additivity are discussed separately.

6.1.3 Additivity

Proposition 27 For all b > 0 V SM
a,b (p) is non-additive of degree b.

Proposition 28 V SM
a,b (p) is additive iff b = 1

6.1.4 Concavity

Proposition 29 Let pi ∈ C then V SM
a,b (p) is strictly concave for all

b > 1− 1− a

a
.

Order a

D
eg

re
e

b

V G
b

V R
a

V T
a=b

Na −1

V S

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Order a

D
eg
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e

b

V G
b

V R
a

V T
a=b

V S

Na −1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 4. Additivity-diagram (left) and concavity-diagram (right) of diversity mea-
sures in the Sharma-Mittal parameter space. The thin black lines represent general-
ized one-parameter diversities as a function of their parameter and the greyed areas
represent parameter combinations resulting in addititive and concave measures re-
spectively.

11 Therefore Jost’s (2006) naming can obviously be quite misleading and should be
used with care (cf. Hoffmann and Hoffmann 2006).
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7 Conclusion

As old as the Sharma-Mittal formalism is, as unknown it seems to be in ap-
plied diversity theory. This is not very reasonable. Regarding the fact that
Rényi’s (1961) order a entropy is indeed a very popular diversity measure in
ecology, economics and other sciences, the b-deformed Rényi diversity V SM

a,b

represents nothing but a logical step towards a more flexible and property-
driven modelling of distribution based diversity, and, therefore, desires more
attention apart from information theory and statistical mechanics. In other
words, if some scientists find the additive diversity class V R

a admissible (e.g.
Pielou 1975) but others prefer the concave diversity class V T

b (e.g. Keylock
2005) both point of views can be captured by the same quantitative model
V SM

a,b . By setting the parameters of Sharma-Mittal diversity accordingly to
individual judgements on the given application context we can establish a
profound methodological reasoning in diversity measurement. Moreover it be-
comes much easier to analyze the interplay between important diversity prop-
erties, as it was shown for additivity and concavity.

8 Outlook

The analysis of this paper is limited in two ways. First, only two properties, ad-
ditivity and concavity, are analyzed and compared. Many more properties may
be important for the measurement of distribution based diversity 12 . However,
both properties were delibarately chosen, since they belong indeed to the most
“typical” ones and they allow to illustrate a typical trade-off between proper-
ties that is implied by common generalization techniques. Moreover, analyzing
a more exhaustive list of properties in the same manner would quickly go be-
yond the scope of this paper. The second limitation of our analysis refers to
the Tsallis logarithm (9). Other deformed logarithms exist and other one- and
two-parameter generalizations of Shannon diversity can be derived from them.
Abe (1997), for example, presents a b-deformed logarithm having the b ↔ 1/b
invariance property. His resulting entropy recovers Shannon entropy for b → 1
like most other generalizations. More recently, Kaniadakis and Scarfone (2002)
introduced the κ-deformed-logarithm

lnκ(x) =
xκ − x−κ

2κ
lim
κ→0

lnκ(x) = ln(x)

12 Several properties of Shannon entropy and some of its derivatives can be found
in Aczél and Daróczy (1975) and Taneja (1989).
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which has the property lnκ(1/x) = − lnκ(x) known from standard algebra.
Kaniadakis et al. (2005) further extend the κ-deformed-logarithm to the κ−r-
deformed logarithm lnκ,r(x) = xr lnκ(x). Their two parameter Shannon gen-
eralization Hκ,r(p) = −∑ pi lnκ,r(pi) is equivalent to an entropy measure first
introduced in physics by Borges and Roditi (1998) and also known as entropy
of type (a,b) (Sharma and Taneja, 1975) or entropy of degree (a,b) (Aczél,
1984) in information theory 13 . Tsallis entropy and Abe entropy are promi-
nent special cases of these generalizations.

Information theory and physics have definitely proved to be rich sources of
knowledge when the aim is to find generalized measures of distribution based
diversity. However, the analogy of this very special kind of diversity and en-
tropy measures is not perfect, and the interdisciplinary transfer of measure-
ment concepts should not happen blindly. For example, the class Hκ,r is not
additive. This drawback may already indicate that it is not an admissible
class of diversity measures, although Hκ,r may be truely admissible to mea-
sure entropy, information or other phenomenological quantities. To the best
of our knowledge the Tsallis-logarithms is most appropriate in order to de-
velop a unifying notation of frequently used diversiy measures, that can also
serve as a “property comparison framework”. But at the end, problems like
whether or not an unknown concept can serve as a diversity measure, always
narrow down to two central questions: First, “What properties should a diver-
sity measure have?”, or, more generally speaking, “What is diversity (in the
given context)?”, and second, “What properties does the concept in question
provide?”. The better the matchup of given answers, the higher the legitima-
tion to use that concept. Unfortunately these questions are often all but easy
to answer and a lot of future research on the measurement of diversity still
needs to be carried out to fully understand this important phenomenon and
its multidisciplinary connections.

13 The Borges/Roditi formalism is obtained by simple paramter transformation κ ↔
(β − α)/2 and r = (α + β)/2 − 1. In information theory the entropy of type (a, b)
is usually written in a normalized form (cf. Kapur 1994, ch. 18).
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Appendix

8.1 Some hypothetical distributions

pa 0.33 0.33 0.33

pb 0.3 0.3 0.4

pc 0.2 0.3 0.5

pd 0.1 0.3 0.6

pe 0.01 0.3 0.69

pf 0.01 0.1 0.89

pg 0.00005 0.00005 0.9999

Table 2
Seven different abundance distributions of n = 3 given classes.

Proofs

8.1.1 Section 2

Proof of Theorem 4, p. 4. Aczél and Daróczy (1975), p. 3

Proof of Proposition 5, p. 5. Aczél and Daróczy (1975), p. 31

Proof of Proposition 6, p. 5. Let p ∈ C, then the symmetric n×n Hessian
HV S

is:

HV S

=



− 1
p1

0 . . . 0

− 1
p2

. . . 0

. . .
...

− 1
pn


Concavity criterion (5) implies p(−HV S

)p′ =
∑n

i=1 pi = 1 > 0.

Proof of Theorem 8, p. 5. Hardy et al. (1934), p. 66-67

Proof of Lemma 10, p. 6. Let pi and pj be two independent distributions
and suppose τ exp

b (V (·)) is non-additive of degree b then
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τ exp
b (V (pij)) = τ exp

b (V (pi)) + τ exp
b (V (pj))

+ (1− b) τ exp
b (V (pi))τ

exp
b (V (pj))

exp ((1− b) V (pij)) + 1 = exp ((1− b) V (pi)) exp ((1− b) V (pj))

+ (exp ((1− b) V (pi))− 1) (exp ((1− b) V (pj))− 1)

exp ((1− b) V (pij)) = exp ((1− b) V (pi)) exp ((1− b) V (pj))

V (pij) = V (pi) + V (pj),

which is true iff V is additive.

Proof of Proposition 11, p. 6. The second derivative is
∂2τexp

b
(x)

∂x2 = (1 −
b) exp((1 − b)x) which is negative for all b > 1, because exp(·) is strictly
positive.

Proof of Proposition 12, p. 6. The second derivative is
∂2τ log

b
(x)

∂x2 = −(1−
b) · ((1− b)x+1)−2 which is negative for all b < 1, because −(1− b) is negative
and ((1− b)x + 1)−2 is positive for b < 1.

Proof of Lemma 13, p. 6. Both cases follow from definition 8 and theorem
8:

(1) If τ(x) = φ−1(x) then 〈τ(x)〉φ = φ−1 (
∑

i piφ (τ(x))) = τ (
∑

i pix) =

τ
(
〈x〉φlin

)
(2) If τ(x) = φ(x) then 〈x〉φ = φ−1 (

∑
i piφ (x)) = τ−1 (

∑
i piτ (x)) = τ−1(〈τ(x)〉φlin)

8.1.2 Section 3

Proof of Proposition 14, p. 9. Let pi and pj be two independent distrib-
utions then

V R
a (pij) =

1

1− a
ln

 n∑
i=1

m∑
j=1

pa
ij


=

1

1− a
ln

 n∑
i=1

m∑
j=1

pa
i p

a
j

 =
1

1− a
ln

 n∑
i=1

pa
i

m∑
j=1

pa
j


=

1

1− a
ln

(
n∑

i=1

pa
i

)
+

1

1− a
ln

 m∑
j=1

pa
j


= V R

a (pi) + V R
a (pj)

Rényi diversity is additive for all a ∈ R which proves proposition 14.
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Proof of Proposition 15, p. 9. For a → 1 we have V S which is known to
be strictly concave with respect to p. For all a ∈ (0, 1) we have p(−HV R

a )p′ =
a

1−a
> 0.

Proof of Proposition 16 and 17, p. 9. Proposition 16 was proved by Ben-
Bassat and Raviv (1978). Here we give a slightly corrected version of their
proof. Let p = (p1, 1− p1) then

∂2V R
a (p)

∂p2
1

=
a

1− a

(
apa−2

1 (1− p1)
a−2 −

(
pa−2

1 + (1− p1)
a−2

)
(pa

1 + (1− p1)
a)
)

(pa
1 + (1− p1))

2

Since a/(1 − a) < 0 for all a > 1 and (pa
1 + (1− p1))

2 > 0 the condition for
strict concavity can be written as

apa−2
1 (1− p1)

a−2 −
(
pa−2

1 + (1− p1)
a−2

)
(pa

1 + (1− p1)
a) > 0.

Dividing by pa−2
1 + (1− p1)

a−2 > 0 gives

a−
(
p2−a

1 + (1− p1)
2−a

)
(pa

1 + (1− p1)
a) > 0, (38)

where pa
1 + (1− p1)

a < 1 for all a > 1 such that

a−
(
p2−a

1 + (1− p1)
2−a

)
> 0. (39)

Now p2−a
1 + (1− p1)

2−a is maximal at p1 = 1 − p1 = 1
2

and therefore the
concavity condition (39) can be written as

a−
(

1

2

)1−a

> 0,

which is true for 1 < a < 2. For a = 2 the strict concavity condition (38) holds
iff

p1 > p2
1

which is true for all 0 < p1 < 1.

Proof of Proposition 18, p. 9. Ben-Bassat and Raviv (1978).

8.1.3 Section 4

Proof of Proposition 19, p. 11. Follows immediately from (21) and lemma
10.

Proof of Proposition 20, p. 11. Follows immediately from proposition 19).
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Proof of Proposition 21, p. 11. Let p ∈ C, r = 1 . . . n be the line index
(vertical direction) and s = 1 . . . n the row index (horizontal direction) of the
symmetric n × n Hessian HV G

b . Further define yr (p) := ln (pr) + 1, z(p) :=
e(1−b)V S(p) then

HV G
b =

z(p)
p1

+ (b− 1) y1 (p)2 z(p) (b− 1) y1 (p) y2 (p) z(p) . . . (b− 1) y1 (p) yn (p) z(p)

z(p)
p2

+ (b− 1) y2 (p)2 z(p) . . . (b− 1) y2 (p) yn (p) z(p)
. . .

...

z(p)
pn

+ (b− 1) yn (p)2 z(p)


.

Concavity criterion (5) implies

p(−HV G
b )p′ = z(p)︸ ︷︷ ︸

>0


n∑

r=1

pr︸ ︷︷ ︸
1

+ (b− 1) ·
n∑

r=1

n∑
s=1

pryr (p) psys (p)︸ ︷︷ ︸
(V S(p)−1)2


!
> 0

⇒ b
!
> 1− 1

(V S(p)− 1)2 =: g(V S(p)) (40)

From the well-known inequality 0 ≤ V S(p) ≤ ln(n), n ≥ 2 and limn→∞ g(ln(n)) =
limn→0 g(ln(n)) = 1 follows 0 ≤ g(V S(p)) ≤ g(ln(n)) < 1. Then, (40) is obvi-
ously true iff b ≥ 1.

Proof of Proposition 22, p. 11. Let p ∈ P , where pn = 1 − ∑n−1
i=1 pi,

r = 1 . . . n−1 be the line index (vertical direction) and s = 1 . . . n−1 the row
index (horizontal direction) of the symmetric (n− 1)× (n− 1) Hessian HV G

b .
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Further define yr (p) := ln
(

pr

pn

)
, z(p) := e(1−b)V S(p) then

HV G
b =

(
1
p1

+ 1
pn

)
z(p) + (b− 1) y1 (p)2 z(p) (b− 1) y1 (p) y2 (p) z(p) . . .(

1
p2

+ 1
pn

)
z(p) + (b− 1) y2 (p)2 z(p) . . .

. . .

(b− 1) y1 (p) yn−1 (p) z(p)

(b− 1) y2 (p) yn−1 (p) z(p)
...(

1
p2

+ 1
pn

)
z(p) + (b− 1) yn−1 (p)2 z(p)


Concavity criterion (5) implies

p(−HV G
b )p′ =

z(p)︸ ︷︷ ︸
>0


n−1∑
r=1

pr

(
1 +

∑n−1
r=1 pr

pn

)
︸ ︷︷ ︸

1−pn
pn

+ (b− 1) ·
(

ln (pn)
n−1∑
r=1

pr −
n−1∑
r=1

pr ln (pr)

)2

︸ ︷︷ ︸
(V S(p)+ln(pn))2


!
> 0

⇒ b > 1− 1− pn

pn (V S(p) + ln (pn))2

8.1.4 Section 5

Proof of Proposition 24, p. 13. Because V T
b (p) = τ exp

b

(
V R

b (p)
)

(cf. (30),

p. 13) non-aditivity of degree b follows from lemma 10, p. 6 and proposition
14, p. 14.

Proof of Proposition 25, p. 13. Follows immediately from proposition 24.

Proof of Proposition 26, p. 13. If p ∈ C we have p(−HvT
a )p′ = b

∑n
i=1 pb

i >
0 for all b > 0 and if p ∈ P , pn = 1 − ∑n−1

i=1 pi we have p(−HvT
a )p′ =

b
(∑n−1

i=1 pb
i + (1− pn)2pb−2

n

)
> 0 for all b > 0.
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8.1.5 Section 6

Proof of Proposition 27, p. 18. Because V SM
a,b (p) = τ exp

b

(
V R

a (p)
)

(cf. (37),

p. 16) non-aditivity of degree b follows from lemma 10, p. 6 and proposition
14, p. 14.

Proof of Proposition 28, p. 18. Follows immediately from proposition 27.

Proof of Proposition 29, p. 18. Let p ∈ C and r = 1 . . . n − 1 be the
line index (vertical direction) and s = 1 . . . n − 1 the row index (horizontal

direction) of the symmetric n × n Hessian HV SM
a,b . Further define y(p) :=∑n

r=1 pa
r , z (p) := − a

(1−a)2
y(p)

1−b
1−a

−2, a = ab− a2 and b = (a− 1)2 then

HV SM
a,b =

z (p) pa−2
1 (apa

1 + by(p)) az (p) pa−1
1 pa−1

2 . . . az (p) pa−1
1 pa−1

n

z (p) pa−2
2 (apa

2 + by(p)) . . . az (p) pa−1
2 pa−1

n

. . .
...

z (p) pa−2
n (apa

n + by(p))



Concavity criterion (5) implies

p(−HV SM
a,b )p′ =

a(1− 2a + ab)

(a− 1)2︸ ︷︷ ︸
>0

(
n∑

i=1

pa
i

) 1−b
1−a

︸ ︷︷ ︸
>0

!
> 0

⇒ a(1− 2a + ab) > 0

⇒ b >
2a− 1

a
= 1− 1− a

a
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Rényi, A., 1961. On measures of entropy and information. In: Proceedings of

the Fourth Berkeley Symposium on Mathematical Statistics and Probabil-
ity. Vol. 1. University of California Press, Berkeley, pp. 547–561.

Ricotta, C., 2003. On parametric evenness measures. Journal of theoretical
biology 222, 189–197.

Shannon, C., 1948. A mathematical theory of communication. Bell System
Technical Journal 27, 379–423.

Sharma, B., Mittal, D., 1975. New non-additive measures of entropy for
discrete probability distributions. The Journal of Mathematical Sciences
(Delhi) 10, 28–40.

Sharma, B., Mittal, D., 1977. New non-aditive measures of relative informa-
tion. Journal of Combinatorics Information & System Sciences 2 (4), 122–
132.

Sharma, B., Taneja, I., 1975. Entropy of type (α, β) and other generalized
measures in information theory. Metrika 22, 205–215.

Taneja, I., 1989. On generalized information measures and their applications.
In: Hawkes, P. (Ed.), Advances in Electronics and Electron Physics. Vol. 76.
Academic Press, pp. 327–413.

Theil, H., 1967. Economics and Information Theory. North-Holland, Amster-
dam.

Tsallis, C., 1988. Possible generalization of Boltzmann-Gibbs statistics. Jour-
nal of Statistical Physics 52 (1/2), 479–487.

28



Tsallis, C., 1994. What are the numbers that experiments provide? Qúımica
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