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Integrating renewable energy sources in sectors such as electricity, heat, and
transportation must be structured in an economic, technological, and emission-
efficient manner to address global environmental issues. Microgrids appear to
be the solution for large-scale renewable energy integration in these sectors. The
microgrid components must be optimally planned and operated to prevent high
costs, technical issues, and emissions. Existing approaches for optimal microgrid
planning and operation in the literature do not include a solution for e-mobility
infrastructure. As a consequence, a compact e-mobility infrastructure metho-
dology is provided. The development of e-mobility infrastructure has associated
uncertainties (short and long-term). As a result, a new stochastic method re-
ferred to as IGDM-DRO is proposed in this dissertation. The proposed method
provides a risk-averse strategy for microgrid planning and operation by including
long-term and short-term uncertainty related to e-mobility. The multi-cut ben-
der decomposition is applied for IGDM-DRO to prevent the suggested method’s
intractability. Finally, the deterministic and stochastic methodologies are com-
bined in a novel holistic approach for microgrid design and operation in terms of
cost and robustness. The proposed method is tested on a new settlement area
in Magdeburg, Germany, under three different EV development scenarios (nega-
tive, trend, and positive). The share for the number of electric vehicles reached
31 percent of conventional vehicles by the end of the planned horizon. As a
result, the microgrid’s overall cost has been increased by 2.3 to 2.9 percent per
electric vehicle. Three public electric vehicle charging stations will be required
in the investigated settlement area in trend 2031. The investigated settlement
area will require a total cost of 127,029 € in the trend scenario. To achieve full
robustness against long-term uncertainties, the cost of the microgrid needs to
be increased by 80 percent.
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Abstract 

Integrating renewable energy sources in sectors such as electricity, heat, and transportation 

must be structured in an economic, technological, and emission-efficient manner to address 

global environmental issues. Microgrids appear to be the solution for large-scale renewable 

energy integration in these sectors.  The microgrid components must be optimally planned 

and operated to prevent high costs, technical issues, and emissions. Existing approaches for 

optimal microgrid planning and operation in the literature do not include a solution for e-

mobility infrastructure. As a consequence, a compact e-mobility infrastructure methodology 

is provided. A retropolation approach for planning the rise in the number of electric vehicles, 

Monte-Carlo simulation for EV-behaviors, electric vehicle charging station (EVCS) numbers 

based on occupancy time, and public EVCS placement based on Monte-Carlo simulation are 

all included in the proposed method. Distributed energy resources and e-mobility 

infrastructure cause technical concerns in microgrid planning and operation, such as voltage 

issues. The above-mentioned methods and technical issues are used to develop a 

deterministic approach for microgrid planning and operation for e-mobility infrastructure. Flat 

and flexible tariffs are used to evaluate deterministic microgrid planning and operation. 

Furthermore, the development of e-mobility infrastructure has associated uncertainties (short 

and long-term). As a result, a new stochastic method referred to as IGDM-DRO is proposed in 

this dissertation. The proposed method provides a risk-averse strategy for microgrid planning 

and operation by including long-term and short-term uncertainty related to e-mobility. The 

multi-cut bender decomposition is applied for IGDM-DRO to prevent the suggested method's 

intractability. Finally, the deterministic and stochastic methodologies are combined in a novel 

holistic approach for microgrid design and operation in terms of cost and robustness. 

The proposed method is tested on a new settlement area in Magdeburg, Germany, under 

three different EV development scenarios (negative, trend, and positive). The share for the 

number of electric vehicles reached 31 percent of conventional vehicles by the end of the 

planned horizon. As a result, the microgrid's overall cost has been increased by 2.3 to 2.9 

percent per electric vehicle. Three public electric vehicle charging stations will be required in 

the investigated settlement area in trend 2031. The investigated settlement area will require 

a total cost of 127,029 € in the trend scenario. To achieve full robustness against long-term 

uncertainties, the cost of the microgrid needs to be increased by 80 percent. If the confidence 

level is reduced to 96 percent by including short-term uncertainty, the robustness of around 

60 percent will be obtained. With the robustness of the allowable budget of 80 percent and 

confidence level of 96 percent, 66.7 percent of the cost has been increased as compared 

deterministic approach in the trend scenario in 2031. 
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Kurzfassung 

Die Integration erneuerbarer Energiequellen in Sektoren wie Strom, Wärme und Verkehr muss 

auf wirtschaftliche, technologische und emissionsarme Weise strukturiert werden, um globale 

Umweltprobleme anzugehen. Micro Grids scheinen die Lösung für eine groß angelegte 

Integration erneuerbarer Energien in diesen Sektoren zu sein.  Die Microgrid-Komponenten 

müssen optimal geplant und betrieben werden, um hohe Kosten, technische Probleme und 

Emissionen zu vermeiden. Bestehende Ansätze für optimale Planung und Betrieb in der 

Literatur beinhalten keine Lösung für E-Mobilitätsinfrastrukturen. Daher wird eine kompakte 

E-Mobilitätsinfrastruktur-Methodik vorgestellt. Die vorgeschlagene Methode umfasst einen 

Retropolationsansatz für die Planung der stetig steigenden Anzahl von Elektrofahrzeugen, 

eine Monte-Carlo-Simulation für das Verhalten von Elektrofahrzeugen, die Anzahl von 

öffentlicher Ladeinfrastrukture auf basis der Belegungszeit und die Platzierung öffentlicher 

Ladeinfrastrukture auf der Grundlage einer Monte-Carlo-Simulation. Dezentrale 

Erzeugungsanlagen und E-Mobilitätsinfrastruktur verursachen technische Probleme bei der 

Planung und dem Betrieb von Micro Grids, wie z.B. Spannungsprobleme. Die oben genannten 

technischen Methoden und Parameter werden verwendet, um einen deterministischen 

Ansatz für die Planung und den Betrieb von Micro Grids für E-Mobilitätsinfrastruktur zu 

entwickeln. Fest und flexible Tarife werden verwendet, um die deterministische 

Mikronetzplanung und den Betrieb zu bewerten. Darüber hinaus ist die Entwicklung der E-

Mobilitätsinfrastruktur mit Unsicherheiten (kurz- und langfristig) behaftet. Aus diesem Grund 

wird in dieser Dissertation eine neue stochastische Methode namens IGDM-DRO 

vorgeschlagen. Die vorgeschlagene Methode bietet eine risikoaverse Strategie für die Planung 

und den Betrieb von Micro Grids, indem sie langfristige und kurzfristige Unsicherheiten im 

Zusammenhang mit der E-Mobilität berücksichtigt. Die Multi-Cut-Bender-Zerlegung wird für 

IGDM-DRO angewandt, um die Unlösbarkeit der vorgeschlagenen Methode zu verhindern. 

Schließlich werden die deterministischen und stochastischen Methoden in einem neuartigen 

ganzheitlichen Ansatz für die Planung und den Betrieb von Micro Grids in Bezug auf Kosten 

und Robustheit kombiniert. 

Die vorgeschlagene Methode wird in einem neuen Siedlungsgebiet in Magdeburg, 

Deutschland, unter drei verschiedenen EV-Entwicklungsszenarien (negativ, Trend und positiv) 

getestet. Die Anzahl der Elektrofahrzeuge erreichte bis zum Ende des Planungshorizonts 31 % 

der konventionellen Fahrzeuge. Infolgedessen sind die Gesamtkosten des Micro Grids um 2,3 

bis 2,9 Prozent pro Elektrofahrzeug gestiegen. Im Trend 2031 werden im untersuchten 

Siedlungsgebiet drei öffentliche Ladeinfrastrukture für Elektrofahrzeuge benötigt.  
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Für das untersuchte Siedlungsgebiet werden im Trendszenario Gesamtkosten von 127.029 € 

berechnet. Um die volle Robustheit gegenüber langfristigen Unsicherheiten zu erreichen, 

müssen die Kosten für das Microgrid um 80 Prozent erhöht werden. Wird das Konfidenzniveau 

durch Einbeziehung der kurzfristigen Unsicherheit auf 96 % gesenkt, ergibt sich eine 

Robustheit von etwa 60 %. Bei einer Robustheit des zulässigen Budgets von 80 % und einem 

Konfidenzniveau von 96 % sind die Kosten um 66,7 % im Vergleich zum deterministischen 

Ansatz im Trendszenario 2031 erhöht. 
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1 Introduction 

The integration of renewable energy sources in the heat, electricity, gas, and mobility sectors 

has huge potential for reducing greenhouse gases (GHG). The smooth energy transition needs 

the interconnection between these sectors using sector coupling technologies such as heat 

pumps, electrolyzers, and fuel cells. Due to the coupling of these sectors, technologies such 

as heat pumps will increase renewable energy sources by converting electrical energy into 

heat energy. Furthermore, the production from renewable energy sources can be stored in 

the form of heat in a thermal energy storage system to be used later.  The GHG emissions by 

different sectors in Germany are shown in Figure 1.1. 

 

Figure 1.1 German greenhouse gas emissions by sector [1] 

Germany aims to be an emission-free country by 2045 [1]. GHG reductions are targeted to be 

reduced by at least 65 percent by 2030 and 88 percent by 2040 compared to 1990 levels [2]. 

To achieve these targets, renewable energy sources must replace fossil fuels in all sectors. The 

transformation of electrical energy into heat and fuel is termed Power to X. As the need for 

fuel in all sectors is enormous, an immense installation and production of renewable energy 

sources will be necessary. As a result, traditional grids will comprise a diverse range of 

renewable energy sources (RES).  



 

2 

Consequently, the operation of these grids will be changed [3]. With the change in operation, 

many challenges arise from the perspective of grid operators, end-user, and markets. The 

challenges include system stability, planning, control, reliability, and sustainability. Due to 

stability issues, e.g. congestion and voltage problems, the integration of RES is limited. The 

local use of the produced renewable energy is one way to avoid some stability problems. Due 

to this, the conventional grid will be transformed from traditional centralized grids into a 

distributed system. 

The concept of distributed grids can be effective in cost and technical constraints [4]. Some of 

these distributed grids can be designed and emerge as microgrids. The microgrid's purpose is 

to offer public and private consumers electricity and heat that is reliable, economical, and 

clean, with a high proportion of renewable energy sources. A microgrid is assumed to be a 

single structural entity operated with interconnected generation, storage, and load, as shown 

in Figure 1.2 [5]. Microgrids have been the focus of attention in the energy sector over the 

past decade as a crucial component of the future smart grid. A microgrid consists of renewable 

energy resources, energy storage systems, and controllable and uncontrollable loads. It can 

be either operated in grid-connected mode or islanded mode. Furthermore, AC and DC 

microgrids are also quantified in the field of research [6]. 

 

Figure 1.2 Microgrid structure [5] 

The microgrid's load might be of several types, such as residential, commercial, industrial, or 

mixed load. Similarly, the generation consists of combined heat and power (CHP), backup 

generators, and renewable energy sources such as photovoltaic (PV) and wind power. 
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Different types of energy storage can also be integrated into microgrids for numerous 

advantages. For instance, electrical energy storage systems (EESS), thermal energy 

storage (TESS), and hydrogen energy storage systems (HESS) can participate in load balancing 

and other services such as peak shaving demand response and ancillary services. The goal of 

the microgrid should be the large-scale integration of renewable energy sources. If the 

integration is unplanned, the grid's secure and safe functioning will be jeopardized. This is 

caused by the intermittent nature of renewable energy sources. Due to this, the improvement 

in the integration of RES in the microgrid got hype in the field of research. Apart from the 

electrical supply system, the heat supply and the gas system can also be part of the microgrid 

at a community level. These types of microgrids are often called multi-energy microgrids [7]. 

1.1 Motivation and goal 

The primary GHG emissions in the transport sector are caused by internal combustion 

engines (ICE). The use of ICE facilitates the carbon dioxide emissions that cause global 

warming and the depletion of fossil fuels. To mitigate the emissions frm the transport sector, 

electric vehicles, replacing the ICEs, have been the technology that provides economic and 

environmental benefits by integrating the transport and energy sector. At the same time, 

there are calls for a license ban for combustion engines from 2030. In the long-term, these will 

be replaced by lower-emission or zero-emission vehicles, such as hybrid and electric 

vehicles or fuel cell vehicles [8]. Even if the number of the electric vehicle increased as per 

requirements, the high amount of use for these electric vehicles is still hampered by the 

acquisition costs, the range, and, in particular, the lack of charging infrastructure. A high 

amount of electric vehicles require a significant quantity of charging energy. For that reason, 

a substantial proportion of renewable energy sources have to be used to power the e-mobility 

infrastructure. To secure their local renewable supply, electrical vehicles (EV) and electric 

vehicle charging stations (EVCS) must be forecasted, and the amount for renewable power 

supply should be planned.  

The low-voltage grid usually powers the EVCS and EV. Furthermore, installed renewables such 

as PV are mostly integrated into the middle and low voltage grid [9]. However, the existing 

power grid will not always be able to handle the additional power and adverse impacts due to 

the large-scale deployment. A microgrid can be a solution for integrating a high amount of 

renewables and e-mobility infrastructure in a low-voltage grid. Nevertheless, the components 

need to be optimally planned to avoid high costs, technical problems, and high emissions. 

Motivated by the alternatives to power the sustainable e-mobility infrastructure alongside 

other demands, optimal microgrid planning and operation are needed.  
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The best planning and operation can be realized for a new settlement area where sustainable 

energy and power supply may be developed for a green, efficient, and smart infrastructure-

based community. However, the statistic (number of people, house, house types, etc.), 

generation, and consumption need to be planned based on ground realities from scratch. As 

a result, complex analytical and numerical solutions are required in order to ensure well-

handled decision-making for the new settlement area.  

A microgrid's decision-making must be planned for the future, considering affecting variables. 

Furthermore, the investment in the microgrid needs to be backed up by confidence in smooth 

and secure operation. An overestimated microgrid is a waste of money, whereas 

underestimated one has issues such as a high amount of energy imported from the 

conventional grid. Optimization algorithms solve these problems with optimal planning and 

optimal operation of the microgrid. Uncertain or unavailable data that are needed to estimate 

the future effect of microgrids for decision-making are the major hurdles in efficient microgrid 

planning and operation. Significantly, the development of e-mobility infrastructure has been 

fraught with short and long-term uncertainties in nature. The following points address the 

risks associated with the e-mobility infrastructure: 

 Short-term uncertainty: The arrival of electric vehicles for charging is 

unpredictable. As a result, reliable forecasting is impossible. 

 Long-term uncertainty: The increase in the number of EVCS is influenced by direct 

and indirect factors. Some of the determining elements are listed below. 

o Direct factor 

 The rise in the number of EV  

o Indirect factors 

 Development of EV battery technology 

 Development of charging point technology 

 Developments in the government regulation 

 Development of public infrastructure 

 Announcements of electric vehicle subsidies 

 Political infrastructure goals 

 Development of other alternative transport technologies, such as 

synthetic fuels and fuel cell vehicles 

Due to these factors, microgrid planning and operation need to consider multi-type 

uncertainties regarding e-mobility infrastructure. Figure 1.3 shows different rise rates for the 

number of EVCS in Germany.  
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Figure 1.3 Development scenarios of EVCS forecasted [10] 

The different scenarios show that the forecasts are based on past experiences. However, the 

number of EVCS can be triggered toward positive or negative due to the direct and indirect 

influencing factors. For that reason, the forecast has a long-term uncertainty that needs to be 

modeled for a risk-averse situation in microgrid decision-making. Furthermore, the necessity 

of risk-free decision-making is essential for optimal microgrid planning and operation in the 

face of short-term and long-term uncertainty. The long-term uncertainty is more important 

for the planning problem, while the short-term uncertainty has a higher impact on the 

operation problem. 

1.2 State-of-the-art and research gaps 

Microgrids are being studied in terms of technical, technological, organizational, legal, and 

economic benefits. These main issues are summarized in Table 1.1 [11].  

Table 1.1 Main issues concerned the implementation of Microgrid [11] 

Issues Challenges 

Technical Appropriate work coordination between generators, and protection systems, 

maintaining the stability of voltage and frequency in grids 

Technological 

 

Acceptable equipment for energy generation (solar panels, wind turbines, 

cogeneration equipment) 

Organizational Developed coordination and operation between all participants of the energy 

sector 

Legal The legal opportunity to sell the excesses of electrical energy to the centralized 

grid 

Economic The developed market for electrical energy and economic benefits for users 

(usage and transit tariffs) 

Environmental Planning and operation with as low as possible emissions 
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Table 1.1 points out some of the challenges in the implementation of microgrids. However, the 

challenges regarding microgrids are subject to demography, types, planning periods, target 

for the installation, and so on. In the current study, the grid-connected microgrid is designed, 

planned, and operated for German conditions using the following methods: 

 Deterministic optimal microgrid planning and operation from scratch 

 Development in the e-mobility sector 

 Information gap decision method based distributional robust optimization 

 Microgrid planning and operation under the white tariff system 

 Deterministic microgrid planning and operation from scratch  

The optimal microgrid planning and operation have been studied vastly. Microgrid planning 

and operation considering loads, renewables, and energy storage are proposed in [12,13]. For 

the promotion of renewables and cost reduction, energy storage and demand responses are 

included in these studies. Furthermore, the multi-energy microgrid with the aim of optimizing 

the portfolio mix for the components is proposed in [14,15]. In this study, generation units 

such as Combined Heat and Power (CHP), PV, and wind systems are alongside the energy 

storage units such as EESS and TESS to satisfy the demand. The Power to Heat (P2H) sector 

coupling complements the analysis. Renewable energy-based P2H technology uses RES power 

to generate useful heat energy for consumers with the aim of decreasing curtailments [16]. 

The study claimed that heat pumps are more efficient than other forms of P2H technologies. 

Electric boilers have low investment expenditures, operating profitably with only a few full 

load hours, but the heat pumps can allow heating and cooling [17]. However, a low-

temperature heating grid needed to be modeled to supply the heating for a community using 

effective technologies such as heat pumps or fuel cells. The different case studies based on 

the low-temperature heating grid are given in Annex B.3. The distributed cogeneration of heat 

and power has been admitted as an efficient decentralization of the power systems that have 

decreased the maintenance cost of the networks and nonrational losses of energy [18]. The 

P2H can be categorized as centralized and decentralized [19]. The centralized heating grid 

outperforms distributed heating in terms of the cost and efficiency of the generating 

units [20]. The distributed heating system would be ideal for preventing heat losses if the 

houses in the settlement area were spread out across a vast region.  The TESS can be used in 

a district heating system with a hydrogen system to increase the system efficiency and reduce 

the cost by increasing self-consumption [21]. Furthermore, the TESS construction is more 

logical as a centralized unit. Further information about the categorization of P2H can be seen 

in Annex A. A multi-energy microgrid considering the P2H sector coupling is shown in Figure 

1.4. 
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Figure 1.4 Interconnections of P2H with electricity and district heating networks [19] 

In [22], the authors show that P2H systems have delivered a surplus of renewable energy 

sources (RES) above the self-consumption level with a 35 percent reduction in curtailments. 

In these publications, optimal planning and operation are usually solved in two stages. The 

first stage identifies the optimal sizes and capacities of the components, and the second stage 

solves the operation problem [23]. Mostly, the heat and power sectors are considered in these 

studies. Combined cooling, heating, and electricity are considered in [24]. However, technical 

constraints such as losses in the heating grid and voltage limits in the electricity grid are 

lacking. This issue has been solved by introducing linear equations for the grids in [25]. 

Formulating a second-order cone for the optimal power flow for energy storage planning with 

transformers is another attempt to incorporate grid technical constraints [24]. A few pieces of 

literature have considered the combined technical constraints of heat and power grid.  The 

following methods are proposed for a new settlement area based on the above-stated 

literature. 

 A microgrid from scratch is proposed based on the following methodologies 

o Number of people and house types (Single-family houses,multi-family houses) 

o The heating load (space heating and district water heating (DHW)) and 

Seasonal Coefficient of performance (SCOP) for the heat pump are calculated 

based on  

 House types and number of the person 

 Outside temperature and day types 

o The PV plan is based on the available area for the settlement 
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 Combined microgrid planning and operation for heat, power, and e-mobility sectors  

o The deterministic optimization method for microgrid planning and operation 

uses mixed-integer nonlinear programming (MINP) with the consideration of 

capital cost, operation cost, and penalty cost for emission minimization. 

 Consideration of changing cost for the emission certificates 

 low-temperature district heating grid model with central heating 

sources 

 Consideration of low voltage power grid model 

 Development in the e-mobility sector 

The studies neglect the e-mobility sector, especially the inclusion of EVCS as an additional 

electrical load in the planning and operation horizon. However, in [26–28], the electrical 

vehicle charging load is generally shown by a probability distribution and has been included in 

considering a unified aggregator. This will lead to an unreal realization of EVCS planning as the 

EV load and the number of EVCS is interdependently independent. This raises the question of 

how many EVCS are sufficient for how many EVs. Hence, the number of EVCS in a community 

is an important problem for planning and operation. Apart from the number of EVCS, the 

placement of EVCS is also important due to the high load associated. The authors of [29] 

present an optimization process for optimal siting and sizing with road networks using graph 

theory. A genetic optimization-based algorithm considering cost, EV energy losses, and power 

system losses has been presented [30]. An EVCS placement algorithm has been shown for 

under-construction traffic networks by minimizing transportation waste costs using queuing 

theory [31]. A heuristic planning method considering the EV charging demand rather than the 

traffic model has been present in [32].  The authors of [33] developed a location model 

considering an EV driver's existing activities. While a colony optimization has been presented 

for optimal placement considering cost, real power loss, voltage instability, and traffic flow 

constraints in [34,35]. A particle swarm optimization (PSO) has shown a better and faster 

convergence for this problem in [36–38]. Algorithms such as genetic algorithms (GA) and 

Teaching-learning based algorithms have also been used for this problem [39–46]. In addition 

to heuristic techniques, the primal-dual interior-point algorithm has been used to find the 

optimal location depending on coverage and environmental factors [47]. Greedy algorithms 

and linear programming have also been used for this issue in [48,49].  In the above-stated 

methods, the multi-period planning for the development in the e-mobility sector, e.g., the rise 

in the number of EVs and EVCS, the realistic random behavior of EV depending on the traffic 

model is still lacking the best of the author’s knowledge.  
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Furthermore, in a planning problem, the placement for EVCS is probabilistic due to the high 

number of impacting factors, such as the electrical grid structure, space, accessibility, and the 

quantity of EVs expected to be charged. To consider these different influences, Monte-Carlo 

simulation-based placement strategy is useful. In this dissertation, the following methods are 

contributed to the field of e-mobility development. 

 Model for e-mobility infrastructure 

o Forecast method for the number of EVs based on retropolation and 

extrapolation 

o Monte-Carlo simulation for EV behavior 

o The determination of the number of EVCS based on the occupancy time 

o EVCS placement algorithm based on Monte-Carlo simulation 

It is necessary that the e-mobility infrastructure must be planned in conjunction with the 

electrical and heat grid to be powered by high renewables. 

For that reason, a new microgrid planning and operation strategy have been developed for 

the rise of e-mobility infrastructure based on cost and changing policies on emissions. The 

proposed method considers the linking between traffic, low voltage grid, low-temperature 

heat grid, technical constraints, and operational strategies of the components. 

 Information gap decision method - distributional robust optimization 

In addition to uncertainties related to e-mobility in the planning problem, the uncertainties 

might have huge impacts. To consider the effect of the uncertainty, the methods used in the 

literature are summarized in Figure 1.5. 

 
Figure 1.5 Available uncertainty modeling techniques [50] 

The randomness associated with renewable generation is considered for sizing multi-energy 

microgrids using the interval optimization method in [51]. The load is considered as an 
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uncertain parameter in [52]. Microgrid planning and operation have mainly been studied using 

stochastic programming and robust optimization to tackle uncertainties. Stochastic 

programming is used for generating output uncertainty in [53]. However, stochastic 

programming needs high computational time [54]. The planning and operation problem has 

been solved with robust optimization [55]. However, the robust optimization resulted in a 

conservative solution due to the worst-case consideration. The disadvantages of stochastic 

programming and robust optimization are overcome by distribution robust 

optimization (DRO) in [56]. In this modeling method, the unknown distribution of the 

uncertain variable is believed to be in an ambiguity set that comprises all possible distributions 

of the uncertain variable. An extensive dataset is not required to build a probability 

distribution function (PDF), as is the case with probabilistic modeling, because the probability 

distribution is created based on the partial information provided. In the ambiguity set, DRO 

optimizes the system for the worst-case distribution. Moment-based, distance-based, 

structural, hypothesis test-based, and likelihood-based ambiguity sets can all be categorized 

in DRO. Moment-based ambiguity sets, in which the distributions exchange moment 

information, and distance-based ambiguity sets, in which distributions near a reference 

distribution with a preset probability discrepancy metric are chosen. The most widely 

employed metrics are Wasserstein-distance, phi-divergence, KL-divergence, and Prokhorov-

metric. 

Wasserstein-based DRO was used to model the wind power uncertainty for a rural microgrid 

to adjust economy and robustness [54].  For the energy management of an islanded microgrid, 

the wind power uncertainty was modeled using a moment-based ambiguity set in this study.  

Although these strategies are regarded as short-term uncertainties, there is a lack of modeling 

short-term uncertainties in EVs optimal planning and operation problems. The EV traffic is 

considered uncertain and solved the planning and operation using KL divergence for highways 

in [57]. As the EV traffic in the cities will be different, the short-term uncertainty regarding EVs 

must be considered in the planning and operation. 

Although the above-stated method considers planning and operation for mix-portfolio for 

DERs, these are solved without any uncertainty or just short-term uncertainties. However, the 

long-term uncertainty has not been considered. A study that evaluated long-term 

uncertainties regarding the declining cost of the battery is solved with robust 

optimization  [58]. The long-term uncertainties regarding the rise in the EVCS are still lacking. 

Due to this, there is a need for a method based on DRO considering short-term and long-term 

uncertainty regarding e-mobility infrastructure. This is because the growth of e-mobility 
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infrastructure and the risks that come with it are imminent. To reduce the financial, emission, 

and technical risk, novel approaches considering the rise in EVCS uncertainty are needed.  

In the dissertation, a new robust decision-making method for microgrids in a new settlement 

area has been developed. The proposed method is a novel stochastic optimal microgrid 

planning and operation method considering the long and short-term uncertainty. The 

proposed method is claimed to be recommended as compared to deterministic microgrid 

planning and operation, as the risk-averse level can be realized when uncertainties occur. The 

risk-averse levels then enable the decision-makers to decide on the microgrid planning and 

operation based on robustness for multi-type uncertainty. Especially, consideration of the 

multi-type uncertainties enables a better realization of a robust microgrid than the 

consideration of only short-term uncertainties. The contributed methods developed for the 

stochastic microgrid planning and operation are as follows: 

 Information gap decision method (IGDM) - distributional robust optimization (DRO) is 

developed for optimal planning and operation of the microgrid under the rise in the 

EV and EVCS uncertainty. 

 The proposition of scalability of IGDM-DRO using the multi-cut bender decomposition 

method 

Finally, a holistic approach that combines the deterministic and stochastic optimization 

approach under consideration of multi-type uncertainties enables optimally planning and 

operating of a microgrid. The proposed combined approach is claimed to be beneficial for 

decision-makers to increase the local use of renewables when the e-mobility developed with 

associated 

 Microgrid planning and operation under the flexible tariff system 

The application of battery storage systems in a microgrid application poses several 

advantages. Since the high amount of intermittent generation of renewable energy sources 

can be managed using battery storage systems. An analysis should be performed under 

different conditions, such as the use of different energy tariffs, since smart meters allow the 

application of flexible energy prices [59]. The study presents incentives such as feed-in and 

energy tariffs as important input terms for maximizing self-consumption. Such flexible tariffs 

are often referred to as off-peak and on-peak price levels, where the battery charges at off-

peak price times and discharges at on-peak times. Introduced in Brazil, the white tariff realizes 

this principle [60]. It is an hourly tariff and can be applied efficiently to use storage and other 

distributed energy resources. Introducing the white tariff in Germany with different 
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production and load profiles can be beneficial. The maximization of self-consumption is 

another important interest factor in a microgrid application.  

Local energy consumption from renewable energy sources is recommended, which reduces 

the grid supply. The use of the battery energy storage system for efficient energy use, such as 

peak shaving, voltage support, reliability, and integration of renewable energy sources, has 

been studied in [61]. The studies show the usage of storage management for power balancing 

by storing energy at off-peak hours and distributing it at on-peak hours. Furthermore, the 

support of the distribution grid by energy storage systems has been widely studied, e.g., 

in [62]. Grid-connected microgrids with battery energy storage systems (BESS) in a different 

configuration and under consideration of time-of-use tariffs got more attention [63,64]. The 

BESS studies in terms of self-consumption based on demand forecasting have been studied 

in [65–70]. Similarly, self-consumption with different electricity prices has been analyzed 

in [71]. It is still being studied how to combine multiple distributed energy resources with 

electrical energy storage systems (EESS) to generate technological and economic 

benefits [72]. Investigation of EESS coupled with PV to facilitate the consumer benefit from 

feed-in tariffs incentive has been done in [73]. The study uses mixed-integer linear 

programming (MILP) to solve the optimization problem. The studies [74,75] considered the 

optimization of different tariff structures. Furthermore, BESS with PV and time-varying tariffs 

to decrease the operational cost has been studied in [76–80].  However, an economical tariff 

system that benefits the microgrid owner and consumers need to be proposed to motivate 

the higher integration of renewables. 

With the rise in EVs, the local use of renewable energy in microgrids should be supported by 

the implementation of ESS. The implementation of ESS can be cost-effective with a potentially 

optimistic tariff system. 

 The microgrid's flexible tariff system is introduced to support local energy use 

compared with a typical flat tariff.  

1.3 Outline, assumptions, and limitations of the thesis 

The thesis is composed of seven parts. The first chapter provided general information about 

the background, motivation, state of the art, and the work's scientific contribution. In the 

second chapter, the components of the microgrid are modeled, including the DERs, load 

profiles, grids, and statistical models. The e-mobility infrastructure is presented in chapter 3, 

where the number of EVs is analyzed, followed by the EV behavior modeling. Furthermore, 
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Chapter 3 also consists of the methodologies for the number of public EVCS and the placement 

for the EVCS.  

The optimization methodologies to optimally plan and operate the microgrid are presented in 

chapter 4. Chapter 4 is divided into deterministic and stochastic optimization methodologies. 

The stochastic methods presented in chapter 4 consist of the information gap decision method 

and Distributional robust optimization. The modeling of the flexible tariff system is also 

described in chapter 4. Chapter 5 provides the results and discussion for the e-mobility 

infrastructure, deterministic optimization approach, and stochastic optimization approach for 

microgrid planning and operation. Furthermore, Chapter 5 presents a sensitivity analysis on 

the DERs, the comparison between flexible and flat tariff systems, and the comparison 

between deterministic and the proposed stochastic method.  

Finally, Chapter 6 concludes the entire study, and the thesis-based outlook is outlined. 

References, a list of symbols/abbreviations, a List of Tables, a List of Figures, and an Appendix 

make up the rest of the dissertation. 

Several assumptions are made in light of the current dissertation. Firstly, the microgrid will 

usually be operated using a grid operator similar to a utility grid. However, in the present 

study, the role and functionality of a grid operator are neglected. However, the 

recommendation based on the current studies is not contrary to the role of the grid operators. 

Furthermore, the control issues related to microgrid operation are out of this dissertation's 

scope. Secondly, The regulatory framework for a completely integrated contemporary 

microgrid connected to the current low-voltage grids is mainly ignored. Thirdly, due to new 

settlement descriptions, some methods, such as the computation of heating loads, are limited 

to the condition of Germany. However, other modeling methodologies related to e-mobility 

deterministic and stochastic optimizations are transferable to a diverse amount of case 

studies. Finally, the load profiles in the second resolution are interpolated into hours 

resolution due to the high computation time required by the optimization algorithm. Due to 

this, the peaks that occur for a small amount of time is lost. This limitation must be considered 

in the future as some of the technical problems in the microgrid occurs in a small resolution 

and create a high impact.  
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2 Component Modeling 

The microgrid can work islanded and grid-connected. The most important microgrid planning 

and operation parameters are cost and CO2 emissions. Due to this, an economical and 

sustainable microgrid needs to be optimized for these parameters.  The microgrid consists of 

PV systems, wind systems, heat pumps, EESS, TESS, Fuel cells, electrolyzers, HESS, and electric 

vehicle charging stations, as shown in Figure 2.1. Renewable energy sources, energy storage 

systems, and sector coupling technologies are referred to DERs in the microgrid. 

 
Figure 2.1 Microgrid Model 

2.1 Statistical model for a new settlement area planning 

The microgrid planning and operation for new settlement areas need planning from scratch. 

The planning from scratch included the statistic regarding the settlement area. The house 

types are distinguished into single-family houses (SFH), multifamily houses (MFH), and 

commercial real estate (CRE). An SFH comprises one to five people, whereas an MFH is made 

up of 12 or 16 flats [81]. For a single-family house, the area is assumed to be 140 m2, whereas 

the multi-family house with 12 dwellings and 16 dwellings is considered 950 m2 and 1170 m2 

respectively [81].  Commercial real estate is estimated to be equal to a medium-sized office 

and is regarded as 400 m2 [81]. All the buildings, carports, and commercial real estate are 

equipped with PV. The roofs of the SFH are mostly at the slope with a 30-degree south 

exposure. Similarly, the dwelling in the MFH has the same ratio of people. The distribution of 

persons over the SFH and dwellings in the MFH is random.  

2.2 Electrical load modeling 

The load profile is a curve form that shows how the load changes over time [82]. The load will 

vary depending on the type of selection (residential or commercial), season, weather, entity 
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dispersion, size, and location at any given time. The load profiles are used in 

planninggeneration and accounting for energy derived from renewable energy sources. The 

conventional way of creating load profiles is to record consumption per time unit [82]. In the 

absence of a real load profile, synthetic load profiles have been developed for research 

purposes. Synthetic load profiles have been developed to depict the energy consumption for 

various building types. Standard load profiles are usually available for planning and 

operation [83]. However, because the total load of the houses in the microgrid adds up, true 

microgrid planning behavior is impossible to achieve. Furthermore, the high peak of EV load 

aggravates the situation. As a result, the larger capacity of the microgrid component can be 

seen, perhaps leading to an increase in unplanned costs. As a result, the recorded load profiles 

reveal the greater potential for microgrid planning and operation, which was used in the 

current study for the electrical load profile. 

The identification of a practical approach to the planning of sector coupling technologies for 

settlement relies heavily on load profiles. Heating and electricity loads in Germany are 

governed by the type of building, the number of people in single-family homes or the number 

of flats in multi-family homes, and the country's climate zone. In Germany, the annual energy 

for a residential building is determined according to  EnEV (energy saving ordinance) using DIN 

V 4701-10 and DIN EN 832 standards [84].  Based on the number of persons, the household 

load profiles are assigned. The electrical load profiles for this work have been taken from the 

database of HTW Berlin- University of Applied Sciences. The data for the electric load profiles 

were taken from the field test experiment ‘Moderne Energiesparsysteme in Haushalten by the 

“Institut für ZunkunftsEnergieSysteme” (IZES) in the years 2008 through 2011 using smart 

meters for 497 households. Of the 497 household profiles, 74 were chosen from a single grid 

to have proximity to each other. The annual electricity consumption is between 1.4 MWh and 

8.6 MWh [85]. The electricity consumption depends on the number of the person in the 

household. Under consideration of the annual electricity consumption, the load profiles were 

picked from the database. The annual electricity consumption for different households is 

given in Table 2.1. 

Table 2.1 Annual electricity consumption for different household sizes [86] [87] 

Household 

size 

Annual electricity consumption for SFH 

in MWh 

Annual electricity consumption for MFH 

in MWh 

1 2.3 1.4 

2 3 2 

3 3.6 2.6 

4 4 3 

5 5 3.6 
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The available database in the resolution of seconds. By averaging the data points, the second 

resolution is turned into an hour resolution for a span of 1 year time period for the current 

study. The comparison of a second and hour resolution load profile for a day is given in 

Annex B.1. For the single-family houses, five different types of load profiles are selected from 

the database under the consideration of Table 2.1. For the SFH, the load profiles are available 

in a variety. The MFH, on the other hand, is larger than a 5-person household. A combination 

of load profiles is employed for the load profile assignment for an MFH with more than 5 

persons. A publicly available profile was also utilized to mimic energy demand in commercial 

real estate  [88]. Figure 2.2 depicts the load profiles for a single day. The electrical load profile 

is then assigned to the houses of the settlement area for 365 days of the year in a 1-hour 

resolution. 

 
Figure 2.2 Electrical load profiles 

2.3 Heating load modeling 

The houses in the settlement are considered low-energy passive houses according to DIN V 

4701-10 and DIN EN 832 standards. The houses are categorized by the amount of annual 

heating energy required in kWh/m²a to maintain a specific indoor temperature of 19 °C. 

Passive houses need annual heating and cooling load of 10 kWh/m²a to 15 kWh/m²a, whereas 

an old building without insulation requires around 400 kWh/m²a [81]. The thermal 

transmittance (also known as U-value) of these buildings with better-insulated windows can 

be as low as 0.7 W/m²K [81]. The heating load is defined as the amount of energy in the form 

of heat that needs to be added to a building to maintain a specified temperature. The indoor 

temperature that should be maintained is assumed as 19 °C for the settlement area. Heating 

load profiles are classified into space heating and domestic hot water (DHW). In the present 
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study, the heating load is determined by using VDI 4655 standard. The set of 10-day type 

categories is shown in Table 2.2. Sundays and public holidays are classified as holidays, 

whereas the rest of the days are classified as workdays [89]. 

Table 2.2 Typical day categories [89] 

Season       Workday (W) 

Fine (H)    Cloudy (B) 

      Holiday (S) 

Fine (H)      Cloudy (B) 

Transition (U) UWH         UWB USH             USB 

Summer (S)            SWX            SSX 

Winter (W) WWH        WWB WSH           WSB 

The average cloud amount (B) is recorded from 1 to 8. If the average cloud amount is less than 

5, the day is considered as Fine (H), otherwise, cloudy is considered [88]. A distinction has not 

been made for cloudy/fine in summer (S) because the space heating demand is the same for 

both days. If the average per-day temperature (𝑇m) is between 5 °C and 15 °C, and the day is 

defined as a transition day (U). If the average per day temperature is greater than 15 °C, the 

day is categorized as a summer day, and alternatively, if 𝑇m is below 5 oC the day is considered 

winter day (W). As a result, the days from 1st January to 15th March and 1st November to 31st 

December are categorized as winter days. From 1st June to 28th August, the days are classed 

as Summer, and the remaining days are classified as a transition. Every seventh day has been 

treated as a holiday. The cloudy days are randomly chosen and assumed. The data are 

generated using German weather seasonal conditions of DWD [89]. The temperature has been 

measured 2 meters above the ground level on a 24-hour based.  

The heating load has been calculated by using the heating energy factor 𝐹DT The heating 

energy factor is defined as given in (2.1) [89]. 

𝐹DT =
(𝑇o − 𝑇m) 𝜙h,DT

∑[(𝑇o − 𝑇m) 𝑁DT 𝜙h,DT]
 

 (2.1) 

where, 𝑇o is the defined temperature above which no heating is required and 𝜙h,DT is the 

factor for deviation of each day type category. It includes special influences such as solar 

radiation in the investigated zones.  𝜙h,DT also depend on the type of house, as SFH has a 

different heating factor than MFH for the everyday type category. 𝑁DT is the number of days 

in the day type. In addition, the average per-day temperature (𝑇m) is calculated per day and 

will be assumed to be a constant value. 
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 Computation of the day-type space heating load 

The annual space heating load can be calculated according to standard DIN EN 832 at the 

European level [89]. This document has been updated and replaced with DIN EN ISO 

13790:2008-09. The annual heating energy demand 𝑄h,a in kWh/a is determined by (2.2). 

𝑄h,a = Ah𝑄Sh,a  (2.2) 

where 𝐴h is the total area of the specific building as described in section 2.1. 𝑄Sh,a is the 

specific annual space heating demand. The value of 𝑄Sh,a for passive dwellings built after EnEV 

2009 is between 10 and 15 kWh/m2a [90]. In the present work, 15 kWh/m2a has been 

considered for the calculation. The daily space heating energy demand for a particular day 

type is given by (2.3) [89]. 

𝑄h,DT = 𝑄h,a𝐹DT  (2.3) 

The daily heating energy demand has been calculated for a minute of each day type with the 

assumption that it will be consistent for each minute in the same day category. The heating 

energy demand per minute 𝑄h,DT,Min is determined by (2.4). 

𝑄h,DT,Min =  
𝑄h,DT

1440
 

 (2.4) 

 Computation of the day-type domestic hot water (DHW) load 

The DHW demand for typical day categories is defined by using VDI 4655. The DHW load is not 

dependent on the outside air temperature and is defined as 500 kWh per person for a single-

family house and 1000 kWh per dwelling for a multi-family house. The annual DHW 

demand 𝑄D,a can be calculated as follows [89], 

𝑄D.a = 𝑄SD,a 𝑁h   (2.5) 

where 𝑁h  is the number of persons or number of dwellings depends on the type of building 

and 𝑄SD,a is the specific DHW heating energy demand. A ratio of people to the basement area 

is taken into account when calculating the CRE's annual DHW heating energy consumption. A 

medium-sized office with a basement area of 450 m2 and a people design level of 18 m2 per 

person is considered. For the CRE, it is assumed that there are 26 persons and that each person 

consumes 1000 kWh [85]. The DHW energy demand  for a particular day-type category (𝑄D,DT) 

can be determined by (2.6) [89,91]. 
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𝑄D,DT = 𝑄D,a (
1

365
+ 𝑁h 𝐹D,DT) 

 (2.6) 

Where, 𝐹D,DT is the DHW heating energy factor extracted from VDI 4655. The DHW energy 

demand per minute in kWh/min has been calculated by (2.7). 

𝑄D,DT,Min =
𝑄D,DT

1440 
 

 (2.7) 

The load profiles for heating (space and DHW) are formed by multiplying the day-type heating 

energy demand (equations 2.3 and 2.6) with a normalized time series given in VDI 4655 for 

the computation of the heating load profiles. The normalized heating energy factor is 

multiplied by the calculated daily heating energy demand for the particular day type to form 

a one-day space heating in a one-minute resolution for single-family houses and a 15-minute 

resolution for multi-family houses. By averaging the data points, the 1-minute and 15-minutes 

resolutions are turned into an hour resolution for a span of  1 year time period for the current 

study. 

2.4 Electric grid modeling 

The electrical grid is commonly divided into three categories based on voltage: high, middle, 

and low voltage grids. Low-voltage grid structures are often classified as radial, ring, or mesh 

grid structures [92]. European low-voltage grids are typically radial structures where the 

consumers are connected to the feeders [93]. 

The microgrid is assumed to be a radial low-voltage grid consisting of connection nodes, lines, 

and loads. Different types of loads are considered, such as single-family houses, multi-family 

houses, and commercial real estate. The voltage and power losses in the electric grid have 

been considered in this study. Line losses are proportional to the line resistance and square of 

the current. The parameter of nodes is the nominal voltage and node type (i.e., slack bus, load 

bus). In the line modeling, the length, status of the lines, and parameters of the cable types 

(resistance, capacitance, and reactance) have been considered. The nominal line-to-line 

voltage for the electric low-voltage grid is 400 V [96]. The voltage must be in the range of ±10 

percent of the nominal voltage according to DIN-EN-50160 [97] during the total planning 

period, maintaining the microgrid's secure operation and customer satisfaction. The line 

parameters are modeled as NAVY 4x 35-150 mm², while the house connections are depicted 

as NAVY 4x 16-50 mm² as summarized in Table 2.3. Power flow analysis is frequently 

employed in the operation and design of power systems  [98]. The power flow is created by 
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combining data from the network, load, and generation. The voltage at various buses, line 

currents, and power losses are the outputs of the power flow calculation. 

Table 2.3 Line Parameters [94,95] 

Cable 

Profile 

Resistance (R) in 

Ω / km 

Reactance (X) in 

Ω ⁄ km 

Capacitance in nF ⁄ 

km 

Maximum 

Current in kA 

150 mm² 0.64 0.08 540 0.275 

120 mm² 0.25 0.07 530 0.232 

70 mm² 0.53 0.07 670 0.195 

50 mm² 0.64 0.08 670 0.141 

35 mm² 0.87 0.09 380 0.092 

25 mm² 0.64 0.08 400 0.076 

16 mm² 1.15 0.3 300 0.060 

Nodal power balancing equations are used to solve these load flow analyses. Due to the 

nonlinear nature of these equations, iterative methods such as Newton-raphson, Gauss-

seidel, and the fast decoupling method are used. The Newton-raphson (NR) power flow is 

chosen in this investigation since it is more accurate and common for the placement problem 

described in section 3.4 [99]. The detailed model of NR power flow can be seen in Annex B.2. 

The expansion planning of the distribution grid of the microgrid is assumed to be out of the 

scope of the work.  The voltage at the nodes and thermal limits of the cables of the microgrid 

are constraints in order to avoid technical power grid problems in the span of the planning 

horizon. To determine the voltage, power losses, and other technical aspects, power flow 

equations are used. However, the ordinary power flow equation consists of trigonometric 

functions. Although in the present study, the power equations needed to be used as 

constraints only, integrating them into the optimization problem is challenging due to the non-

convexity of these equations. However, different methods exist to convexify power flow 

equations, such as semidefinite programming (SDP) and second-order cone 

programming (SOCP) [100].  DC power flow can also be used on the cost-oversimplified 

optimal power flow, which is not suitable for this type of application [101]. The SOCP is solved 

more efficiently as compared to SDP [102]. Due to this, the SOCP is used in the present study. 

As the aim is to avoid optimizing the power grid for a particular objective but to use the power 

flow equation as a constraint and the grid structure used is a radial distribution grid, the 

DistFlow approach is well suited. Distflow is proposed with linearization for efficient 

computation of the power flow and voltage drop from the slack bus toward the end of the 

branch [103,104]. This is most commonly used in conjunction with the radial grid 

structure  [101]. Concluded from the above studies, the DistFlow model turns out to be 
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significantly more numerically stable than the bus injection model, and its linearization 

provides simple analytical solutions. The branch flow is given in (2.10) and (2.11). 

𝑃in = 𝑨(𝑃s) − 𝑨(𝐼ij𝑅ij) + 𝑩(𝑃s)  (2.10) 

𝑄in = 𝑨(𝑄s) − 𝑨(𝐼ij𝑋ij) + 𝑩(𝑄s)  (2.11) 

Here 𝑅ij and 𝑋ij are the resistance and reactance of the branch from node 𝑖 to node 𝑗, 

respectively. The power injected 𝑃in at a node must be equal to  transfer to other nodes 

through branches 𝑃s. The incident matrix 𝑨 is the connecting matrix that contains the 

information of the branch connection going away from the node, while 𝑩 is the connecting 

matrix containing the information of the branch coming into the node. A grid with four nodes, 

including a slack node and three lines, is shown in Figure 2.3. 

 

Figure 2.3 Grid with four nodes, including slack node 

The incident matrices A and B for the grid shown in Figure 2.3 are as follows,  

 
 
 
 
 
 

1 0 0

0 1 0

0 0 1

0 0 0

A

 
 
 
 
 
 

0 0 0

1 0 0

0 1 0

0 0 1

B
 

Here, the row shows the number of nodes, while the columns show the number of lines. 

Node 0, also called a slack node, has one outgoing line without any incoming line. Due to this, 

matrix A has 1 in the first row while matrix B is zero. Similarly, node 2 has an incoming from 

line 1 and an outgoing to line 2. Due to this, matrix A has 1 at A22, and matrix B has 1 at B21. 

The voltage 𝑈 at node 𝑖 in DistFlow is given in (2.12) [104], and the approximation of the power 

equation can be seen in Annex B.2.2 in accordance with the linear relaxation method 

described in references [104,105]. 

𝑈i = 𝑈j − 2(𝑅ij𝑃s + 𝑋ij𝑄s) + (𝑅ij
2 + 𝑋ij

2)𝐼ij  (2.12) 

The current 𝐼 passes through the line and is limited by the current-carrying capacity given in 

Table 2.4 is shown in (2.13). 
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𝐼ij
2 ≤ 𝐼max  (2.13) 

The active power 𝑃s and reactive power 𝑄s of the branch, flow is also limited to a maximum 

allowable limit as given (2.14) and (2.15). 

𝑃s,min ≤ 𝑃s ≤ 𝑃s,max  (2.14) 

𝑄s,min ≤ 𝑄s ≤ 𝑄s,max  (2.15) 

𝑃s,min and 𝑄s,min are the lower allowable bounds for active and reactive power of the 

branches, whereas, 𝑃s,max and 𝑄s,max are the highest allowable bounds for active and reactive 

power in the lines. The voltage drops through a line due to the connected load and adds up 

due to generation, such as PV. The voltage security constraint is given in (2.16) 

𝑈min ≤ 𝑈k ≤ 𝑈max ∀𝑘 ∈ 𝑖𝑗 (2.16) 

Here, the  𝑈min is the minimum allowed voltage of a node and 𝑈max is the maximum allowed 

voltage. The voltage at the slack bus is given as, 

𝑈k = 𝑈n ∀𝑘 ∈ 𝑖𝑗   ∀𝑛 ∈ 𝑖𝑗 (2.17) 

Note that the above Distflow is still non-convex and is hard to be solved for commercial 

solvers. Due to this, a second-order cone programming (SOCP) approach is taken for this study 

to transform it into convex [100,106,107].  To convexify, the equation (2.16) and (2.17) are 

transformed into (2.18),(2.19), and (2.20). 

𝑈k = 𝑈n
2 ∀𝑘 ∈ 𝑖𝑗 (2.18) 

𝑈min
2 ≤ 𝑈n

2 ≤ 𝑈max
2  ∀𝑛 ∈ 𝑖𝑗 (2.19) 

𝐼ij
2 =

𝑃S
2 + 𝑄S

2

𝑈k
2  

∀𝑘 ∈ 𝑖𝑗 (2.20) 

The above transforms a cone programming with second-order as given in (2.21). 

‖

2𝑃S

2𝑄S

𝐼ij − 𝑈k

‖

2

≤ 𝐼ij + 𝑈k 

∀𝑘 ∈ 𝑖𝑗 

 

(2.21) 
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2.5 Heating grid model 

The considered heating grid can provide space and water heating using a low-temperature 

district heating grid. It consists of heating nodes (𝐻𝑁) and heating branches (𝐻𝐵).  The heating 

branches are pipes, and the heating loads are assigned to connected heating nodes. The heat 

is extracted in terms of heating load from the nodes, fulfilling the water and space heating 

demand. In this planning study, the space and water heating have been modeled for the 

household of the microgrids. The heating grid consists of a source that generates heat and 

pumps responsible for the flow of water. The pump model is out of the scope of this work. 

Due to this, the effect of the pump is ignored in the present study. The total heating load 𝑄H 

for a household is given in (2.22). 

𝑄H = 𝑄h,DT,Min+𝑄D,DT,Min  (2.22) 

After the heating load profile is created, the loads are assigned to the houses of the microgrid. 

The heating grid is characterized by n heating nodes and m heating branches. The source of 

the heating is connected to a source node, and loads are connected to other nodes. A mass 

flow �̇� of the heating substance, such as water or steam, is pumped through the branches of 

the grid in the positive direction. The required heating is extracted from the nodes, and the 

heating substance mass flow returns in the negative direction by losing heat, as shown in 

Figure 2.4. The current study takes the value of mass flow rates from [108]. 

 
Figure 2.4 Heating grid model 

Considering a low-temperature heating grid, a supply temperature of 50 oC to 60 oC is enough, 

considering the losses and heating loads of the passive houses in the settlement areas [109].  

There are case studies of low-temperature heating grids. The list of low-temperature district 

heating grids can be seen in Annex B.3. Due to this, the temperature at the nodes in the 

positive direction 𝑇𝑁pos must be maintained between 50 oC to 60 oC. Similarly, the node 
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temperature in the negative direction 𝑇𝑁neg is assumed to be above 40 oC considering the 

available case studies as given in (2.23-2.26). Figure 2.5 shows the heating structure of a node, 

with 𝑇𝐵in, pos representing the temperature that goes into a heating node in the positive 

direction and 𝑇𝐵in,neg representing the temperature that goes into the bus in the negative 

direction. Similarly, 𝑇𝐵out, pos and 𝑇𝐵out,neg are the temperature out of the heating nodes in 

positive and negative direction respectively. 

 
Figure 2.5 Heat node structure 

50 ≤ 𝑇𝐵in,pos ≤ 60  (2.23) 

50 ≤ 𝑇𝐵out,pos ≤ 60  (2.24) 

40 ≤ 𝑇𝐵in,neg  (2.25) 

40 ≤ 𝑇𝐵out,neg  (2.26) 

The mass flow and temperature at a particular node must equal the temperature and mass 

flow to all branches connected to the node, as given in (2.27). 

∑ �̇� 𝑇𝑁pos

𝑁

= 𝑇𝐵in,pos ∑ �̇� 

𝐵

 ∀𝑁 ∈ 𝐻𝑁              ∀𝐵 ∈ 𝐻𝐵 (2.27) 

Similarly, the temperature and mass flow are given in (2.28) in the negative direction. 

∑ �̇�  𝑇𝑁neg

𝑁

= 𝑇𝐵in,neg ∑ �̇� 

𝐵

 ∀𝑁 ∈ 𝐻𝑁              ∀𝐵 ∈ 𝐻𝐵 (2.28) 
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If the heating losses through the branches are neglected, the temperature at the beginning of 

the branches and the temperature at the end of the branches will be the same, as shown 

in (2.29) and (2.30). 

𝑇𝐵out,neg = 𝑇𝐵in,neg  (2.29) 

𝑇𝐵in,pos = 𝑇𝐵out,pos  (2.30) 

The heating load calculated in sections 2.3.1 and 2.3.2 is extracted from the connected node 

of the heating grid as given in (2.31). The equation is also called specific heat in 

thermodynamics and is given in (2.31) [110,111]. 

𝑄H = 𝑄p�̇�in(𝑇𝐵pos − 𝑇𝐵neg)  (2.31) 

where 𝑄p is called specific heating capacity. It is equal to 4200 J/kg °C if water is used as a 

heating substance and  �̇�in is the mass flow rate of the heating substance into the load nodes.  

�̇�in should be equal to ∑ �̇� 𝑁 . Similarly, the heating source 𝑄N is given by (2.32). 

𝑄N = 𝑄p�̇�out(𝑇𝐵pos − 𝑇𝐵neg)  (2.32) 

 Here, �̇�out is the mass flow rate of the heating substance out of the source nodes. �̇�out 

should be equal to ∑ �̇� 𝐵 . The detailed heating grid is important in the planning and operation 

to consider the losses that occur during the heating grid operation. The heat losses through 

the branches are subject to the length of the pipe 𝐿p, the conductivity of pipe 𝜆p, specific 

heating capacity 𝑄p, mass flow rate �̇� and outside temperature 𝑇outside. Other parameters, 

such as time delay, have been neglected in the current study. The temperature in terms of 

heat losses through a branch is given as (2.33) [110]. 

𝑇𝐵out,pos = (𝑇𝐵out, pos − 𝑇outside)𝑒
−

𝜆p𝐿p

𝑄p�̇� + 𝑇outside 
 (2.33) 

2.6 Heat pump Model 

Heat pumps are used to provide the part of the above-mentioned heat required. There are 

several types of the heat pumps, such as groundwater, ground source, and air to provide the 

heat demand of the residential building. The electric energy required for the heat pumps for 

compressor drives, controls, and other drives in a year can be calculated using combined space 

and DHW heating consumption. The electric power requirement for heat pumps to provide 
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annual heating energy for the settlement heating grid depends on the Seasonal coefficient of 

performance (SCOP) as given (2.34).  

𝑄HP,out = 𝑆𝐶𝑂𝑃WPA𝑃HP,in  (2.34) 

The SCOP for the heat pump to fulfill the space and DHW heating requirement is defined by 

VDI 4650. A single heat pump covers space and DHW heating demand, but SCOP is calculated 

separately for both, and then the proportion of weight is inserted in the annual energy 

demand. The outdoor source heat pump is used. The SCOP for the air source heat pump for 

space heating is calculated by (2.35) [112]. 

𝑆𝐶𝑂𝑃H =
𝐹∆ϑ

𝐹ϑ1

𝐶𝑂𝑃N1
+

𝐹ϑ2

𝐶𝑂𝑃N2
+

𝐹ϑ3

𝐶𝑂𝑃N3

 
 

 

(2.35) 

where, 𝐹∆𝜗 is the correction factor for the deviating temperature difference in the condenser 

during operation. For under-floor heating, the correction factor is assumed 5 °K to 7 °K, and 

for calculation purposes, 6 °K is assumed. 𝐹ϑ1, 𝐹ϑ2, 𝐹ϑ3 are the correction factor for different 

operating conditions. It will vary with heating limit, outdoor, maximum supply, and 

fixed/variable speed compressor types. For calculation purposes of settlement, a variable 

speed heat pump is assumed. The 𝐶𝑂𝑃N1, 𝐶𝑂𝑃N2,  𝐶𝑂𝑃N3 are the coefficient of performance 

determined by standard DIN EN 14511. 𝐶𝑂𝑃N1 is the coefficient of performance as per  DIN 

EN 14511 at A-10/W60, where A-10 stands for the Air source heat pump as a heat source at 

the air temperature of -10 oC and W60 stands for the water as the heat pump sink medium at 

a supply temperature of 60 oC. 𝐶𝑂𝑃N2  is the coefficient of performance for A2 / W60, taking 

defrost into account and 𝐶𝑂𝑃N3 is the coefficient of performance as per  DIN EN 14511 at 

A10/W60. The SCOP of the heat pump to cover the demand of the DHW is calculated as per 

equation (2.36)  [112]. 

𝑆𝐶𝑂𝑃W = 𝐶𝑂𝑃N3𝐹∆ϑ𝐹1𝐹2  (2.36) 

Where 𝐹∆ϑ is the same as described for space heating with a temperature difference of 6 oK 

during the operation. Whereas  𝐹1 is the correction factor for deviating design temperature 

and 𝐹2 is the correction factor for DHW heating at 50 oC. The value of 𝐹2 is 0.716 for the heat 

pump type with storage tank plus internal heating water pipe coil and 0.644 for all other 

types  [112]. The total SCOP can be determined by using the share of space and DHW 

weightage. The weightage of total SCOP is given by (2.37) [112]. 
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𝑆𝐶𝑂𝑃WPA =
1

(1 − 𝜕)
𝛾1

𝑆𝐶𝑂𝑃H
+ y

𝛾1

𝑆𝐶𝑂𝑃W
+ (1 − 𝛾1)

 
 (2.37) 

where 𝜕 is the proportion of DHW demand in the total heating demand and 𝛾1 is the coverage 

of monoenergetic operation in terms of space and DHW heating demand. The share of DHW 

heating for the whole settlement is approximately 28 percent of the total energy 

consumption. It is assumed to be a monovalent operation for the calculation, and 𝛼 is 

considered to be 1  [112]. The properties of the selected heat pump can be seen in Table 2.4. 

Table 2.4 Properties of the heat pump [112,113] 

Space heating Vitocal 300-A AWO-AC 302.B60 

𝐶𝑂𝑃N1 2.940 

𝐶𝑂𝑃N2 3.660 

𝐶𝑂𝑃N3 4.420 

𝐹∆𝜗 0.990 

𝐹ϑ1 0.038 

𝐹ϑ2 0.525 

𝐹ϑ3 0.340 

The properties of specifications for the specified heat pumps to supply DHW are shown in 

Table 2.5.  

Table 2.5 Properties of specific heat pumps for the DHW supply [112,113] 

DHW Heat pump 

𝐹1 1.000 

𝐹2 0.644 

Based on equation (2.34), the electrical input of the heat pump should be bounded by the 

capacity constraint of the heat pump. The heat pump input should be operated below the 

rated capacity as given in (2.38). Furthermore, the heat pump capacity constraint for the 

optimization model is given in  (2.39). 

0 ≤ 𝑃HP,in ≤ 𝑃HP,cap  (2.38) 

0 ≤ 𝑃HP,cap ≤ 𝑃HP,max  (2.39) 

2.7 Fuel cell, hydrogen storage, and electrolyzer model 

Peak demand occurs largely in the evening because of the integration of electric vehicles. As 

a result, some generation sources (PV, wind) cannot satisfy this demand. Due to the emission 
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target, the increased demand from the grid must be limited. On the other hand, PV power at 

the on-peak time could be higher than the demand. One possibility is to store this energy in 

hydrogen for later use. For that issue, an electrolyzer-hydrogen storage-fuel cell system is 

taken into account. The electrolyzer will use electricity to break the water into hydrogen and 

oxygen. Neglecting the dynamics of the electrolyzer for simplicity, the hydrogen produced by 

the electrolyzer 𝐻2, out is given in (2.40) [114]. 

𝐻2, out =
𝑃elec

𝐻low
𝜂elec 

 (2.40) 

Here 𝑃elec is the electrical power required to operate the electrolyzer. 𝜂elec is the efficiency of 

the electrolyzer and is assumed to be 70 percent [114]. 𝐻low is the low heating value of 

hydrogen used as fuel (33.33 kWh/kg) [115].  The amount of heating released by the 

combustion of a specific amount of a substance is referred to as the heating value [116].  The 

chemical energy will be converted into electrical energy in the fuel cell. Electrolyzed hydrogen 

is injected into a fuel cell, which turns the hydrogen fuel into electrical and thermal energy. 

Fuel cells come in a variety of forms, including polymer electrolyte membrane fuel cells (PEM), 

solid oxide fuel cells (SOFC), alkaline fuel cells, and so on [117]. PEM is chosen in this 

investigation because of its capacity to operate flexibly at low temperatures. The fuel cell in 

the present study will act as micro combined heat and power (CHP) unit. The output power of 

the fuel cell 𝑃FC is dependent on the hydrogen consumption, low heating value, and efficiency 

of the fuel cell 𝜂FC as given in (2.41) [114]. Note that the stoichiometry factor is assumed to 

be 1.1 considering the standard conditions (T°=20 °C, p° =1,01325 bar) [118]. 

𝑃FC = 𝐻low 𝐻2,FC 𝜂FC  (2.41) 

The efficiency of the fuel cell is assumed to be 60 percent [114]. The efficiency assumes that 

peripheral losses concerning fuel cells are included in the efficiency. The heat produced by the 

micro-CHP is used to fulfill the heating demands alongside other sources. The produced and 

recovered fuel cell heat 𝑄FC used for the heating purpose is given by (2.42). 

𝑄FC = 𝑃FC (
1 − 𝜂FC − ΘFC

𝜂FC
) 

 (2.42) 

The heating efficiency is represented by the ΘFC. The electrolyzer's output hydrogen will be 

stored in the hydrogen storage and fed to the fuel cell when needed. As a result, hydrogen 

should be bound with the electrolyzer hydrogen output when charging the hydrogen 

storage 𝐻2, HC. In the same way, the hydrogen discharge 𝐻2, HD should not exceed the 
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hydrogen delivered to the fuel cell. Hydrogen charge and discharge affect the energy content 

in terms of hydrogen storage  𝐸HESS. 

0 ≤ 𝛾H,2𝐻2, HC(𝑡) ≤ 𝑃elec,cap  (2.44) 

0 ≤ 𝛾H,1𝐻2, HD(𝑡) ≤ 𝑃FC,cap  (2.45) 

𝛾H,1 + 𝛾H,2 ≤ 1  (2.46) 

0 ≤ 𝐸HESS(𝑡) ≤ 𝐸HESS, cap  (2.47) 

0 ≤ 𝐸HESS, cap ≤ 𝐸HESS, max  (2.48) 

𝐸HESS(𝑡 + 1) = 𝐸HESS(𝑡) + (𝐻2,HC(𝑡) − 𝐻2,HD(𝑡))  (2.49) 

𝛾H is introduced as a binary variable to avoid hydrogen energy storage charging (𝐻2,HC) and 

discharging 𝐻2, HD  at the same time. The hydrogen produced by the electrolyzer must be equal 

to the hydrogen consumed by the fuel cell 𝐻2,FC and hydrogen energy storage system as given 

in (2.50). The hydrogen losses in hydrogen storage are neglected in the current study. 

𝐻2, HC + 𝐻2,FC − 𝐻2, out = 0  (2.50) 

The fuel cell and electrolyzer are bounded with a rated power capacity of the component as 

given by (2.51)-(2.54). 

0 ≤ 𝑃FC(𝑡) ≤ 𝑃FC,cap  (2.51) 

0 ≤ 𝑃elec(𝑡) ≤ 𝑃elec,cap  (2.52) 

0 ≤ 𝑃FC,cap ≤ 𝑃FC,max  (2.53) 

0 ≤ 𝑃elec,cap ≤ 𝑃elec,max  (2.54) 

Here, the 𝑃FC,cap and 𝑃elec,cap are the rated power capacity of the fuel cell and electrolyzer, 

respectively.  

2.8 Electrical energy storage model (EESS) 

The EESS transfers energy from periods of firm renewable energy generation to periods of 

energy scarcity, allowing the Microgrid to operate under a wide range of operational 

conditions. The EESS operation should ensure that consumers are adequately supplied. The 

charged or discharged condition at a specific time defines the EESS operation. More detailed 
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types of available electrical energy storage systems are given in Annex B.4. A stationary 

lithium-ion battery is considered as electrical energy storage for the microgrid due to the 

benefits given in Annex B.4. The capacity of the battery capacity 𝐸EESS, cap in kWh is given by 

the constraint (2.55) and (2.56). 

0 ≤ 𝐸EESS(𝑡) ≤ 𝐸EESS, cap  (2.55) 

0 ≤ 𝐸EESS, cap ≤ 𝐸EESS, max  (2.56) 

where, 𝐸EESS is the energy content of the battery. The energy content of the battery depends 

on the battery charging 𝑃BC and discharging 𝑃BD in the current time step t. Furthermore, the 

amount of energy from the previous time step t-1 needs to be considered. The energy content 

of the battery is given in (2.57). 

𝐸EESS(𝑡 + 1) = 𝐸EESS(𝑡) + 𝜂BC𝑃BC(𝑡) −
𝑃BD(𝑡)

𝜂BD
 

 (2.57) 

where, 𝜂BC  and 𝜂BD are the efficiency of the energy storage system during charging and 

discharging respectively. The charging and discharging must be constraint by the rated power 

of the battery inverter 𝑃EESS,cap as given in (2.58) and (2.59). 

0 ≤ 𝛾B,2𝑃BC(𝑡) ≤ 𝑃EESS,cap  (2.58) 

0 ≤ 𝛾B,1𝑃BD(𝑡) ≤ 𝑃EESS,cap  (2.59) 

𝛾 is introduced as a binary variable to avoid energy storage charging and discharging 

simultaneously as given in (2.60). 

𝛾B,1 + 𝛾B,2 ≤ 1  (2.60) 

The rated power capacity of the inverter is bunded with the maximum allowed inverter 

capacity 𝑃 ESS, max as given in (2.61). 

0 ≤ 𝑃EESS,cap ≤ 𝑃 EESS, max  (2.61) 

The state of charge 𝑆𝑂𝐶 of the battery energy storage at any time step t is given by (2.62). 

𝑆𝑂𝐶(𝑡) =
𝐸EESS (𝑡)

𝐸EESS, cap
 

 (2.62) 
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2.9 Thermal energy storage model 

Thermal energy storage systems are classified as sensible heat storage, latent heat storage, 

and thermochemical heat storage. The hot water tank, which is based on the sensible heat of 

water, is one of the most frequent energy storage technologies. Further information on the 

available thermal energy storage technologies can be seen in Annex B.5. A heating device 

heats water outside or within an insulated tank, where it is held for a limited duration. The 

amount of energy stored is determined by the temperature of the hot water and the size of 

the tank. The tank insulation determines the heat losses and storage time. A general model 

for thermal energy storage is used for the microgrid. It is assumed that thermal energy storage 

can provide the required temperature described in section 2.6. The capacity of the thermal 

energy storage capacity 𝐸 TESS, cap in kWh is given by the constraint (2.63),(2.64), and (2.65). 

0 ≤ 𝛾T,2𝐸TESS(𝑡) ≤ 𝐸TESS, cap  (2.63) 

0 ≤ 𝛾T,1𝐸TESS, cap ≤ 𝐸TESS, max  (2.64) 

𝛾T,1 + 𝛾T,2 ≤ 1  (2.65) 

Where  𝐸TESS is the energy content of thermal energy storage. 𝛾T is the binary variable to avoid 

charging and discharging at the same time. The thermal storage is connected to the heat grid 

of the microgrid. Due to this, the source for the thermal charging 𝑄TC and discharging 𝑄TD is 

possible by the heat pump and fuel cell.  The charging and discharging from thermal energy 

storage are given in (2.65) and (2.66). 

0 ≤ 𝑄TC(𝑡) ≤ 𝑄TESS  (2.65) 

0 ≤ 𝑄TD(𝑡) ≤ 𝑄TESS  (2.66) 

Here the 𝑄TESS is the input heat from the heating sources of the microgrid. The energy content 

of the thermal energy storage is given by (2.67). 

𝐸TESS(𝑡 + 1) = 𝐸TESS(𝑡) + 𝜂QC𝑄TC(𝑡) −
𝑄TD(𝑡)

𝜂QD
 

 (2.67) 

2.10  Wind generation modeling 

The power production from the wind energy system is highly dependent on the wind speed 𝜈 

in m/s. Due to this, proximity must be considered in the process of input data selection. The 

capacity constraint for wind generation is given in (2.68). 
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0 ≤ 𝑃w(𝑡) ≤ 𝑃w,n(𝑡)𝑃wind,cap  (2.68) 

Here, 𝑃W is the normalized available electrical power that can be extracted from the wind. 

The constraint makes sure that the production is only available if the wind is blowing.  The 

active power output of the turbine 𝑃w is calculated based on the wind speed recorded data of 

DWD [119]. 𝑃w is calculated as given in (2.69) and then normalized by min-max 

normalization  [120]. Which is the most frequent approach for data normalization. The 

smallest value of the characteristics is turned into a zero, while the highest value is turned into 

a one using this procedure. The normalized wind power is given in (2.69) [121]. 

 𝑃w,n(𝑡) = 0.5𝜌w𝐴w𝐶p(𝜈(𝑡))3  (2.69) 

Here 𝜌w is the density of the air in kg/m3, 𝐶p is the Betz value, and 𝐴w is the rotor area. The 

capacity limit constraints related to the wind generation model are given by (2.70). 

0 ≤ 𝑃wind,cap, ≤ 𝑃wind,max  (2.70) 

2.11  PV system 

The PV system capacity depends on the Ground Coverage Ratio (GCR) and the roof area. The 

GCR is the total PV area divided by the total system area. The PV area is the surface area of all 

PV modules, and the total system area is the area of the system on the roof, including space 

between modules. The system size is limited to the available roof area. The tilt angle and GCR 

are related to each other as an increase in the tilt angle required more distance between two 

modules to avoid the shading effect. So, increasing the tilt angle results in decreasing GCR.  

The optimal tilted angle for the PV module is 30o south oriented with a GCR of 50 

percent  [122]. The output of the PV production depends on the solar irradiance, tilted surface, 

the ambient temperature. The total irradiance of Germany from 1980 to 2010 was 

approximately 1055 kWh/m2 per year. To get complete coverage, the building’s roof with 

slope should be inclined North-south with an inclination of 30o to 40o. This mechanism will 

increase production by 15 percent compared to the horizontal surface [122]. The rated PV 

production is calculated based on pre-establish methods in (2.71) [123]. 

𝑃PV,max = 𝐺𝜂M𝑃R𝐴PV  (2.71) 

where 𝐺 represents the horizontal irradiance in W/m2, 𝜂M refers to the solar module 

efficiency, 𝑃R shows the complete system performance ratio and 𝐴PV is the total PV area. Solar 

irradiance depends on the solar modules' location, azimuth, and inclination. The SunPower 

module efficiency of solar panels is higher in today’s market. The module efficiency of 
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SunPower solar panels is from 19.1 percent to 22.2 percent. A module efficiency of 19.1 

percent is assumed with the standard test conditions, which is defined as a horizontal 

irradiance of 1000 W/m2 for a module temperature of 25 °C [124].  A performance ratio of 85 

percent is assumed, with an inverter efficiency of 97 percent for a transformer-less inverter 

[65]. The total PV area for the areas described in section 2.1 is given by (2.72) [110]. 

𝐴PV = 𝐴R 𝐺𝐶𝑅  (2.72) 

where 𝐴R is the total roof area. 𝐺𝐶𝑅 is the ground coverage ratio, and it is assumed as 75 

percent. The optimal capacity of the PV system is constrained as given in (2.74). The PV 

generation in a time step must not be greater than the allowed limit and respect the irradiance 

profile as given in (2.73). 

0 ≤ 𝑃PV(𝑡) ≤ 𝑃Irr(𝑡)𝑃PV,cap  (2.73) 

0 ≤ 𝑃PV,cap ≤ 𝑃PV, max 

 

 (2.74) 
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3 E-mobility infrastructure 

The planning of e-mobility for the microgrid planning and operation is performed in three 

steps. First of all, the rise in the number of EVs is forecasted for different scenarios. 

Considering the occupancy time, the number of EVCS is modeled based on the rise in the 

number of EVs and charging behavior. Finally, a placement algorithm is incorporated to find 

the best place for the number of EVCS.  The structure of this section is presented in Figure 3.1. 

 
Figure 3.1 Proposed methodology for e-mobility infrastructure 

3.1 Forecast for the rise in the number of EVs based on 

retropolation 

The first step is to develop a future scenario for the number of EVs for e-mobility infrastructure 

planning. The number of EVs is essential to deciding the number of EVCS. To analyze the rising 

EVs, a scenario-based method is used. To distinguish the rise of EVs, the following three 

scenarios have been developed: 

 Positive  

 Trend  

 Negative 
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The key factor is to define the realization of these scenarios consistently and completely. It is 

assumed that the development of EVs over the conventional vehicle is dependent on the 

following factors: 

 Investment cost 

 Operational cost 

 Driving benefit 

 Additional benefits 

The development of scenarios based on key factors is given in Table 3.1.  

Table 3.1 Development of EV based on key factors 

Key factor Negative Trend Positive 

Investment 

cost 

Cost targets do not 

reach until later. In 

2026, electric vehicles 

will be even more 

expensive.  

The federal 

government did not 

extend the funding 

(poor costs/benefits; 

more investments in 

public transport or 

other technologies) 

Production costs fall through 

technology improvements, learning, 

and economies of scale, especially 

battery prices. It is expected that 

cost parity will be reached by 2026. 

Around 300,000 vehicles are to be 

subsidized 

 

Cost targets reach 

much earlier (e.g., 

2023). Therefore, 

cost advantages in 

2026. 

The federal 

government 

continues to 

subsidize vehicles 

to accelerate the 

turnaround in 

traffic 

Operational 

cost 

Energy costs rise, CO2 

tax rises moderately, 

and vehicle tax is 

levied. 

Insurance and repairs 

are a little more 

expensive as compared 

to combustion engines 

Energy costs rise despite lower 

production costs for renewables, 

and vehicle tax remains exempt for 

ten years. The advantage of CO2 tax 

increases (higher CO2 prices with a 

simultaneous reduction in CO2 

intensity of electricity). Insurance, 

wear and tear, and repairs are also 

not so expensive 

Energy costs 

decrease. 

CO2 tax rises 

dynamically, and 

vehicle tax 

exemption 

remains. 

Insurance and 

repairs become 

cheaper based on 

empirical values 

Driving 

benefits 

For reasons of 

efficiency, acceleration 

and driving experience 

There are no significant 

developments in acceleration. The 

driving range is increasing 

continuously, more and more fast-

Acceleration and 

driving experience 

increase to a more 

precise distance 
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Key factor Negative Trend Positive 
are not further 

developed. 

Driving range, mileage, 

and charging time 

remains lower 

charging stations are being set up, 

and charging time is approaching a 

vehicle tank duration. 

than combustion 

engines. 

Excellent driving 

range than 

combustion 

engines. 

Charging (e.g., by 

induction) takes 

place without 

additional effort 

Other 

benefits 

Space is only slightly 

better in EVs. 

Similar features to 

ICE´internm of storage. 

The number of variants 

remains lower than 

combustion engines 

Space is increasing moderately 

through further optimizations. 

Equipment is becoming more 

extensive and growing in 

importance for bi-directional 

charging. 

A variety of variants is developed as 

compared to combustion engines 

Significantly more 

space and better 

equipment in all 

EVs. 

EV is far better in 

terms of storage. 

The variety of 

variants exceeds 

combustion 

engines 

A trend is identified through literature for each of these factors, and the development of trend 

scenarios is estimated. The positive and negative scenarios are then computed by shifting the 

value of the key parameters. Based on the key factors, the scenario development compared 

to the conventional vehicle is shown in Table 3.2 [125]. 

Table 3.2 assessment of the key factor to generate scenario for 2026 

Key factors Positive Trends Negative 

Investment cost EV better EV neutral EV worse 

Operational cost EV much better EV better EV marginal better 

Driving benefit EV better EV neutral EV worse 

Another benefit EV better EV neutral EV marginal better 

Assumed EV share 55% 40% 20% 

Table 3.2 illustrates how the EV outperforms the traditional vehicle. These assumptions 

rebased on the EV registered. If the EV is better in these factors, it will be bought and 

registered more. The assumed EV share is assumed based on the hypothesis. Due to this, these 

shares can be flexible to be changed.  
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To implement retropolation for the next five years, the share of EVs must be assumed in 2026. 

The share of EVs compared to conventional vehicles in 2026 is known from Table 3.2. Once 

the number of EVs in 2026 is known, the number of EVs from 2022 to 2026 is developed 

through retropolation. Retropolation is the technique to connect the future with the current 

scenarios shown in Figure 3.2 [126]. The meaningful trend analysis leads to planning the future 

through retropolation. 

 
Figure 3.2 Retropolation method 

 The basis for these calculations is the new registrations and stock figures from the Federal 

Motor Transport Authority  Germany. It is initially assumed that the new registrations and 

stock figures will remain constant (2020: 2.9 million new registrations with 47.7 million cars in 

stock) [127]. The forecast for the number of EVs is considered to grow exponentially due to 

user adoption. Due to this, the exponential growth function for the rise in the number of EVs  

(𝑁EV) in a year (𝑦) in the planning horizon is shown in (3.1). 

𝑁EV = 𝑋o(ℳ)𝜏  (3.1) 

where 𝑋o is the number of EVs in the initial year. 𝜏 is the difference between the current year 

𝑦current and the initial year 𝑦initial. The initial year is considered to be 2020 in the present 

study, and the current year will be changing on the planning horizon. ℳ is the rate at which 

the rise of the EV can reach 20 percent for negative, 40  percent for trend, and 55 percent for 

the positive scenario. The value of ℳ can be calculated by rearranging equation (3.1) and 

solving it with the base value of 2020 for 𝑁EV and 𝑋o. The value of ℳ is 1.067, 1.198, and 

1.263 for the negative, trend, and positive, respectively. The rising rate of the EV based on 

equation 3.1 and Figure 3.2 is shown in Figure 3.3. 
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Figure 3.3 rise rate of the EVs in different scenarios based on retropolation 

In addition to these scenarios, trend extrapolations from 2025 to 2030 were set up based on 

previous developments. By applying the above-described method, the rise in the number of 

new registration of  EVs in Germany based on retropolation is shown in Figure 3.4. 

Figure 3.4 The rise of EVs in Germany based on retropolation and extrapolation 

3.2 Electric vehicle behavior using Monte-Carlo simulation 

The EV can be in three different states. It can be traveling, charging, or parked without 

charging. Due to the EV owner's random decision parameters, it is nearly impossible to predict 

these states at any given time step. Parameters such as the number of trips, arrival time, 

departure time, kilometers traveled in a trip, duration of a trip, and power consumption 

according to speed are some of the EV owner's random decisions. Due to this, these 
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parameters must be considered as random as much as possible. The Monte-Carlo simulation 

is used to model the EV behaviors to consider the randomness. A Monte-Carlo simulation is a 

stochastic method that generates a set of random numbers and handles the random number 

in a simulation for a series of repeated times. A detailed explanation of the Monte-Carlo 

simulation can be seen in Annex C.1. 

Nonetheless, examining as many random variables as possible in terms of EV behaviors would 

be preferable. Still, some of them must be fixed to avoid high complexities. The characteristics 

such as the number of trips, power cost per kilometer, and EV battery state of charge socEV 

required to travel are regarded as fixed parameters in the current studies. Whereas the arrival 

times, kilometers traveled, and duration of travel are assumed to follow a distribution. The 

distribution has mostly resulted from a detailed traffic model of Burg city, located in Germany. 

To mimic the behavior of EV based on these distribution functions, a distribution fit that is 

formed with the existing probability distribution functions must be implemented. Annex C.1 

shows the most common types of probability distribution functions. In the current study, the 

survey data from the traffic model is used for the probability distribution fit and Monte-Carlo 

simulation [128]. The traffic model has been developed together with Mr. J. Brinken, according 

to [125]. Based on the Burg traffic model, the EV arrival distribution is distinguished for district 

type. Annex C.2 shows the EV arrivals for various types of districts. The traffic data need to be 

fitted with the available probability distribution functions to simulate the EV load based on 

these parameters. For a settlement area classified as a residential area with a small number 

of shops and markets, the following distribution function and related distribution fit are 

displayed in Figure 3.5.  

 
Figure 3.5 Traffic model and distribution fit for a residential area [125,128,129] 
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The kilometer traveled and duration of travel have heavier tails. Due to this, the t-Location-

scale distribution fit is the most suitable fit with a high confidence level. The distribution fit 

for the duration of travel is shown in Annex C.2.  

The arrival time is distributed with arrivals in the morning and arrivals in the evening. In both 

cases, the best fit is considered as the normal distribution. Note that Monte-Carlo simulation 

for EV behavior is assumed to be deterministic as it follows one true distribution and runs for 

a one-year scenario to make a charging behavior for the number of EVs known from section 

3.1. The arrival of EVs is divided into the following two categories: 

 Private charging:  The EVs are charged from home 

 Public charging:  The EVs are charged from the EVCS 

The EV behavior simulation method is given in Figure 3.6. 

 

Figure 3.6 Method for EV behaviors 

It is assumed that 15 percent of the time, the EV will charge from public EVCS [130]. According 

to this theory, 85 percent of EVs arriving at a time step will charge privately, while the 
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remaining 15 percent will charge publicly. The precise EVs that will charge from private and 

public charging stations are picked randomly. The distribution of private charging stations in 

the electrical network is linear and even, with a ratio determined by the total number of 

(anticipated) electric vehicles and network connection nodes. If the ratio is n, a private EV 

charging station with a rated power of 11 kW is placed in the nth node of the grid. The nodes 

can have more than one private charging station depending on the number of EVs and the 

available nodes. 

It is assumed that the EV charge with the rated charging power EVCS. From 3.6, once these 

parameters are defined, an EV can be categorized as either charging or traveling during these 

times.  When traveling, the change in the State of Charge of the EV battery (socEV) is calculated 

as given in (3.2), where 𝐸cons is the energy consumption of the EV during the time of travel (𝑡𝑟).  

𝑠𝑜𝑐EV,t = 𝑠𝑜𝑐EV,t−1 −
𝐸cons, tr

𝐸EV,bat
 

 (3.2) 

Here, 𝐸EV,bat is the rated capacity of the battery of the electric vehicle. The energy 

consumption of an EV is calculated by multiplying the consumption per kilometer and 

kilometer traveled. A value of 0.1922 kWh per kilometer has been used [131]. If the socEV 

during the charging state is smaller than 0.9, the EV is charged with a rated power of EVCS 

(𝑃EVCS). The EV is charged until the charging time (𝑡ch) or 𝑠𝑜𝑐EV=1 is reached. A 22 kW EVCS is 

assumed in the present study for public charging, and 11 kW is used for private charging. At 

the time of charging, the 𝑠𝑜𝑐EV is determined according to (3.3). 

𝑠𝑜𝑐EV,t = 𝑠𝑜𝑐EV, t−1 +
𝑃EVCS 𝑡ch

𝐸EV, bat
 

 (3.3) 

Aside from component modeling, the methodology for estimating the increase in the number 

of electric vehicles is offered.  Based on the forecast methodology, the microgrid is planned 

deterministically and stochastically.  

3.3 Model for the occupancy time for public electric vehicle 

charging station 

The critical deciding factor for the number of public EVCS will be the number of EVs arriving 

at the charging station at a given time instant and how many of them can wait.  A detailed 

model has been developed for charging stations based on occupancy. The number of EVCS is 

dependent on several parameters, such as location, usage, and budget, among others. In the 

current study, the usage of EVCS  is highlighted as the most important parameter. The usage 
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of EVCS is highlighted in terms of the period when the EV occupies the EVCS. This period is 

referred to as occupancy time in the current study. The occupancy time is defined as the times 

in which EVs are already connected to EVCS, and another EV is expecting a time slot. The 

novelty of the proposed model is the relationship between the number of charging stations 

and the occupancy time.  

The mathematical optimization models consist of an objective function that is either 

minimized or maximized, and constraints need to be satisfied. On the other hand, simulation 

studies the behavior of a real-world system by representing the system by a mathematical or 

theoretical approach. In some cases, optimization gives better results, while simulation has 

the upper hand in plans that have a complex structure. Since occupancy time is a function of 

multiple variables, modeling such processes is complex and unpredictable. A case is 

considered where the number of charging stations is decided by modeling it as an optimization 

problem. In that case, the objective is to minimize cost while the constraint will be limiting the 

occupancy time every hour. The optimizer would choose the charging station without 

considering the occupancy time because the best value for determining the acceptable 

occupancy time is ambiguous. The occupancy time for an EVCS should be calculated by an 

iterative process depending on the EV behaviors described in section 3.2.  However, a change 

in the EV waiting profile is caused by the addition of a new charging station. The optimization 

will take high computational effort to solve the problem if the iterative method for calculating 

the occupancy time of EVCS is coupled. The occupancy time concerning three EVs for a single 

EVCS is shown in Figure 3.7. 

 
Figure 3.7 Waiting time for EV arriving to charge 
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If there is only one EVCS, and the number of EVs is high, there will be queues of EVs waiting. 

Otherwise, the EVCS will be overestimated. Hence the optimal number is needed to have a 

low investment cost and an acceptable occupancy time. In time step t1, three EVs arrive to 

charge simultaneously on the operation horizon. A single EVCS handles two EVs 

simultaneously, so the third EV must wait. This waiting time for EVs will determine the 

occupancy time of the EVCS. From time step t2, the EVCS becomes free and available to be 

occupied by the following EV. However, the occupancy time becomes zero during this period 

as there is no EV waiting. Similarly, at time step tn-1, three EVs arrived to charge, increasing 

the waiting time as one EV waited again. Finally, the total times when the EVCS is occupied 

are averaged per day, and the number of EVCS is determined based on the occupancy time. A 

detailed description of the model to determine the number of EVCS is given in Annex C.3.  

3.4 Placement algorithm for Public EVCS with Monte-Carlo 

simulation 

The next point is to optimally place the public charging infrastructure in the electrical network 

so that it can be supplied in the best possible way. The EVCS should be consistent and ready 

to power the EV with its rated power at all times without affecting the critical grid voltage. For 

that reason, the microgrid electrical power system without any infeed of the DERs is taken 

into account. This is a kind of worst-case consideration to take care of the critical under voltage 

is avoided after placement  

Using the power flow as described in section 2.4, the sensitivity of the voltage to EVCS load is 

computed with the node voltage-sensitive index (NVSI). The Newton-Raphson method is used 

to calculate the power flow. A single EVCS station with a rated power of 22 kW is placed on a 

node of the grid. In addition, apart from the nodes where EVCS is connected, all other nodes 

of the grid have no associated EVCS. In the next step, the voltages for all nodes of the grid are 

calculated to find the NVSI of this node. The procedure has been repeated for every grid node. 

The NSVI has been used for optimal distributed generation (DG) placement and load-shedding 

algorithms in literature [131,132]. The calculation of NVSI for an EVCS-connected node (𝑖) is 

stated in (3.4). 

𝑁𝑉𝑆𝐼𝑖 = √
∑(𝑈N − 𝑈j)2

𝑛
 

∀𝑖 ∈ 𝑗  ∀𝑗 ∈ 𝑛 (3.4) 

Here, 𝑈j is the matrix containing all the voltage for the nodes of the entire grid resulting after 

EVCS is placed at 𝑖th  node. In the next step, when the EVCS is placed on 𝑖 + 1th node, the 
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values of entire 𝑈j will be changed. Due to this, different sensitive values can be realized from 

equation 3.4. 𝑛 is the number of total nodes and 𝑈N is the nominal voltage and 𝑛 is the total 

number of nodes. The Monte-Carlo simulation is deployed to identify the best configurations, 

as shown in Figure 3.8.  

 
Figure 3.8 EVCS placement algorithm 

The goal is to place the EVCS in the least sensitive nodes to the high load. Due to this, the node 

with the highest NVSI is the worst node, and the node with the least NVSI is the best node for 

the EVCS connection. The appropriate location for the EVCS is calculated after the best and 

worst nodes are found using NVSI. If there is just one EVCS, the node with the lowest NVSI is 

the optimal spot to deploy the EVCS. For two or more EVCS, however, the optimal node 

configuration must be determined. This is due to the fact that installing EVCS on some nodes, 

even those with low sensitivity, might result in a significant voltage drop across the string. The 

following are the reasons behind this: 
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 The EVCS-associated nodes may belong to the same string. 

 The EVCS is deployed on a node that can only support the installation of EVCS in a 

certain configuration with other nodes.   

The configuration is defined as the arrangement of the number of EVCS over the available 

nodes. First of all, the best nodes based on the sorted NVSI are taken. Then samples of 

configuration for the best nodes are generated for the number of EVCS known from section 

3.3.  The samples of possible configurations will be equal to the number of Monte-Carlo 

simulation runs. For each configuration, the voltage is recorded. The sample configuration 

resulted in the best possible voltage being treated as optimal.  The configuration which gives 

the voltage below 380 V at any node is discarded. The best configuration of nodes for EVCS is 

decided based on the quantification of voltages. The EV load behavior described in section 3.2 

is used as input to depict the EVCS load. The more Monte-Carlo iteration searches, the more 

configuration on the cost of higher computational time. For an EVCS placement, the 

installation of EVCS is subject to available places, e.g., parking places, and the use case, e.g., 

near markets or public transport. Due to this, there should be a variety of configuration 

results. Decision-makers will then use these methods to know the suitable area and the 

electrical power nodes to power the EVCS. In the present study, the placement of EVCS is 

proposed in the ten best configurations, and the first configuration is used to place the EVCS. 
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4 Optimization Methodology 

The optimization for microgrid planning and operation is used to get an ultimate settlement 

area with minimum possible cost (Investment and operational) and CO2 emissions. The 

optimization for microgrid planning and operation is performed in a deterministic and 

stochastic manner. In the current study, deterministic optimization is employed to propose a 

microgrid for a new settlement area where the aim is to handle the development of e-mobility 

with minimum cost and emission. However, it is expected that e-mobility will be developed 

with associated uncertainties. The use of uncertainties (randomness) in modeling the 

optimization approach is the major difference between stochastic and deterministic methods. 

The deterministic optimization, which is expected to be more cost-effective, can not realize 

these uncertainties resulting in an un-robust or semi-robust microgrid. Due to this, stochastic 

microgrid planning and operation are proposed for the decision-makers, where the aim is a 

robust settlement area. The robustness will increase the cost of handling more uncertainties 

which is not a good solution. Due to this, the combined optimization model is proposed to get 

high robustness with minimum cost for planning a new settlement area, as shown in Figure 

4.1. 

 
Figure 4.1 Proposed optimization methodology 
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Furthermore, both approaches (deterministic and stochastic) contain novel methods, as 

described in section 1.2. Microgrid planning and optimization are based on a novel concept 

for the growth of e-mobility infrastructure. The parameter value and the initial conditions 

define the model's output in deterministic models. The stochastic model has uncertainties, 

which means that the same set of parameter values and initial conditions will produce distinct 

outputs. After the input parameters, such as electrical and heat loads are modeled, the E-

mobility infrastructure is determined as described in section 3.  The microgrid planning and 

operation are performed with a planning horizon (𝑌) of 10 years and with an operation horizon 

of 1 year. The 1-hour time step is used. A multi-stage approach is used to tackle the planning 

challenge. Each choice is made based on the present operation horizon's problem, as shown 

in Figure 4.2. 

 
Figure 4.2 The planning method 

The capacities for the DERs are optimally decided in each operation horizon, as shown in 

Figure 4.2. The operating horizon is then added to the planning horizon to produce the 

planning horizon. It is assumed that the capital and operational cost will not change in the 

planning horizon. Furthermore, it is assumed that the electrical and heating grid structure will 

not be changed for the planning horizon. For optimal planning and operation, the cost 

parameter of the DERs used in the present study is given in Table 4.1. 

Table 4.1 Cost parameter of DERs 

DERs Terms Values  

PV 
Capital cost 800 €/kW[133] 
life 20 years[134] 

Wind 
Capital cost 1460 €/kW [133] 
life 20 yeas [135] 

BESS 
Capital cost 528 €/kWh [136] 
life 8 years [136] 
Efficiency 95 % [136] 

TESS 
Capital cost 200 €/kWh [137] 
life 20 years [138] 
Efficiency 65%[139] 
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HESS 
Capital cost 150 €/m3 [140] 
life 10 years [139] 

HP 
Capital cost 700 €/kW [141] 
life 20 years [142] 

Fuel cell 
Capital cost 5738 €/kW[143] 
life 60000 hours [144] 
Efficiency 60 % [114] 

Electrolyzer 
Capital cost 238 €/kW[145] 
life 60000 hours[145] 
Efficiency 70 % [114] 

EVCS Capital cost 10000 Euro/EVCS[146] 
 life 10 years[147] 

The maintenance cost is assumed to be 1 percent of the capital cost [148]. The German 

government plans to increase the cost of CO2 certificates [149]. The trend for the cost of CO2 

per tonne is given in Figure 4.3, and the emission intensity of the electrical grid is shown in 

Figure 4.4. 

 
Figure 4.3 Trend for the cost of CO2 certificates per tonne [149] 

 
Figure 4.4 GHG emission by electricity grid based on [150] 
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In the present study, it is assumed, according to Figure 4.3, that CO2 price will increase by 5 

Euros per tonne per year throughout the planning horizon. CO2 is assumed to be emitted from 

the electricity grid. The CO2 is decreasing per year for the electricity grid, as shown in Figure 

4.4. The average decrease in GHG was recorded as 4 percent per year from 1990 till 2021. Due 

to this, in the present study, it is assumed that this trend will continue to form the whole 

planning horizon. The penalty cost related to CO2 emission for the microgrid is associated with 

all DERs especially CO2 emitted during the manufacturing process. Moreover, the highest 

share is associated with the electricity grid. Due to this, the CO2 emission associated with the 

manufacturing process of DERs is ignored in the present study. 

4.1 Deterministic optimization method 

Depending on the kind of problem, the deterministic optimization technique focuses on 

finding the global minimum or maximum. Deterministic optimization is classified as linear 

programming (LP), mixed-integer linear programming (MILP), non-linear programming (NLP), 

and mixed-integer nonlinear programming (MINLP). The optimization problem is made up of 

two parts: an objective function that defines the problem's goal and constraints that must be 

met. Constraints are depicted as component model restrictions in the microgrid planning and 

operation problem, as discussed in section 2. The objective of the deterministic model is to 

decrease the investment cost 𝐶inv, operational cost 𝐶op and the penalty cost per tonne of CO2 

emissions 𝐶penalty, CO2
 for the microgrid as given in (4.1). 

Min ∑(𝐶inv + 𝐶op + 𝐶penalty, CO2
)

𝑦

 ∀𝑦 ∈ 𝑌       (4.1) 

The investment cost of the DERs for each year (𝑦) is the product of the annual capital cost and 

the capacity of the particular DERs as given in (4.2). 

𝐶inv = 𝐶PV 𝑃PV,cap + 𝐶w 𝑃wind,cap + 𝐶EESS 𝐸EESS,cap + 𝐶HP 𝑃HP,cap

+ 𝐶TESS 𝐸TESS,cap + 𝐶FC 𝑃FC,cap + 𝐶elec 𝑃elec,cap + 𝐶H 𝐸HESS,cap 

 (4.2) 

The operation cost is subject to power import from the electricity grid (𝑃grid), and annual 

operational cost of DERs (𝐶op, DERs) given in (4.3). 

𝐶op = ∑ 𝐶op,DERs

𝐷𝐸𝑅𝑠

𝑃DERs + ∑(𝐶grid𝑃grid

𝑡

) ∀𝑡 ∈ 𝑇 (4.3) 

𝐷𝐸𝑅𝑠 ∈ [𝑃𝑉, 𝑊𝐼𝑁𝐷, 𝐸𝐸𝑆𝑆, 𝐻𝑃, 𝑇𝐸𝑆𝑆, 𝐹𝐶, 𝐸𝐿𝐸𝐶, 𝐻𝐸𝑆𝑆]   
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𝐶grid is the energy import cost from the electrical grid in €/kWh. The emission intensity 

parameter for the electricity grid (𝐸𝑀Grid)  is assumed from Figure 4.4. The emission objective 

is given in (4.4). 

𝐶penalty,CO2
= 𝐶EM (𝐸𝑀grid ∑ 𝑃grid

𝑡

) 
∀𝑡 ∈ 𝑇 (4.4) 

Where 𝐶EM is the cost of CO2 emission and determined by Figure 4.3. The deterministic 

optimization model is subjected to the constraint described in section 2. Based on the 

occupancy time, the number of EVCS is known from section 3.3, and the number of EVCS is 

incorporated in the energy balance constraint in the deterministic optimization model. For a 

fixed occupancy time, the capital cost of the already-known number EVCS is added to the final 

cost of the microgrid after the optimization is solved.  The energy balance constraint is given 

in (4.5) 

𝑃PV(𝑡) + 𝑃w(𝑡) + 𝑃grid(𝑡) + 𝑃BD(𝑡) + 𝑃FC(𝑡) − 𝑃Load(𝑡) − 𝑃BC(𝑡)

− 𝑃elec(𝑡) − 𝑃HP,in(𝑡) − 𝑃EVCS(𝑡) = 0 

∀𝑡 ∈ 𝑇 (4.5) 

The deterministic approach used in this study will give proper planning and operation for the 

microgrid e-mobility infrastructure. However, the uncertainties related to e-mobility can not 

be realized. To consider the uncertainties, the stochastic approach is used. 

4.2 Stochastic optimization method 

In the stochastic approach, the following two optimization techniques are often used: 

 Stochastic programming (SP) 

 Robust optimization (RO) 

Stochastic programming uses a scenario-based approach such as Monte-Carlo simulation to 

incorporate the uncertainty. As a result, it depends on the number of scenario trials. Stochastic 

programming with a high number of stochastic trials becomes intractable. On the contrary, 

Robust optimization uses a worst-case analysis. Taking only the worst-case analysis is 

beneficial in terms of computational time but deficient in terms of better realization of 

uncertainty. To bridge the gap between stochastic programming and robust optimization, 

distributional robust optimization (DRO) has gained popularity in literature, with uncertainty 

based on ambiguity sets rather than scenarios.  The following types of uncertainties are crucial 

in microgrid planning and operation: 
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 Long-term Uncertainty: As discussed in section 3, the increase in the number of EVCS 

is dependent on a variety of factors. As a result, a flawless forecast for the planning 

horizon is almost unattainable. 

 Short-term Uncertainty: The number of electric vehicle arrivals for charging is largely 

unpredictable. As a result, predicting the EV charging profile is difficult. 

The SP, RO, and DRO are tools for quantifying uncertainty based on historical data, such as a 

distribution function. As a result, these strategies are appropriate for dealing with short-term 

uncertainty. The best method to incorporate short-term uncertainty is said to be DRO. 

However, the essential information needed to create an uncertainty model is missing in the 

long-term Uncertainty section. The prior trend for the number of EVCS is provided. However, 

it cannot be guaranteed that the pattern will be continued. As a result, an approach like the 

information gap decision method (IGDM) has to be adapted to the long-term incorporation of 

uncertainty. The proposed methodology for stochastic microgrid planning and operation is 

shown in Figure 4.5. 

 
Figure 4.5 Proposed methodology for stochastic microgrid planning and operation 

In this dissertation, a novel approach (IGMD-DRO) is proposed for microgrid planning and 

operation based on the idea that multi-type uncertainties (long and short-term) will have a 

significant impact on microgrids. If technical problems such as voltage problems owing to 
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uncertainties are neglected, the uncertainties are proportional to the cost of the microgrid in 

principle. Indirectly, it may be inferred that endless uncertainties can be handled as long as 

the cost budget is limitless. Due to this, it will be more efficient to consider the cost budget 

parameters, which is a result of the deterministic optimization model.  

For EVCS-based optimal planning and operation of DERs, the model employs IGDM, which 

solely considers long-term uncertainty. Similarly, DRO-based optimal planning and operation 

for DERs have emerged from just considering short-term uncertainty about EV arrivals.  

 Long-term uncertainty modeling using IGDM 

The IGDM is a non-probabilistic decision theory for sorting alternatives and making decisions 

and judgments in the face of extreme uncertainties [151]. Further information about the 

IGDM can be seen in Annex D.1. The key benefit of utilizing IGDT is that it allows the decision-

maker to specify the values, which protects him from the risk of not meeting the minimal 

criteria due to uncontrolled parameter uncertainties. These criteria are assessed using the 

robustness function.  

EVCS plays an important role in microgrid planning and operation. The number of EVCS is still 

low. However, the rise in the EVCS is inevitable. In the current study, it is assumed that the 

number of EVCS is subject to high uncertainty.  If the uncertainty is considered too high, it will 

be assumed that no historical data, such as a probability distribution function, is available to 

generate an uncertainty set. The only available data is the forecasted number of EVCS, which 

can be taken from section 3.3. There is an information gap since there is a lack of historical 

beginning data to generate the uncertainty set for the growth in the EVCS. A limitation 

approach known as a bound method is necessary to determine the uncertainty region of 

information gaps uncertainty sets. In the current study, the envelope-bound method has been 

used to create the uncertainty set for the number of EVCS [58,152]. Unlike robust 

optimization, the uncertainty set has one unknown variable, the uncertainty region, or more 

accurately, the radius of the uncertainty zone. The radius of the uncertainty region for the 

number of EVCS is called 𝛼EVCS in the present study. The 𝛼EVCS will show the gap between 

the predicted number of EVCS (𝑁EVCS) and the uncertain number of EVCS (�̂�EVCS). The radius 

of the uncertainty region needs to decrease or increase depending on the problem types (risk 

seeker or risk-averse). A detailed explanation of problem types is given in Annex D.1. The 

decision-makers in this study are supposed to prioritize the safe and secure planning and 

operation of microgrids over maximizing paybacks. As a result, the notion is referred to as the 

risk-averse approach, and it should be expressed as the maximum of the uncertainty region 
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(𝛼EVCS). The envelope-bound formulation to create the uncertainty set for the number of 

EVCS is given in (4.6). 

𝛤(𝛼EVCS, 𝑁EVCS) = {�̂�EVCS: |
�̂�EVCS − 𝑁EVCS

𝑁EVCS
| ≤ 𝛼EVCS 

∀ 𝑁EVCS

∈ 𝛤(𝛼EVCS, 𝑁EVCS) 

(4.6) 

Here 𝛤 shows the uncertainty set and �̂�EVCS is the uncertain variable that shows the rising 

trend of the EVCS in the planning years. To define the region of uncertainty for the number of 

EVCS, 𝛼EVCS is bounded as given in (4.7). 

0 ≤ 𝛼EVCS ≤ 1  (4.7) 

A zero-uncertainty region (𝛼EVCS = 0) means that there is no uncertainty, and the predicted 

number of EVCS is equal to the actual number of EVCS. While full-uncertainty region (𝛼EVCS =

1) means that there is severe uncertainty, and the predicted number of EVCS is equal to the 

upper bound of the uncertainty region. The upper and lower bounds of the uncertainty region 

are bounded by an envelope as shown in (4.8) [58]. All of the uncertainty associated with the 

number of EVCS is considered to have happened exclusively inside this region of the envelope.  

(1 − 𝛼EVCS)𝑁EVCS, ≤ �̂�EVCS, ≤ (1 + 𝛼EVCS)𝑁EVCS  (4.8) 

When considering the uncertainty associated with the number of EVCS, the objective function 

for IGDM-based microgrid planning and operation is regarded as a risk-averse strategy and 

provided by (4.9). 

Max 𝛼EVCS  (4.9) 

The constraints of the optimization model are subject to component constraints given in 

section 2. The uncertainty region can be increased to any level as it is directly related to the 

number of EVCS installations. However, this resulted in high costs, which is not optimal. 

Finally, the robust region needs to be maximized while the cost needs to be minimized, which 

results in the two-level optimization problem. However, the cost objective can be transformed 

into a cost budget constraint which should be less than the allowed budget 𝑓𝑏 of the microgrid 

as given in (4.10), (4.11), and (4.12).  

∑(�̂�inv,y + 𝐶op,y + 𝐶penalty, CO2
)

𝑦

≤ 𝑓𝑏  
(4.10) 
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�̂�inv = 𝐶PV 𝑃PV, cap + 𝐶W 𝑃wind,cap + 𝐶EESS 𝐸EESS, cap + 𝐶HP 𝑃HP,cap

+ 𝐶TESS 𝐸TESS,cap + 𝐶FC 𝑃FC,cap + 𝐶elec 𝑃elec,cap + 𝐶H 𝐸HESS,cap

+ 𝐶EVCS(1 + 𝛼EVCS) 𝑁EVCS 

 

(4.11) 

�̂�inv = 𝐶PV 𝑃PV, cap + 𝐶W 𝑃wind,cap + 𝐶EESS 𝐸EESS, cap + 𝐶HP 𝑃HP,cap

+ 𝐶TESS 𝐸TESS,cap + 𝐶FC 𝑃FC,cap + 𝐶elec 𝑃elec,cap + 𝐶EVCS𝑁EVCS

+ 𝐶EVCS𝛼EVCS𝑁EVCS 

 

(4.12) 

�̂�inv is the investment cost after the consideration of uncertainty. The allowable budget is 

associated with the microgrid's deterministic cost, which is the objective function of the 

deterministic optimization model, as described in section 4.1. The allowable budget can also 

be tuned as per the requirement of the decision-makers. The minimum allowable budget is 

equal to the deterministic cost of the microgrid, while 100 percent is equal to two times the 

deterministic cost of the microgrid. In the stochastic optimization model, the number of 

EVCS is decided by the optimization according to the involved uncertainties. Due to this, from 

equation (4.12), the term 𝛼EVCS𝑁EVCS are decision variables, due to which the optimization 

program becomes bilinear, resulting in mixed-integer nonlinear programming. The bilinear 

terms have been linearized by the McCormick method [58,153]. The linearization of bilinear 

terms is linearized in the same way as described in [58]. The term 𝑁EVCS need to be converted 

to a series of binary variables 𝐸 and a continuous integer 𝑖 as given in (4.12). The variable 𝑖 

can take a value from one to the maximum number EVCS. The maximum number of EVCS may 

be deduced from the fact that the number of EVCS will always be fewer than this amount. The 

location of binary digit 1 is significant in determining  𝑁EVCS in equation (4.13) because binary 

variables can only accept the binary digit 1 once in the array. As a result, there should only be 

one binary number 1 in the whole array, with the rest being 0 as given in (4.14). The number 

of EVCS will be n if the binary array's nth position is 1. 

𝑁EVCS,y = ∑

𝑁EVCS,max

i=1

𝑖𝐸𝑖,𝑦      ∀ 𝐸𝑖,𝑦 ∈ {0,1} (4.13) 

∑

𝑁EVCS,max

i=1

𝐸𝑖,𝑦 = 1  (4.14) 

After the continuous integer 𝑁EVCS,y  is transformed into continuous binary variables, the term 

𝛼EVCS𝑁EVCS is thus transformed as given in (4.15). 
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𝛼EVCS𝑁EVCS,y = ∑

𝑁EVCS,max

i=1

𝑖𝛼EVCS𝐸𝑖,𝑦      ∀𝐸𝑖,𝑦 ∈ {0,1} (4.15) 

Let say �̃�EVCS = 𝛼EVCS𝐸𝑖,𝑦 then by using the McCormick linearization method [58], the 

linearized bilinear terms are as follows, 

0 ≤ �̃�EVCS ≤ 𝐸𝑖,𝑦 ∀𝐸𝑖,𝑦 ∈  𝑁EVCS,max (4.16) 

𝛼EVCS + 𝐸𝑖,𝑦 − 1 ≤ �̃�EVCS ≤ 𝛼EVCS  (4.17) 

At this stage, considering the long-term uncertainty, the optimization problem for microgrid 

planning and operation is solved with the objective function described in equation (4.9). The 

IGDM-based microgrid planning and operation are subject to all the constraints related to the 

microgrid components described in section 2. Furthermore, the constraints described in this 

section need to be included. 

 Short-term uncertainty modeling based on DRO 

To integrate short-term uncertainty related to the electric vehicle charging profile, a different 

method has been used, as stated in section (1.2.2). In stochastic programming, it is assumed 

that the decision-makers have complete knowledge of short-term uncertainties through a 

known PDF [154]. In the case of EV arrivals, the known PDFs can be seen in Figure 3.5 in 

section 3.2. On the contrary, in robust optimization, the decision-maker does not know the 

uncertainties, and the worst case is analyzed, due to which this method is conservative [155]. 

In the present study, the number of EV arrivals for charging is taken into account as short-

term uncertainty. The DRO is employed over the RO to avoid conservative outcomes and to 

make use of the advantages of the available PDF stated in section 3.2. Furthermore, the DRO 

is employed instead of stochastic programming to save computational time and effort. It's 

worth noting that the nature of the uncertain parameter differs greatly between robust and 

stochastic perspectives. Nonetheless, by adopting a distributionally robust formulation 

instead of an adversarial or stochastic formulation, both views, adversarial and stochastic, 

may be united. It assumes that the uncertain parameter's distribution is ambiguous.  

A stochastic perspective relates to an ambiguity set consisting of a singular distribution. The 

worst-case formulation can be captured by an ambiguity set consisting of all distributions. As 

a result, the worst-case distribution ambiguity set allows for simultaneous analysis of the 

robust and stochastic perspectives [156]. Further information regarding DRO can be seen in 

Annex D.2. Ambiguity sets can be classified as moment-based and metric-based, as described 

in Annex D.2 [157]. In the present study, the moment-based is used to model the ambiguity 
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set. The moment-based ambiguity set is defined as the family of all distributions that belong 

to the same moment, such as mean and standard deviation [158]. Two moments, mean and 

variance, have been used in the present study. When the mean and variance from the 

historical data are known, the ambiguity set for the arrivals of EVs can be expressed in (4.18) 

ΩEV,t
1 = {𝜒 ∈ ΩEV,t

0 (𝐸𝑉t
1)|

𝜒{𝐸𝑉t ∈ 𝐸𝑉t
1} = 1

  𝐸𝜒{𝐸𝑉t} = 𝜇t

𝐸𝜒{(𝐸𝑉t − 𝜇𝑡)2} = 𝜎t
2

} 

 

(4.18) 

Where 𝜇t is the mean and  𝜎t
2 is the variance of the survey data for the arrivals of EVs, as 

described in section 3.2. ΩEV,t
0  is the family of distribution for EV arrivals. The 𝜒 is the 

probability distribution of the EV arrivals survey 𝐸𝑉t. Inspired by the box type ambiguity [159], 

the moments are bounded with upper and lower bounds as given in (4.19) and (4.20). 

𝜇min ≤ 𝜇t ≤ 𝜇max  (4.19) 

𝜎min ≤ 𝜎t ≤ 𝜎max  (4.20) 

It is considered that the distribution from the ambiguity set with the highest mean and 

variance as the worst distribution will have resulted in conservative results. The conservative 

conclusions will account for all short-term uncertainty but at the cost of capital waste in the 

microgrid cost and emissions. The conservativeness of the results can be adjusted by 

introducing a type of constraint called chance constraints. The chance constraint defines the 

probability of meeting a constraint in the optimization model. The chance constraints are 

implemented in the power balance equation as the charging related to EV is associated with 

a type of load. In this case, at a specific degree of confidence (1 − ϵ), the probability (Pr) that 

the power balancing constraint is achievable where ϵ refers to the tolerance level of the 

microgrid. The chance constraint for the power balance is given by (4.21). 

Pr{𝑃PV(𝑡) + 𝑃w(𝑡) + 𝑃grid(𝑡) + 𝑃BD(𝑡) + 𝑃FC(𝑡) − 𝑃Load(𝑡)

− 𝑃BC(𝑡) − 𝑃elec(𝑡) − 𝑃HP(𝑡) − 𝑃EVCS(𝑡)} ≥ 1 − ϵ 

 (4.21) 

In the power balance, the arrival of the EV is uncertain, which will make the 𝑃Load and 𝑃EVCS 

uncertain. Due to this uncertain load, the power balance will not be met all the time. To avoid 

this, chance constraint allows the constraint to violate the solution with the probability 

specified.  The chance constraints are considered to be difficult to solve in the optimization 

methods. The above chance constraint is a non-linear constraint that needs to be incorporated 

linearly. Furthermore, the chance constraint can be handled in different ways. The linear 

programing chance constraint (LPCC) is mostly used to handle the probabilistic constraint such 
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as equation (4.21) [160]. However, the LPCC is limited to cases where the uncertainty is mostly 

followed by Gaussian distribution [161]. In the current study, the uncertainties related to EV 

follow two normal distributions which have long tails. Due to this, the chance constraint in 

equation (4.21) needs to be linearized, convexified, and tractable. Hence, the equation (4.21) 

can be represented in an approximation in terms of value at risk (VAR) or conditional value at 

risk (CVAR) [162]. In the present study, the CVAR approach has been taken. The CVAR 

derivation of the constraint (4.20) is presented in Annex D2.1.  

The IGDM-distributional robust optimization problem for the microgrid planning and 

operation considering multi-type uncertainty is solved with the objective function described 

in equation (4.8). The IGDM-DRO based microgrid planning and operation is subject to all the 

constraints related to the microgrid components described in section 2 and section 4.2.1. 

Furthermore, the constraints described in this section need to be included. 

 Scalability solution 

On the one hand, the computational time in ordinary microgrid planning and operation 

problems is not significant. The optimization problem, on the other hand, should not be 

intractable. The computing time for microgrid planning and operation mentioned in section 

4.1 is significantly high. Because the computational time grows exponentially with the number 

of equations and variables, resulting in a non-deterministic polynomial-time often known as 

an NP-hard problem. However, deterministic microgrid planning and optimization are 

tractable for a certain size of settlement area.  

The problem becomes worse in the case of the stochastic optimization model. The stochastic 

microgrid planning and optimization model presented in section 4.2 is highly intractable even 

for small settlement areas. In general, robust optimization is more efficient in terms of 

computing, but stochastic programming optimization causes intractability. By bridging the gap 

between robust optimization and stochastic programming optimization, the DRO solves a 

portion of the problem. However, the implementation of DRO for the current study is still 

intractable due to the size of the settlement area and the nonlinear constraints. Due to this, a 

tractable solution is proposed for the stochastic microgrid planning and operation for e-

mobility under multi-type uncertainties. Different methods have been used to improve the 

scalability of optimization models for microgrid planning and operation. The methods consist 

of model simplifications, fundamental changes in temporal resolution, reductions in solution 

space, mathematical reformulations, and combinations of these approaches [163]. In the 

present study, solution space reduction and mathematical reformulation are considered. The 

solution space reduction is considered by changing the operation horizon in a series of day-
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type categories. As established in section 2.2, one investigation year was divided into 14-day 

types categories. PV, wind, electric vehicles, and loads are expected to fit into these 

categories. The mathematical reformulation is incorporated in sections 2 and 4.2, such as 

reformulation for second-order cone programming (SOCP). Furthermore, the optimization 

model is reformulated by the application of the decomposition method [163]. Decomposition 

is defined as splitting the mathematical problem into subproblems and then solving them in 

the iterative method [164].  

The optimization problems are made up of some complicated variables and constraints, which 

add to the complexity of the problem in terms of computing time. These complicating 

variables and constraints are often called coupling variables and constraints in the 

literature  [165]. The optimization problems are considered to be decomposable if 

complicating variables can be temporarily fixed or complicating constraints can be relaxed. 

Among others, the bender decomposition and Dantzig-Wolfe are mostly used for model 

reformulation. In general, the Dantzig-Wolfe method is appropriate for issues involving 

complicated constraints, whereas bender decomposition is appropriate for situations 

involving complicating variables [166]. For the current study, the objective function consists 

of coupling variables, due to which a bender decomposition is a suitable approach. 

Equation (4.1) consists of two types of cost, investment and operation (operation and CO2 

penalty cost). The investment costs, which depend on the capacities of the DERs, can be 

considered as the coupling variables, and the capacities of the DERs can be temporarily fixed. 

Due to this, the original problem can be decomposed into the investment cost (master 

problem) and operation cost (subproblem). Bender decomposition was first introduced by 

Jacques F. Benders in 1962 [167]. The bender decomposition method solves the master 

problem-based cuts from subproblems iteratively. Due to this, the number of cuts can be 

important in terms of computational time, as a single cut will result in a slow convergence 

[154]. The traditional bender decomposition might fail to achieve the required computational 

efficiency [168,169]. Due to this, acceleration methods are proposed for the bender 

decomposition [170–172]. Among others, so-called efficient cuts are added to the bender 

decomposition [173–175]. However, these methods are based on a single cut per iteration of 

bender decomposition. In the case of microgrid stochastic planning and operation, the 

problem type allows considering more than one cut per iteration [176]. There can be 

decomposition by a scenario that allows one cut for each scenario in a stochastic optimization 

problem which becomes multi-cut per bender iteration [177].  

Pursuing the tractability in the current study, the proposed IGDM-DRO is decomposed by the 

day-type categories using multi-cut bender decomposition. The optimization problem itself 
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suits to be split up due to its bilevel nature. The operational part of the problem to minimize 

the operation cost is set to be a subproblem where the complicating variables related to 

investment cost are fixed, as given in (4.22). 

Min ∑(𝐶op + 𝐶penalty, CO2
)

𝑦

 ∀𝑦 ∈ 𝑌  ∀𝑡 ∈ 𝑇 (4.22) 

As the capacities of the DERs are complicating variables, the constraint for the subproblem 

related to capacities is fixed. In the present study, as the subproblem is solved first, the fixed 

capacities DERs can be achieved by the solution of the deterministic optimization model 

described in 4.1. The dual variables for the fixed capacities of DERs (𝜁) are needed to generate 

a cut in the master problem. After the first time, when the master problem is solved, the fixed 

capacities of the DERs are updated for each bender decomposition. The capacities and dual 

constraints for the capacities of DERs are given as, 

𝑃PV, cap = 𝑃PV, cap
fixed   ∶   𝜁𝑃PV,cap

  (4.23) 

𝑃wind,cap = 𝑃wind,cap
fixed   ∶   𝜁𝑃wind,cap

  (4.24) 

𝑃HP,cap = 𝑃HP,cap
fixed  ∶   𝜁𝑃HP,cap

  (4.25) 

𝐸EESS, cap = 𝐸EESS,cap
fixed  ∶   𝜁𝐸EESS,cap

  (4.26) 

𝐸TESS, cap = 𝐸TESS,cap
fixed  ∶   𝜁𝐸TESS,cap

  (4.27) 

𝐸HESS, cap = 𝐸HESS,cap
fixed  ∶   𝜁𝐸HESS,cap

  (4.28) 

𝑃FC,cap = 𝑃FC,cap
fixed  ∶   𝜁𝑃FC,cap

  (4.29) 

𝑃elec,cap = 𝑃elec,cap
fixed  ∶   𝜁𝑃elec,cap

  (4.30) 

Apart from the capacity constraint, all other constraints described in section 4.2.2 and the 

component constraints described in section 2 are part of the subproblem. The master problem 

still has to maximize the robust region as described in equation (4.9). Equation (4.10) is the 

relation between capital and operational costs. However, as the complicated variables are 

fixed, the operational cost terms (𝐶op + 𝐶penalty, CO2
) need to be replaced by an auxiliary 

variable (𝜆c).  
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∑(�̂�inv + 𝜆c)

𝑦

≤ 𝑓𝑏  (4.31) 

The auxiliary variable is responsible for making the cuts in the master problem. Considering 

the multi-cut constraint of the bender decomposition over the bender iteration (ii), the 

auxiliary variable is defined as a constraint as given in (4.32). 

𝜆c
ii ≥ ∑ 𝑧c

ii

𝑦

+ ∑ 𝜁PV
ii

𝑘

(𝑃PV, cap
jj

− 𝑃PV, cap
ii )

+ ∑ 𝜁wind,cap
ii

𝑘

(𝑃wind,cap
jj

− 𝑃wind,cap
ii )

+ ∑ 𝜁HP,cap
ii

𝑘

(𝑃HP,cap
jj

− 𝑃HP,cap
ii )

+ ∑ 𝜁EESS,cap
ii

𝑘

(𝐸EESS,cap
jj

− 𝐸EESS,cap
ii )

+ ∑ 𝜁TESS,cap
ii

𝑘

(𝐸TESS,cap
jj

− 𝑃𝐸TESS,cap
ii )

+ ∑ 𝜁HESS,cap
ii

𝑘

(𝐸HESS,cap
jj

− 𝑃𝐸HESS,cap
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(4.32) 

The cuts constraints of the bender decomposition tighten the feasibility space of the master 

problem by using the sensitive values of dual variables (𝜁). 𝑧c is the objective function value 

of the subproblem over the planning horizon. Similar to binding every variable, the 𝜆c needs 

to be bound with an initially defined limit as given by (4.33). 

𝜆c
ii ≥ 𝜆max  (4.33) 

 In the present study, the value of 𝜆max is set to be -2500. Inspired by the study in [178], the 

convergence check for bender decomposition is given by (4.34) 

|𝑧c
ii − 𝑧s

ii| ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (3.34) 

Where 𝑧s
ii are the capital cost of the DERs and the value of  𝜆c defined in equation (4.37). 

Noted that at the first bender iteration, the value of 𝜆c is set to zero. If the set threshold level 

is achieved, the optimal solution is found otherwise, the next bender iteration will run for the 

next bender cut. 
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4.3 Flexible tariff system for microgrid 

Finally, microgrid planning has been solved using different. In a traditional tariff, called a flat 

tariff, the user pays a fixed monthly rate, expressed in €/kWh, based on energy usage 

throughout the month, regardless of the time of day. Everyday consumption, on the other 

hand, is not consistent. It is higher in the late afternoon or evening in households and 

decreases around midnight. Due to this, a flexible tariff system called a time of use (TOU) is 

introduced. TOU tariffs are time-varying tariffs that encourage load adjustment. Customers 

may save money on their energy bills while supporting the system. For a renewable-powered 

future, demand-side flexibility is critical. Demand response is enabled through tariffs that 

fluctuate according to the time of consumption. The researchers estimate that TOU can save 

a home around 25 percent of carbon emissions and 50 percent of energy costs; however, 

these savings are only possible if the household has a varied variety of distributed energy 

resources [179].  Based on this study, flexible tariffs are categorized into the following types 

and defined by [179]: 

Static pricing: A day is divided into two or more time sections under static pricing. The cost is 

fixed and changes based on the period. Static pricing is simply divided into day and night to 

represent peak and off-peak hours in its most basic form. Days, on the other hand, can be 

divided down into multiple chunks to better depict peak and off-peak periods. 

Critical peak pricing: Prices are fixed here, however they may be raised during periods of 

exceptional peaks when a fixed surcharge is imposed. Customers are often given an early 

warning to move loads away from certain times. 

Variable peak pricing: On-peak periods are known in advance, similar to static pricing. The 

premium, on the other hand, is determined by current wholesale pricing. 

Real-time pricing: Real-time pricing reflects current wholesale power costs. As a result, prices 

are unknown in advance, and billing necessitates the use of high-resolution metering data to 

apply the relevant price. 

From the definitions of the different types of tariff systems, real-time pricing has more 

potential for demand response due to flexibility throughout the day. The flexible tariff systems 

can also support the integration of renewable energy sources by a great amount if installed 

with storage systems [180]. The high load, such as EV adding to the peak load, makes the 

flexible tariff very charming to implement in terms of demand response and DERs integration. 

Due to this, an optimal tariff system based on real-time pricing is proposed in the present 

study. 
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The tariff introduced in this study is calculated based on the white tariff. It has been 

implemented in Brazil, where low-voltage consumers can choose between the white tariff and 

flat [60]. However, the difference between the proposed tariff and the white tariff is that the 

white tariff is a variable peak pricing type, and the proposed one is real-time pricing. The white 

tariff has been implemented in Brazil for low-voltage consumers and is shown in Figure 4.6.  

 
Figure 4.6 White tariff [60] 

The white tariff (𝑊T) is calculated based on the peak (𝐷p), intermediary (𝐷in) and off-peak 

(𝐷op) demand on weekdays (𝑊𝑇wd) as (4.35). 

𝑊𝑇wd = 𝑘𝑧(5𝐷p + 3𝐷in + 𝐷op)  (4.35) 

𝑊T = 𝐶GS (∑ 𝑊𝑇wd

𝑝

1

+ ∑ 𝑘𝑧 ⋅ 𝐷s

𝑞

1

+ ∑ 𝑘𝑧 ⋅ 𝐷d

𝑟

1

) 
 

(4.36) 

𝑘z is the relation between the price of conventional and white tariffs. It is defined by the utility 

and depends on the profile [60]. In the present study, it is assumed to be 0.18 to make the 

average price closest to the flat tariff in Germany. 𝑝, 𝑞, 𝑟 is the number of weekdays, 

Saturdays, and Sundays in a month respectively. Due to a lack of knowledge in the load 

profiles, every 6th and 7th day has been considered as Saturday and Sunday.  𝐷s is the demand 

on Saturday and 𝐷d demand on Sunday. 𝐶GS is the cost of electricity purchased from the grid 

at a flat rate. A flat rate of 30 Cents/kWh has been assumed [60]. In this paper, the peak time 

has been considered from 6 PM to 9 PM. Whereas 5 PM and 10 PM is intermediary peak time, 

the rest of the day has been regarded as off-peak time.  
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5 Results and discussion 

5.1 Case Study 

The proposed microgrid planning and operation strategy for e-mobility considering multi-type 

uncertainties has been applied to a settlement area planned in Magdeburg, Germany, named 

Alte-Zieglei, as shown in Figure 5.1. In the present study, the settlement is assumed to consist 

of twenty-five single-family houses (SFH) and six multi-family houses (MFH), with one 

commercial real estate (CRE). 

 

 

Figure 5.1 Investigated settlement area [181] 

From the person distribution, the settlement area consists of 249 persons. The person 

distribution over the houses is given in Annex E.1. It is assumed that the settlement area is 

planned to be a grid-connected microgrid through a common coupling point (PCC) node. 

Microgrids may also be operated from a single node when linked to the local distribution 

network or transmission system [182]. As discussed in section 2, the DERs selected for this 

settlement area are shown in Table 5.1. 

Table 5.1 DERs consideration for the settlement area 

RES units Storage units Sector coupling units 

PV EESS Fuel cell 

Wind TESS HP 

 HESS Electrolyzer 

The grid's topology for the settlement area is shown in Figure 5.2. There are 36 electrical and 

36 heating grid nodes for this settlement area.   

Single-Family Houses 

Parking Places 

Commercial 

Real Estate 

Multi-Family Houses 

Play Ground Main Street 

Small Streets 
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Figure 5.2 Grip Topology 

The essential base data needed for the study are capital cost, operational cost, and CO2 

emissions related to the planning and operation of these DERs.  The PV system is dispersed 

over the houses of the settlement area, as determined in section 2.11, to use available places 

such as roofs. Other DERs are assumed to operate in a microgrid as a centralized system and 

are connected to a node (K0). The EESS is considered centralized due to higher self-

consumption and better energy utilization than decentralized [183]. The maximum rated 

power capacity of wind, fuel cell, and electrical energy storage systems is bound to 100 kW 

according to the eligibility for feed-in tariff set out in EEG 2017 [184,185]. Apart from the 

electricity grid, the heating grid is modeled for this settlement area and is connected to the 

electricity grid using sector coupling technologies. The settlement area's heating requirements 

are fulfilled by centralized heating. 
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 Electrical load based on HTW berlin database 

The sum of annual demand for the microgrid is 190.2 MWh. The microgrid's peak load is 79.2 

kW, occurring on a winter day (December 12) without EV and heat demand. The electrical load 

profile employed in this study is an annual time series that varies depending on the kind of 

house. The daily electricity load profile for a single-family house consisting of three persons 

on the 16th of May is presented in Figure 5.3. The energy demand for the three-person SFH on 

the day is 13.6 kWh. There is a peak in the evening due to the activity time. 

 
Figure 5.3 Electricity load profile on a transition workday (16th May) 

 Heating load profile 

The settlement area is located in Magdeburg, and according to VDI 4655 [89], Magdeburg lies 

in German climate zone 4, specified as TRY04 (Test Reference Year 04). The total number of 

heating days per year is 274, and Table 5.2 summarizes their classification into day-type 

categories with corresponding average temperatures. 

Table 5.2 Average number and temperature of typical day categories in TRY04 

Type UWH UWB USH USB SWX SSX WWH WWB WSH WSB 

Number of days 37 76 9 17 78 13 29 82 6 18 

Average temperatures 11.1 10.2 10.6 9.5 17.5 17.4 -1.2 2 1.5 2.2 

The heating energy factor for space heating based on VDI 4655 is shown in Table 5.3 for 

selected day-type categories. The yearly DHW heating energy computed using the heating 

energy factor can be found in Annex E.2. The annual space heating energy demand (𝑄h,a) 

computed for a single-family house, multi-family house with 12 dwellings, and multi-family 
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house with 16 dwellings, respectively, is 2,100 kWh/a, 14,250 kWh/a, and 17,550 kWh/a, 

according to section 2.3. 

Table 5.3 Heating energy factor 

Day types Heating energy factor 

UWH 0.001869 

UWB 0.00227 

USH 0.002547 

USB 0.002546 

SWX 0 

SSX 0 

WWH 0.005186 

WWB 0.005203 

WSH 0.005254 

WSB 0.004699 

The annual space heating demand for commercial real estate (CRE) is 36000 kWh/a. The space 

heating energy demand for the particular day has been calculated as described in section 2.3. 

The daily heating energy demand results in kWh per day type are shown in Table 5.4. 

Table 5.4 Daily space heating energy demand per day type category in kWh 

Type UWH UWB USH USB SWX SSX WWH WWB WSH WSB 

SFH 3.93 4.74 5.35 5.35 0.00 0.00 10.89 10.93 11.03 9.87 

MFHT1 26.63 31.43 26.36 28.84 0.00 0.00 86.87 70.04 77.49 60.49 

MFHT2 32.75 38.71 32.46 35.52 0.00 0.00 106.98 86.73 95.43 74.50 

CRE 67.27 79.41 66.58 72.86 0.00 0.00 219.45 177.90 195.75 152.81 

The space heating depends on the temperature. The temperature in winter is low, so the 

space heating demand has been high, whereas, in the summer, the heating demand is zero 

due to the high outside temperature. During the transition period, the space heating 

requirement is 50 percent lower in winter. The peaks in Figure 5.4 indicate the single-family 

house's maximum heating demand day, WSH. In the winter, the WSB has the lowest heating 

requirement for space heating.  The sum of heating energy demand for the microgrid is  349.8 

MWh per year. The share of space heating is 72 percent, and DHW demand is 28 percent. The 

annual DHW energy demand for the different house types described in section 2.3 can be seen 

in Annex E.2. The DHW is dependent on the number of persons for single-family houses and 

the number of dwellings for multi-family houses. The annual heating demand for a single-

family house consisting of three persons is shown in Figure 5.4.  
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Figure 5.4 Annual space heating load for three persons SFH 

5.2 E-mobility infrastructure 

 Development of electric vehicles 

As described in section 3, three scenarios are created for the investigated settlement area. 

According to the “Mobilität in Deutschland” survey, the average number of cars in houses with 

one person, two persons, three persons, four persons, and five persons are 0.7, 1.3, 1.7, 1.8, 

and 1.9 respectively [186]. According to this study, there will be 133 conventional vehicles 

present in the settlement area.  It is assumed that all vehicles are combustion engine-based 

in the settlement area in 2021. 

According to the KBA (Germany's federal motor vehicle authority), Germany's total number of 

registered cars is 47,715,977, with 2,917,678 newly registered vehicles in 2020, including 

394,632 electric vehicles [127]. The percentage of newly registered vehicles in total registered 

cars held by individuals was recorded as from 6.1 to percent 7.4 percent in the last ten 

years  [187,188]. Consequently, the percentage of newly registered vehicles in total registered 

cars held by individuals is 6.1 percent, with EVs accounting for 13.53 percent of newly 

registered vehicles. Applying this methodology to the settlement area under study, in 2022, 

the number of newly registered vehicles in 2020 is expected to be 8, while the number of 

electric vehicles will be one. It is assumed that the number of newly registered vehicles will be 

eight constantly every year of the planning horizon. The newly registered vehicle is then 

replaced every year by EVs through retropolation in the planning horizon. The number of 

newly registered EVs from 2021 to 2030 replacing the newly registered conventional vehicles, 

as outlined in section 3.1, can be seen in Annex E.3. The number of EVs registered in the 

following year is added with the number of EVs present in the current year. The number of 
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EVs in 2021 is zero. However, one EV is registered in 2021, due to which the number of EVs in 

2022 will be one. The number of EVs on the planning horizon is presented in Figure 5.5. 

 
Figure 5.5 Number of newly EVsper in the investigated settlement area 

The population of the settlement area is expected to remain constant over the planning 

horizon. In the negative scenario, the share of the EV in 2031 will reach 12.4 percent at the 

end of the planning horizon. The yearly rise rate in the EV from 2022 to 2031 varies between 

1.1 and 2 percent in the negative, 4.6 to 23.4 percent in the trend, and 7 to 59 percent in the 

positive. The number of EVs reaches 24 percent of conventional vehicles in the trend and 32.7 

in the positive scenario in 2031. The share of EVs in the settlement area compared to 

conventional vehicles can be seen in Annex E.3. The trend scenario has been used to show the 

results of the proposed methods. 

 Development of a private charging station 

The number of electric vehicles is essential for the settlement area as the EVs are charged in 

the settlement area. From an economic perspective, as indicated in section 3.3, EVs will charge 

from private charging stations 85 percent of the time [130].  Once the number of EVs is known, 

the EV behavior is simulated as per section 3.2. As the settlement area is residential, the EV 

parameters shown in Figure 3.5 follow the residential attributes. The EV starts charging 

immediately after arriving with a rated power of 11 kW for a private charging station. The 

following statements are essential for the planning and operation of a microgrid: 

 If a significant number of EVs are charged at the same time, the settlement load will 

become relatively high 
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 The voltage drop on the specific node and the subsequent node attached to the same 

string is caused by the EV charging 

5.2.2.1 Simultaneous EV charging from private charging stations 

In the trend scenario for EV development in 2031, the simultaneous arrival of EVs for charging 

in the settlement area and their influence on settlement load are depicted in Figure 5.6 for a 

particular day. Note that the number of EVs in the charging state on other days will look 

different due to the use of the Monte-Carlo simulation method. 

 
Figure 5.6 Number of EVs charging and their influence on the load of the settlement 

On this day, 24 EVs out of 33 needed charging from the distributed private charging stations. 

From 4 PM to 7 PM, the settlement area had the most significant EVs charging simultaneously, 

approximately 75 percent of the total EV. Due to this, the settlement area load has increased 

roughly 48 percent on the day. Since consumers arrive at home mostly at the same time in the 

evening, the EV will connect and detach nearly at the same time. The expected simultaneous 

charging in the settlement area for a year in the trend scenario in 2031 is shown in Figure 5.7. 

Most of the time years, 3 percent of EVs are charged at the same time. The largest proportion 

of EV charging simultaneously is 34 percent, which rarely occurs twice a year. The load varies 

in a considerably smaller time step in actuality (e.g., Minutes/seconds resolution). Because EV 

arrivals would be more dispersed, it is expected that simultaneous EV charging will be 

significantly less in shorter time frames. The EVs coming at any moment within a one-hour 
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period are accumulated. The arrival of EVs is simulated at a 1-hour resolution because of a 1-

hour resolution optimization hurdle. However, it is also believed that a 1-hour resolution for 

EV arrival is enough for the current study, as the highest percentage of simultaneous charging 

rarely occurs in the year, as shown in Figure 5.7.  

 
Figure 5.7 Expected percentage of EVs in simultaneous charging state in trend scenario 

5.2.2.2 Impact of the private charging stations on the voltage 

The placement of private charging stations described in section 3 can be seen in Annex E.3. 

The load for a single-family house equipped with a charging station at K8 and the voltage 

profile for a specific day is shown in Figure 5.8.  

 
Figure 5.8 Impact of EV charging on load and voltage 
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The EV is charging from 6 PM to 8 PM. For that reason, the voltage drops a little due to the EV 

load. However, as the grid is stable in this case study, the voltage drop will not be massive.  

The voltage drop can be critical at a large string, especially on the last load connected. The 

microgrid has two strings connected to the PCC in the present study. The shorter string shown 

in Figure 5.1 is 500 meters, while the more extensive string is 900 meters long. A private 

charging station is placed at K8 in the trend scenario, and thus its influence on the string 

voltage is shown in Annex E.3. The expected voltage profiles for the settlement area in the 

trend scenario for 2031 are shown in Figure 5.9. Without a charging station, the settlement 

area's minimum voltage is around 397 V. In the trend scenario for 2022, the minimum voltage 

drops to 391.4 V once the charging station is installed. After the deployment of private 

charging stations, the high voltage bins observed in voltage bins without charging stations 

around nominal voltage are pushed toward 398 V. 

 
Figure 5.9 Comparison of voltage profile with and without private charging stations in trend scenario 

 Development of public charging stations 

As indicated in section 3.3, EVs will charge from public charging stations 15 percent of the 

time [130]. Furthermore, an EVCS often consists of two columns so that two EVs can be 

charged simultaneously with the rated power of the EVCS. The following statements have 

been planned for the public charging station in the settlement area: 

 The number of EVCS based on occupancy time 

 The placement for EVCS 
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5.2.3.1 Number of EVCS based on occupancy time 

 The optimal number of charging stations is determined based on the acceptable occupancy 

time of the EVCS, as described in section (3.3). When EV users arrive at a specific time, they 

must wait while the EVCS is used.  It is clear from Figure 5.6 that the likelihood of simultaneous 

charging is high at a particular peak for the two EVs in public EVCS. The total number of EVs in 

the worst-case (positive scenario) rises from 1 to 43, and the occupancy time EV is displayed 

in Figure 5.10. 

Figure 5.10 Occupancy time for EVCS=1 (left side) and EVCS=2 (right side) 

From Figure 5.10, the occupancy time is calculated as the sum of all EVs waiting for a charging 

slot.  The installation of another EVCS reduces occupancy time by roughly 50 percent for most 

of the year. Table 5.5 shows the occupancy time per day for increasing EVCS installation.  

Table 5.5 Average EVCS occupancy time per day in hours 

Number of EV EVCS = 1 EVCS = 2 EVCS = 3 EVCS ≥ 4 

1-10 0 0 0 0 

10-20 0-0.35 0-0.02 0 0 

20-30 0.41-1.54 0.02-0.13 0 0 

30-40 1.61-3.55 0.15-0.54 0-0.06 0 

Over 40 3.81-6.76 0.67-1.45 0.15-0.42 0-0.039 

If EVs are greater than 20, the occupancy time for the situation EVCS=1 reported in Table 5.5 

is much longer. The number of installed EVCS is represented as a heatmap when the total 

waiting time in hours for an EV is compared to the rise in the number, where high user comfort 

may be obtained at the cost of additional installation. If two EVCS are installed for a limited 
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number of EVs, the occupancy time for the EV is zero. The anticipated EVCS for the planning 

Horizon is indicated in Table 5.6 using an EVCS occupancy duration of fewer than 30 minutes 

as an acceptable value. 

Table 5.6 Number of EVCS for acceptance occupancy time of 30 minutes 

Scenario 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 

Negative 1 1 1 1 1 1 1 1 1 1 

Trend 1 1 1 1 1 1 1 2 2 3 

Positive 1 1 1 1 1 1 2 2 3 4 

The arrival of EVs for charging is primarily influencing the occupancy time. The arrival of EVs 

is mainly noticed in the evening, as shown in Figure 3.5. The utilization of an EVCS by the 

number of EVs is an interesting parameter to be evaluated for a certain occupancy time. For 

an EVCS without any occupancy time, the EVs charged 15 percent of the time, as described in 

section 3.2. However, the utilization will change by introducing the occupancy time. The 

occupancy of fewer than 30 minutes and the utilization of the number of EVCS for the trend 

scenario in 2031 are shown in Figure 5.11. The utilization of the EVCS will increase with the 

number of EVs. Similarly, The increase in the EVs increases the occupancy time. Due to this, 

the increase in the occupancy time increases the utilization of the EVCS.  

 
Figure 5.11 Utilization of EVCS for less than 30-minute occupancy time 

From Figure 5.11, the utilization of the EVCS in terms of the number of hours in the year is 

39.2 percent. Compared to the assumed value of 15 percent, it is concluded that the 

occupancy time of 30 minutes will increase the utilization by 24 percent more. Critically, the 

acceptability of this waiting time by the EVCS users is a barrier. However, the decision-making 

is based on an economic point of view as a trade-off between the lowest possible occupancy 
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time and user acceptancy. Due to this, less occupancy time leads to less utilization which can 

not be economical, and higher occupancy time leads to less acceptancy. From Table 5.5 and 

Figure 5.11, an occupancy time of fewer than 30 minutes seems to be ideal due to the 

economical utilization and comparable number of EVs per EVCS. 

5.2.3.2 Placement of public EVCS 

Typically, the best place to install a high load is near the transformers.  However, this is true 

for a transformer with a single string. This microgrid electrical network consists of multiple 

strings. This leads to different influences if a new component is placed. In addition to the 

connection point, EVCS placement is subject to several criteria, including the available places 

to charge the EVs, such as park places, and suitable areas, such as proximity to markets and 

public transport. If the location of the EVCS place is known, the suitability of different 

connection nodes in other strings is investigated using the NVSI according to section 3.4. When 

the EVCS is put on node 1, its effect on voltage is not confined to that node but may be seen 

across the microgrid. As seen in equation (3.4), the NVSI examined the impact of an EVCS on 

all nodes belonging to the settlement. The results for the NVSI of the various nodes are 

summarized in Figure 5.12. 

 
Figure 5.12 NVSI for the settlement area 

The best connection point for an EVCS is the nodes with the lowest NVSI. In general, the nodes 

of a shorter string with fewer houses are preferable to a longer string with a more significant 

number of houses.  

However, not all nodes in the former string are insensitive to all nodes in the later string. From 

Figure 5.12, the 2nd node of the first string shows higher NVSI than the 1st node of the second 

string. This concludes that the 2nd best location for an EVCS is the first node of string 2. Ten 
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nodes are qualified as best prospects nodes if their NVSI is less than 0.2, as illustrated in Figure 

5.12. Once the optimum nodes for one EVCS have been identified, the ideal configurations for 

several EVCS are investigated. Table 5.7 shows the ideal configuration for the trend scenario 

mentioned in section 3.4 based on the Monte-Carlo simulation.  

Table 5.7 Configuration suggestion for trend scenario in 2031 

Knoten 1 2 3 4 5 6 7 8 9 10 

K1 1 1 1 1 1 1 1 0 0 0 
K14 1 1 0 1 0 0 0 1 1 0 
K2 1 0 1 0 1 0 0 1 0 0 
K3 0 0 0 1 0 1 0 0 0 1 
K15 0 1 0 0 1 1 1 0 0 0 
K4 0 0 1 0 0 0 0 0 0 1 
K5 0 0 0 0 0 0 1 0 1 0 
K16 0 0 0 0 0 0 0 1 0 0 
K6 0 0 0 0 0 0 0 0 1 0 
K7 0 0 0 0 0 0 0 0 0 1 

Each column in Table 5.7 represents one configuration of EVCS placement. Finally, the first 

configuration is chosen to place EVCS for the investigated settlement area in 2031, based on 

the optimum configuration from Table 5.7. Commercial real estate and parking spaces with 

many users will be close by, making EVCS installation a viable option to be placed in this area, 

as shown in Figure 5.13. 

 
Figure 5.13 Proposed area for EVCS placement for trend scenario in 2031 

Proposed area for EVCS 

placemnt  
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5.3 Deterministic microgrid planning and operation for e-mobility 

As the heat and electrical demand are defined, the microgrid consisting of DERs is optimally 

sized using the Mixed-integer nonlinear problem described in section 4.1.  The optimization is 

solved with a gurobi solver, and the Yalmip tools box is used to formulate the optimization 

problem [189].  In light of the trend scenario, the analysis of microgrid planning and operation 

is divided into the following sub-categories: 

 Optimal DERs capacities 

 Settlement area energy balance and operational hours of DERs in the electrical grid 

 Electrical grid analysis in terms of voltage 

 Settlement area energy balance and operational hours of DERs in the heating grid 

 Heat grid analysis in terms of losses 

 Cost analysis of settlement area 

 Sensitive analysis 

The optimal operation of the electrical grid and the heat grid is evaluated to analyze the 

effectiveness of DERs in the microgrid. Other parameters, apart from EV load, emission cost, 

and grid emission intensity, are assumed to behave in the same way throughout the planning 

horizon. As a result, examining the operation horizon for 2031 will be enough to conclude the 

previous year's operation. 

 Optimal DERs capacities 

The planning is considered to be a multi-period where the capacities are decided every year. 

The last year of the planning horizon can be seen as the final capacity for future planning. Any 

capacities for any year in this planning horizon are ideal. For instance, in a 5-year planning 

horizon, any capacities are optimal at the end of 5 years. Figure 5.14 shows the capabilities of 

DERs for the trend scenario based on the input prices indicated in section 4. Annex E.4 shows 

the capacities that resulted from the negative and positive scenarios. The EESS and TESS 

capacities are measured in kWh, whereas the generating units, heat pump, and electrolyzer 

are measured in kW, and the HESS is measured in m3. As seen in Figure 5.14, generation sizes 

expand exponentially as the number of EVs increases. PV, wind, and EESS will reach their 

maximum capacity in 2026, and as EVs grow more prevalent, the fuel cell will rise to handle 

the larger load.  

Due to the fact that the fuel cell creates both heat and electricity, it has a larger capacity than 

the EESS. However, if the electric load grows due to the increase in the number of EVs, the 

EESS gains more capacity. This is because the fuel cell is more costly, and the heat load is not 
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changing on the planning horizon.  Consequently, an increase in the electric vehicle sparked a 

slight increase in the fuel cell, resulting in a minor drop in the heat pump. With the rise in the 

fuel cell, the hydrogen storage and electrolyzer will also increase.  

 
Figure 5.14 Microgrid capacity 

The community is situated in a residential part of the city. As a result, traditional large wind 

turbines are not viable to construct. On the other hand, small wind turbines must be put in 

communities to meet GHG reduction requirements. Small private wind turbines will not be 

able to be built in the examined settlement area since the houses are equipped with PV 

systems. As a result, medium-sized wind turbines with low noise and fewer areas are advised. 

A medium-sized wind turbine with a hub height of 20 m and rated power of 15 kW is 

commercially available [190]. For district heating, the larger systems for heat pumps, fuel cells, 

and TESS are available on a kW scale [191,192]. 

 Electrical grid energy balance and operational hours of DERs  

The energy balance in the electrical grid is analyzed in this part to indicate the importance of 

optimal operation.  The daily load and generation profiles related to operation for a winter 

day in 2031 are shown in Figure 5.15. The operation for a summer day can be seen in 

Annex E.5. There are three  EVCS, and only one is operational at 5 PM on this day. The private 

charging stations are also included in the microgrid grid load. Figure 5.15 shows how wind and 

solar energy contribute to charging the EESS at times when there is less load. There is no need 

for grid import because wind generation is high on this day, and the optimization attempts to 

restrict grid import as much as possible. 
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Figure 5.15 Energy balance of microgrid electricity grid (20th January) 

Around midday, the EESS requires additional energy from PV and wind to be released at a high 

load time in the evening. The fuel cell needs a constrained supply of hydrogen, which is 

provided by the electrolyzer and HESS, due to which the electrolyzer also operates 

simultaneously. The fuel cell is running more than other DERs due to the heating demand. The 

sum of microgrid demand on this day is 2.3 MWh, which includes demand from heat pumps, 

electrolyzers, EESS charging, and private and public charging stations. As the day is winter and 

the fuel cell also provides heating, the fuel cell delivers the most energy, accounting for 37.8 

percent of total demand. The wind contributes approximately 19.2 percent, and battery 

discharge accounts for 16 percent. PV provides about 15.2 percent, and the rest of the energy 

is imported from the grid. The shift of renewables to high-demand times can be seen in Figure 

5.15. The operation of the DERs will be different from day to day based on the variation of 
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input parameters such as irradiance, wind speed, heating, and electrical load. The DER's 

operational hours are shown in Figure 5.16. 

 
Figure 5.16 Operational hours of DERs 

The operational hours of wind power are higher than those of PV power, as illustrated in 

Figure 5.16. Due to the fact that the analyzed settlement area is in Germany, which has a 

greater wind potential than PV. The TESS and HP have fewer operational hours because the 

fuel cell will run most of the time, as it will be better due to combined heat and power. The 

operational hours of the fuel cell should be equal to the electrolyzer and HESS's operational 

hours to ensure a constant supply of hydrogen. The electrolyzer is the only source of 

hydrogen, due to which it is operated higher time with full capacity to supply the hydrogen 

for HESS. The sum of all hydrogen produced and consumed in the year is 26,883 m3. Although, 

the fuel cell is believed to be operated more due to its combined heat and power attribute. 

From the standpoint of the electrical grid, EESS has higher operational hours than other DERs. 

This is because EESS will decrease the grid import by storing the excess energy from renewable 

energy sources.  

 Electrical grid analysis in terms of voltage 

The operation is optimal with the least possible operational cost and a stable voltage. The 

voltage profile for the microgrid for trend 2031 is shown in Figure 5.17. The voltage closest to 

the nominal voltage is shown as yellow color in Figure 5.17. The blue color indicates the lower 

voltage values of the string. The minimum voltage noticed is 397.5 V. The time in Figure 5.17 

starts from January to December. The middle section of the hours represents the summer. It 

can be seen that the voltage is more stable in summer as compared to winter due to the 

electricity needed for the heating requirement. The heating requirement is fulfilled by the 

heat pump and fuel cell, which require hydrogen from the electrolyzer. 
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Figure 5.17 Voltage profile 

Furthermore, from Figure 5.17, even a modest microgrid can manage the amount of EVs 

predicted in a trend scenario without experiencing any voltage issues. The microgrid's voltage 

profile must be considered to maintain the settlement area's stable and secure functioning. 

Two cases have been presented to illustrate the relevance of DERs planning, taking voltage 

into account.  

 Case 1: The microgrid is designed and optimized without any DERs. In this case, the 

grid provides demand for the microgrid 

 Case 2: The microgrid is optimally planned and operated with all DERs 

The private charging station placement for the settlement area can be seen in Annex E.3. All 

the nodes of string 1 have one private charging station in trend 2031. Furthermore, in trend 

2031, the nodes K1 are K2 are connected to two public EVCS. Figure 5.17 shows the voltage 

of string one at the observed time step with the lowest voltage. Note that the voltage drops 

can be handled with other methods, but with the introduction of DERs, the voltage is adjusted 

here with green energy and minimum cost. The distribution of voltage bins for the whole 

settlement area for both cases can be seen in Annex E.6. Note that these voltages are only 

problematic due to the integration of the EV and EVCS. But the solution is global and can be 

implemented for general voltage problems in weak grids. The minimum voltage has been 

restored from 394 V to 399 V in Figure 5.18, primarily due to DERs usage. This recovery is 

achievable because most of the DERs are placed at the K0 node, where the voltage is treated, 

and the voltage drops of the strings connected to K0 become less. The string length, house 

types, cable type, and EV distribution over the string are critical parameters. The optimization 

will adjust the sizes and optimal operation to make the voltage in the particular region.  
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Figure 5.18 Comparison of cases 1 and 2 on string 1 of the settlement area 

Although, the aim of the proposed microgrid is not to deal with the voltage problems as the 

grids in the location of the settlement area are very stable. The technical question regarding 

the grid perturbation in terms of voltage by introducing DERs due to the e-mobility seems to 

be effective. Considering the portability of the proposed methodologies, the voltage problems 

that occur in the microgrids due to the e-mobilities can be solved in the case studies with weak 

grids. 

 Heat grid energy balance and operational hours of DERs 

The heat energy balance in the electrical grid is analyzed in this part to indicate the importance 

of optimal operation in the heat grid.  The daily heat load and generation profiles related to 

operation for a winter day are shown in Figure 5.19. The heating load is covered most of the 

time with the fuel cell because it combines heat and power and less time with the heat pump.  

The sum of heating demand for the settlement area is 1.74 MWh, with a TESS charge of 0.035 

MWh.  

The overall generation for the day is 1.86 MWh, with 1.49 MWh from the fuel cell, 0.35 MWh 

from the heat pump, and 0.013 MWh from TESS. There is a surplus of 0.12 MWh, which are 

the losses in the heat grid.  The heating losses are 6.4 percent of the total generation on this 

day. The TESS needs to be discharged at times when the electrical load is low because the fuel 

cell will not be economical to be operated. To be discharged at these particular times, the 

optimization aims to charge the TESS at the time when the fuel cell is already operated due to 

electrical demand. If the fuel cell is not enough, the heat pump contributes to the heating 

demand and charging TESS. 
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Figure 5.19 Heat balance of settlement area (20th January) 

 Heat grid analysis 

The heat grid described in section 2.5 is assumed to be a low-temperature grid due to the heat 

pump and fuel cell limitation in temperature provision. However, the low-temperature 

heating grid with a supply temperature of 50 °C is enough to tackle DHW demand. 

Furthermore, the temperature for DHW must be above 50 °C to eliminate the bacteria such 

as legionella. Legislatively in Germany, a minimum of 50 °C needs to maintain to eliminate 

legionella [109].  

Similar to the voltage profile, the heat grid has supply and return temperatures described in 

section 2.5. String 1 of the heat grid from Figure 5.2 is studied in this part to evaluate the 

supply and return temperature while supplying heating demand. The string comprises six 

heating nodes, all of which are powered by heating node 2.  
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Figure 5.20 Heat grid at node 5 in the heat grid string 1 of the settlement area 

More considerable temperature differences, in general, result in higher losses; for example, if 

the outside temperature is cold, the supply temperature will be cooler during the provision of 

heating demand. If the outside is warm and the heating material is warm (in supply), the 

temperature difference between the two is slight. Unless a more significant temperature 

difference is required at 7 PM, the supply temperature remains constant when the load 

increases. In section 2.5, the return temperature is a limitation, with a minimum of 10 °C. The 

losses are higher at this time of day than at other times because the outside temperature is 

lower and the supply temperature is higher, resulting in a more significant temperature 

differential. The outside temperature is higher between 10 AM and 3 PM, resulting in less 

temperature loss. The heating losses in heating string 1 of the heat grid are shown in 

Annex E.7. The supply and return temperature of node 1 of the settlement heat grid is shown 

in Figure 5.21. 
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Figure 5.21 Supply temperature (left) and return temperature(right) 

Higher heating demand needs a higher temperature difference between supply and return. 

From Figure 5.21, the supply temperature mimics the heating load on the operation horizon. 

In winter, the supply temperature is high, the return temperature is low, and vice versa in 

summer. Higher temperature is needed to supply when the heating demand increase.  The 

supply temperature is from 50 oC to 60 oC in winter and around 50 oC in summer. The return 

temperature will look opposite to the supply temperature as the heating is extracted from the 

nodes in winter. The return temperature is higher in the summertime as the heating demand 

consists of DHW. In the heating grid, the losses through the lines have been considered, due 

to which a more significant size of the heat pump is needed to cover this extra load.  The 

outside temperature plays an essential role in the losses of the heating grid. The heating losses 

are shown in Figure 5.22.  

 
Figure 5.22 Losses in string 1 of the settlement heat grid 



 

85 

It can be seen that the heating losses are minimum, where the heating demand is the lowest, 

as shown in Figure 5.22. The heating sources are running with low output power at low heating 

demand. Even with this low output power, a higher supply temperature can be achieved as 

the temperature extracted at this point is low. Due to this, the temperature difference 

between supply and return temperatures is relatively low. 

 Microgrid cost analysis 

The optimization objective of the deterministic approach defined in section 4.1 is to plan and 

operate with minimum cost.  The settlement area's total cost includes investment, 

operational, and emissions penalty costs. The total cost of the microgrid for the planning 

horizon for negative, trend and positive scenarios is given in Figure 5.23. 

 
Figure 5.23 Overall cost of the settlement area for different scenarios 

Due to the same number of EVs, the cost of the microgrid at the start of the planning horizon 

is nearly the same. As the number of electric vehicles increases toward the end of the planning 

horizon, the cost difference between scenarios will widen. In 2031, taking the trend scenario 

as a reference, this cost will be 12.6 percent lower in a negative scenario. The percentage of 

cost rise in 2031 for the positive scenario compared to the trend scenario is 32 percent in 

2031. The increase in the settlement's overall cost per increase in the number of EVs is 

evaluated. It is observed that per EV will increase by 2.3 to 2.9 percent in the cost of the 

settlement. This comparison of the overall cost in terms of investment, operation, and penalty 

cost related to CO2 is shown in Figure 5.24. In the trend scenario, Investment costs generated 

58.4 percent of the total cost, operating costs contributed 38.4 percent, and CO2 costs 

contributed just 3.1 percent. The trend in Figure 5.24, the costs will follow the capacities. Due 
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to this, it can be observed that the investment cost has a significant influence on the 

capacities. 

 
Figure 5.24 Cost analysis of microgrid 

The operation cost comprises the electricity imported from the connected grid and the 

maintenance cost of DERs, which is assumed to be 1 percent of the capital cost of DERs.  The 

investment cost will increase at a low rate till 2026, but after that, the number of EVs will 

increase more rapidly, resulting in a steep increase in capacities. The EV is still rising till 2031, 

which needs to be fulfilled by the grid import. The penalty cost for CO2 emission is not 

increasing at a high rate because the emission cost certificate for CO2 is rising every year. The 

optimization tries to minimize it as much as possible. Compared to operation cost, the CO2 

penalty cost is too low because the CO2 emission certificate cost per tonne is still too low in 

Germany. For that reason, CO2 cost is maybe not the best instrument to support local 

decentral DERs. The high number of EVs will increase the load, due to which the operational 

cost compared to CO2 emission cost will grow at a higher rate. This may become a barrier for 

a microgrid investment with the motivation of less CO2 emissions. Due to this, the emission 

certificate cost needed to be increased to support higher renewables integration in the 

communities.   

 Flexible tariff system 

A flexible tariff system would here the better choice to increase the local use of renewable 

energy sources by using the storage system more efficiently. Due to this, the operational cost 

can be decreased, resulting in a more sustainable and emission-effective microgrid. The 

proposed tariff is calculated based on the white tariff system introduced in section 4.3 to 

increase the local usage of renewable energy sources. In this tariff, the microgrid has to pay 
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five times more in the peak time, three times more in the intermediate time, and an equal 

amount at the off-peak time than the flat tariff described in section 4.3. However, the white 

tariff is a variable peak pricing type, and the proposed tariff is real-time pricing. Real-time 

pricing is used because the EV arrival is random and can shift the peaks in the evening and 

forth.   

5.3.7.1 Microgrid planning with flexible tariff 

The white tariff system is compared with the flat tariff system to evaluate the effectiveness of 

the proposed tariff system for the settlement area. The dimension of the microgrid capacities 

for a flexible and flat tariff is given in Figure 5.25 for the trend scenario in 2031. 

 
Figure 5.25 microgrid dimensions in flat and Flexible tariff 

The capacity of the energy storage system is significantly increased. The cost of electricity is 

higher in the white tariff during peak times. Therefore, the energy storage system charges 

cheaply and discharges at high-cost times. The HESS has decreased because the electrolyzer 

and fuel cell capabilities have decreased. 

5.3.7.2 Optimal operation with flexible tariff 

By shifting energy, the EESS and TESS contribute to the lowest feasible cost of power, as 

demonstrated in Figure 5.26.  The EESS is charged in the morning and released in the evening 

at approximately 7 PM, as shown in Figure 5.26. Similarly, the TESS charges at a low price time 

since heat-producing systems like heat pumps must operate at a low price time. The sum of 

electrical demand is 1.85 MWh on this day. The heat pump and electrolyzer demands are 50 

kWh and 445.8 kWh, respectively. The grid import is required for a small amount of time at 6 

PM and 7 PM. The energy generated by PV and wind is 291 kWh and 1 MWh, respectively. 

EESS is responsible for 400 kWh, which is around 21 percent of the total load. This indicates 
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that approximately 21 percent of the load has been transferred to off-peak hours by the EESS. 

The fuel cell fulfills the remaining need. 

 
Figure 5.26 electrical and heat energy balance of the settlement area (21st February) 

5.3.7.3 Comparison between flexible and flat tariff system 

The cost of the investigated settlement area under flexible and flat tariffs for the trend 

scenario in 2031 is shown in Figure 5.27. The investment cost is higher in the flexible tariff 

than flat tariff because the energy storage systems are larger in capacity. In a flexible tariff 

system, energy storage systems must be more significant and run more often to transfer the 

energy from a low price to a higher price time. It will be more cost-effective to acquire at a 

low price and discharge at peak periods if grid import is necessary.  
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Figure 5.27 Flexible versus flat tariff 

The overall cost of a flexible tariff is 4.2 percent lower than the flat tariff because the decrease 

in grid import cuts operational expenses significantly. The CO2 penalty cost is higher in the 

flexible tariff system as a higher amount of grid import is needed. The high peak time resulted 

from the integration of e-mobility mostly occurs at a high price time. In the flexible tariff 

system, it will be more cost-effective to use energy storage systems to provide these high 

peaks at high price times by charging them during low price times. In the flat tariff system, as 

the electricity price is the same, the energy storage will be charged mostly from renewables. 

Due to this, the grid is imported more in the flexible tariff as compared to the flat tariff but at 

a cheaper price. The operational and CO2 cost comparison is flat and flexible tariffs can be 

seen in Annex E.8.  The decision-makers can save up to 12 percent on the operational cost and 

4.2 percent on the overall cost of the microgrid. Due to this, it is observed that the flexible 

tariff based on the white tariff outperforms the flat tariff in microgrid planning and operation. 

The flexible tariff will be more effective if the demand response programs are considered. 

However, Without any demand response programs, considering the aim of powering the e-

mobility infrastructure with the least possible CO2 emissions, the flat tarri is better to be 

implemented. 

 Sensitive analysis 

This structure is compared with the settlement area structure shown in Figure 5.2 based on 

the cost analysis of the settlement area. The sensitivity analysis is evaluated using the trend 

scenario. Furthermore, it is believed that the impact of sensitivity analysis on microgrid 

structure would be the same regardless of the year in the planning horizon, hence, 2022 will 

be used in this part. A sensitive analysis is performed for the trend scenario in 2031. It is 

assumed that changing the following aspect impacts microgrid planning and operation.  
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 DERs replacement: The hydrogen system (Fuel cell, electrolyzer, and hydrogen 

storage) is unnecessary. 

 DERs capacity limit: The microgrid connected to a low voltage grid is legislated and 

a higher amount of DERs are allowed to be installed 

5.3.8.1 DERs replacement 

The hydrogen system is removed, and the heat pump alongside TESS provides a heating grid. 

The cost comparison of both microgrid structures is shown in Table 5.8. 

Table 5.8 Comparison of the settlement cost with and without hydrogen system 

Microgrid structure Investment cost in € Operational cost in €  CO2 penalty cost in € 

Without hydrogen system 21097.04 29850.94 1264.269 

With hydrogen system 26575.19 5349.26 219.64 

The investment cost has dropped, but the operating costs have increased due to direct 

renewable energy consumption reduction. The amount of electricity drawn from the grid was 

raised by 23 percent. Since the grid import is the principal source of CO2, this rise also increases 

CO2 emissions. In terms of cost, it is more economical and emission-effective to use the 

hydrogen system in the microgrid.  

5.3.8.2 DERs capacity limit 

The maximum capacity of DERs is limited since the microgrid is connected to a low-voltage 

grid. The electricity capacity limit for each DER is increased to 600 kW in this section. Figure 

5.28 depicts the dimensions of DERs in the microgrid. 

 
Figure 5.28 Dimensions of DERs in the investigated settlement area 
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The EESS and TESS capacities are measured in kWh, whereas the generating units, heat pump, 

and electrolyzer are measured in kW, and the HESS is measured in m3. Allowing higher capacity 

limits will increase EESS and wind capacities by a high amount. The PV system will not increase 

after 224 kW as the limit is calculated as per available space for the PV installation, as 

described in section 2.11. Comparing Figure 5.28 and Figure 5.14 in section 5.3.1, the increase 

in the wind and EESS reduces the rise in fuel cell capacity because the fuel cell, electrolyzer, 

and HESS systems are more expensive than the wind and EESS.  

 
Figure 5.29 Comparision of 100 kW and 600 kW capacity limit 

The cost stays the same until 2026 since the capacities rise at the same pace in both situations 

until the EESS reaches its power capacity. After 2026, the higher DERs limits did not result in 

a huge cost increase because the operating cost is increasing with the rise in the number of 

EVs. The CO2 emission penalty cost is also reduced by reducing the operation cost. In 

conclusion, microgrids need to be allowed higher limits to accommodate more and more 

renewables. The negative impact of high limits of DERs can then be dealt with locally in the 

microgrid by different methodologies such as demand response and control policies. A 

solution is to integrate the microgrid with a middle voltage grid. However, from Figure 5.28, 

such a high wind installation capacity is not possible as it depends on people and space's local 

conditions and acceptance. By increasing these hosting capacities of DERs, the overall cost will 

be reduced compared to capacities limitation, as shown in Figure 5.29. 

5.4 Microgrid planning and operation with stochastic optimization 

The increase in the EV and EVCS is inevitable, as described in section 5.2. The forecast is just 

based on the factors described in section 3.1. However, it is challenging to forecast these rises 

in the EVCS accurately because any of these factors may change. Based on the recent crises 
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such as pandemics and shortages of semiconductor materials, EV production has been 

affected immensely, affecting the installation of EVCS. It is clear that the actual number of EV 

and EVCS installations has not been following the trends due to several reasons. This is 

predicted to have a significant impact on microgrid planning and operation. 

Furthermore, the EV arrivals on a day, charging from a public EVCS and privately, have a high 

associated load. Any uncertainty related to EV arrival can influence microgrid planning and 

operation. The following aspects are analyzed to evaluate the impact of multi-type uncertainty 

on the investigated settlement area. For the evaluation of the results, the trend scenario is 

considered. 

 Consideration of Long-term uncertainty 

 Consideration of Short-term and Long-term uncertainty  

For the evaluation of the results, the trend scenario is considered. Furthermore, Due to the 

fact that the flat tariff is already in place in Germany, the flat tariff is used in the stochastic 

optimization approach. Note that the microgrid is considered in a risk-averse manner (risk-

avoiding). If the ability of the DERs of the microgrid to amount of uncertainties occurs will 

define the robustness of the microgrid. A best-case in terms of a risk-averse microgrid is when 

fewer uncertainties occur and vice versa. However, the uncertainties are uncontrollable, due 

to which the robustness of the microgrid should be planned.  

 Consideration of Long-term uncertainty 

The long-term uncertainties related to EVCS are modeled using IGDM, as described in 

section 4.2.1. The envelope bound for the number of EVCS shows the boundary of the 

uncertainty region. For 𝛼EVCS=1, the envelope bound for the number of EVCS for the last five 

years of the planning horizon is shown in Figure 5.30. 

 
Figure 5.30 Number of EVCS 
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It can be concluded that the outer boundary of the envelope will be the worst-case (Highest 

uncertainty), and the inner boundary (Lowest uncertainty) represents the best-case for the 

microgrid. 

The optimization aims to increase the robust region 𝛼EVCS concerning the allowed budget 𝑓b. 

The allowed budget is defined as the percentage increase in the cost of the microgrid achieved 

from the deterministic optimization. 𝑓b will be equal to the cost of the deterministic microgrid 

if the allowed budget is 1. The decision-maker can adjust this factor at the planning stage 

based on the amount of acceptance to pay more for the microgrid's robustness against 

uncertainty. The 𝛼EVCS will change depending on the specified 𝑓b and the highest attainable 

𝛼EVCS will be the ultimate microgrid robustness against EVCS uncertainty. The robustness of 

the microgrid with the change in the allowable budget is shown in Figure 5.31. It can be seen 

from Figure 5.31 that the uncertainty region increases linearly with an increase in the 

allowable cost budget. A 100 percent robust region can be achieved with an allowable budget 

of 1.8. This means that 1.8 times (80 Percent)  more cost is needed for the microgrid to handle 

all uncertainties in the envelope. For an allowable budget equal to the deterministic cost, the 

microgrid has similar DERs capacities as computed in the deterministic optimization model. 

 
Figure 5.31 Robust region versus allowable budget 

The comparison of capacities of DERs for an allowable budget equal to the deterministic 

approach is shown in Annex E.9. However, considering the allowable budget equal to 

deterministic cost, the microgrid has only 28.8 percent of robustness under long-term 

uncertainty, as shown in Figure 5.31. A higher budget increased the capacities of the DERs to 

power the extra amount of EVCS, which will increase the robustness of the microgrid. The 

capacities of DERs for trend scenarios for a 100 percent robust (allowable budget of 1.8) are 

shown in Figure 5.32. Uncertainties are unavoidable, but the number of uncertainties is 
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difficult to estimate. As a result, a fully robust microgrid is proposed at a higher cost during 

the planning stage. 

 
Figure 5.32 Microgrid capacities of trend scenario 

It may be more expensive to tackle these uncertainties economically and technically if the 

microgrid is designed for less resilience and more uncertainty occurs. However, the results of 

the microgrid dimension for different robustness are shown in Annex E.9. The 80 percent 

increase in the microgrid's cost budget to meet the additional number of EVCS enhances the 

capacity of the PV and EESS. This increase in PV, wind, and EESS will ensure that the EVCS is 

powered more by renewable energy. The comparison in the rise in the capacities of DERs of 

microgrids for the planning horizon can be seen in Annex E.9. Most of the long-term 

uncertainties occur at the end of the planning horizon. In these years, the PV and wind systems 

can not be increased further due to the limit announced in section 5.1. Due to this, the 

capacity of the EESS and fuel cell increases more as compared to the deterministic approach. 

As the number of EVCS rises, the number of uncertainties increases. As illustrated in Figure 

5.32, the capacities increase in the same fashion. The heating equipment is not frequently 

changed because the heating grid and heating demand are consistent. The slight drop in the 

heat pump is caused by an increase in the fuel cell required to generate electric power due to 

uncertainties in conjunction with other generation units. The proposed method based on 

IGDM is highly recommended over the deterministic approach when there is a chance of the 

occurrence of long-term uncertainty, which can not be realized through the deterministic 

optimization approach.  
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 Consideration of short-term and long-term uncertainty 

The short-term uncertainties are handled by chance constraint described in 4.2.2. If there is 

no uncertainty in the energy balance, it is always viable. If the uncertainty is not a distribution 

function, including uncertainty in the energy balance will be simple. The confidence level (1 −

ϵ) shows the portion of the probability distribution function from the ambiguity set in which 

the energy balance, including uncertainty, is not violated. The higher confidence level 

indicates that more area is covered in the distribution function. The ϵ shows the tolerance 

level of the microgrid against short-term uncertainty.  The robust region will increase with the 

confidence level decrease as fewer EV arrives as the distribution. The allowable budget level 

and confidence level decide the robustness. The increase in the confidence level will also 

affect the robust region. The decrease in the confidence level and the robust region is 

presented in Figure 5.33. The short-term uncertainty will be severe and behave the same way 

through the planning horizon. The short-term uncertainty is assumed to be unknown at the 

planning stage. The chance-constraint DRO handles the short-term uncertainty ambiguity set 

in the planning horizon.  Due to this, it is ensured through chance-constraint DRO that if severe 

uncertainty occurs in the microgrid in the future, the microgrid is robust enough to hedge 

against it with a generated confidence level. As shown in Figure 5.33, the investigated 

settlement area is 35 percent robust with the ambiguity set defined in section 4.2.2. 

 
Figure 5.33 Impact of short-term uncertainty over the robust region 

This means that the microgrid is able to hedge 35 percent of the uncertainties even with a 

zero-tolerance level (100 percent confidence level). If the microgrid is planned and operated 

without considering any short-term uncertainty, the confidence level is 100 percent. However, 

the confidence level can be decreased to induct more uncertainties, due to which the robust 
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region is increased. The decision-makers can then decide on less robustness (lower cost) or 

high robustness (higher cost) microgrids, depending on the requirements. The lower 

confidence increases the robust region, and similarly, the allowable budget also increases the 

robust region. Due to this, allowing more short-term uncertainty (lower confidence level) and 

more long-term (higher allowable budget) increases the cost but reduces the risk (risk-averse). 

The risk-averse microgrid with an allowable budget of 1.8 and 96 percent is proposed for the 

investigated settlement area. The microgrid cost for the different confidence levels is 

presented in Table 5.9. 

Table 5.9 Microgrid cost with long and short-term uncertainty in trend 2031 (fb=1.8) 

Confidence level in % Investment cost Operational cost CO2 penalty cost 

100 133564.80 42498.14 4028.32 

99 135359.57 43396.29 4134.56 

98 137154.79 43998.55 4216.66 

97 138949.37 44595.43 4358.33 

96 140744.09 45404.23 4414.53 

A confidence level from 96 to 100 percent is allowed. In a deterministic approach, the 

investment cost is roughly 74,000 euros, and the operational costs are around 48,000 euros. 

The long-term uncertainty with fb=1.8 increases the investment cost to approximately 

133,000 euros. With a 100 percent confidence level, the cost of the microgrid considering 

long-term uncertainty will be equal to a microgrid with long and short-term uncertainty. The 

load margin that cannot be fulfilled due to short-term uncertainty is allowed when the 

confidence level falls. The capacities in trend 2031 with a confidence level of 96 percent and 

an allowable budget of 1.8 are shown in Figure 5.34.  

 
Figure 5.34 Comparision of IGDM and IGDM-DRO 
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As the confidence level decreases, the cost of the investigated settlement increases. Because 

the arrival of electric vehicles is very unpredictable, it can be more cost-effective at the 

planning stage to allow less significant confidence level (more tolerance level) margins. From 

Table 5.9, it is concluded that the decrease of 1 percent confidence level will increase roughly 

3 to 4.5 percent in the cost of the microgrid. The increase in the cost of the microgrid results 

from the increase in capacities. The capacities of renewable energy sources in trend 2031 for 

IDGM and IGDM-DRO are likely to be similar because of the limit. However, the extra energy 

needed to fulfill the short-term uncertainties increases the EESS and fuel cell. The slight 

decrease in the heat pump and TESS is caused by the increase in the fuel cell. 

 Comparison between deterministic and IGDM-DRO 

The comparison of the proposed holistic approach with the deterministic microgrid planning 

and operation for the investigated settlement for trend 2031 is shown in Table 5.10. The long-

term uncertainty only comes into play at the end of the planning horizon. Typically, however, 

DER is operated for a planning horizon of 10 years, so planning with uncertainties makes 

sense. As the short-term uncertainties have a relatively small impact on the cost of the 

microgrid, as shown in Table 5.9 and Figure 5.34, the confidence level of 96 percent is 

considered for the comparison. 

Table 5.10 Comparison of deterministic and IGDM-DRO approaches 

Method Deterministic approach IGDM-DRO 

Robust region in % - 0 50 100 

Overall cost in € 127029.39 128576.97 184192.6 215563.6 

Note that the robust region of 100 percent was achieved at an allowable budget of 1.8. 

Similarly, 50 percent was achieved with an allowable budget of 1.45. From Table 5.10, the 

IGDM-DRO acquired more cost as compared to the deterministic approach. However, the 

developed approach is better than the deterministic approach due to the following reasons: 

 Consideration of  uncertainties in the microgrid planning and operation, due to which 

the decision-makers can plan the microgrid under multi-type uncertainty 

 Enables the decision-makers to plan the decision on the basis of cost versus robustness 

Given that the deterministic version is better in terms of cost and the IGDM-DRO is better 

in terms of robustness, a combination of the two methods will be effective in terms of 

trade-off.  
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 Scalability solution 

 As the planning problem is for a future scenario in term years, this computational time is 

acceptable. However, the IGDM-DRO optimization becomes intractable with the case study of 

the presented new settlement area due to many equations, variables, and types of problems. 

Due to this, the tractable solution is proposed. The input data is scaled with 10-day type 

categories, as described in section 2.3. It has been assumed that the load and generation 

behave the same as defined with the day type categories. The bender decomposes the 

problem with day-type categories.  The result of the multi-cut bender decomposition for trend 

scenarios in the planning horizon is shown in Table 5.11. 

Table 5.11 Tractability using multi-cut bender decomposition 

 Original Problem Decomposed 

Equations 1,051,727 29,3205 

variables 39,595,272 1,084,879 

Binary variable 52,560 4,780 

Solution time Intractable 5 h, 27 min 

The proposed methodology is efficient as computation time and effort is saved. The bender 

decomposition must converge, and due to its iterative nature, the less time it takes to 

converge, the more solution time can be saved.  The convergence for the multi-cut bender 

decomposition for a year (trend 2022) is shown in Figure 5.35. 

 
Figure 5.35 Convergence for multi-cut bender decomposition 

Figure 3.5 shows the convergence for the bender decomposition for IGDM-DRO with an 

allowable budget of 1 (equal to the deterministic approach) and a confidence level of 100 

percent. Due to this, the cost of the microgrid in trend 2022 is approximately equal in 
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deterministic and stochastic approaches as the uncertainties are minimal, as given in Figure 

5.23. However, although uncertainties are minimal, there is a slight change in the cost due to 

different methods in deterministic (32,144 €) and IGDM-DRO (32,768 €). IGDM-DRO's 

objective in the master problem is to increase the robust region. As a result, the investment 

cost is handled as a constraint, as mentioned in section 4.2.3. As a matter of fact, the 

convergence might vary for each year of the planning horizon. The solution is found in the 

eighth iteration this year. The solution time will fluctuate as the number of bender iterations 

increases. However, it was discovered that the number of iterations has never exceeded 13. 

As a result, the IGDM-DRO is always tractable with multi-cut bender decomposition.  
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6 Conclusion and outlook 

In the scope of this dissertation, a new holistic approach for microgrid planning and operation 

for e-mobility under the consideration of multi-type uncertainties was proposed and 

discussed. The scope of this study was to develop a cost-efficient, emission-effective, and 

technically sound microgrid from scratch for the development of e-mobility infrastructure, as 

well as to analyze the consequences of e-mobility-related uncertainties on the microgrid. 

Due to the motivation to address climate change, the development of renewable energy 

sources, energy storage systems, and sector coupling technologies, also known as distributed 

energy resources, is inevitable in sectors such as electricity, heat, and industry. Similarly, the 

e-mobility infrastructure is developing rapidly as a result of this motivation. Renewable energy 

sources must power the e-mobility infrastructure to achieve environmental effectiveness over 

combustion engine vehicles. However, the existing power systems are not always capable of 

handling the additional power and adverse effects of large-scale deployment of e-mobility 

infrastructure.  

Nonetheless, the microgrid components with the e-mobility infrastructure must be optimally 

planned and operated to prevent high costs, technical issues, and emissions. The existing 

methods in the literature for optimal planning and operation lack the method for e-mobility 

infrastructure. As a result, a compact methodology for e-mobility infrastructure planning is 

proposed. The proposed method includes a retropolation method for planning the increase in 

the number of electric vehicles, Monte-Carlo simulation for EV behaviors, EVCS number based 

on occupancy time, and public EVCS placement based on Monte-Carlo simulation. 

In the microgrid planning and operation, the DERs and the e-mobility infrastructure may cause 

technical problems in the grid, such as voltage issues. Due to this, technical issues must be 

included in the microgrid planning and operations so that these problems can be avoided. The 

current dissertation uses linearized optimal power flow equations to model voltage 

perturbation in the electrical grid. In addition, the heat losses for the low-temperature heating 

grid are included.  Finally, a deterministic approach for microgrid planning and operation is 

developed for e-mobility infrastructure to minimize investment, operational, and CO2 penalty 

costs considering the above-stated technical parameters. The deterministic microgrid 

planning and approach are tested with flat and flexible tariffs. The flexible tariff system is 

modeled based on the white tariff system implemented in Brazil. 

The e-mobility infrastructure development has been associated with multi-type ( short-term 

and long-term) uncertainties. Direct and indirect variables such as the rise in the number of 
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EVs, battery technology, and government incentives significantly influence the planning of the 

number of EVCS. As a result, forecasting the number of EVCS is challenging, and thus the 

number of EVCS is regarded as a long-term uncertainty. The daily arrivals of EVs are also highly 

unpredictable due to the user’s random behavior for traveling and charging. These 

uncertainties might result in a high risk for microgrid planning and operation in microgrid 

planning and operation. Due to this, in this dissertation, a new stochastic method was 

developed, which gives a risk-averse strategy for microgrid planning and operation by 

including long-term and short-long uncertainties. The number of public electric vehicle 

charging stations as a long-term uncertainty is modeled with the information gap decision 

method (IGDM). Additionally, the short-term uncertainties are handled with distributional 

robust optimization (DRO). The proposed method is referred to as IGDM-DRO to tackle the 

microgrid planning and operation under multi-type uncertainty related to e-mobility. Finally, 

to avoid the intractability of the proposed method, the multi-cut bender decomposition is 

implemented for IGDM-DRO. 

The deterministic and stochastic approaches are merged into a new holistic approach to 

consider the optimal microgrid planning and operation in terms of cost and robustness at the 

same time. The microgrid is optimally planned and operated with the objective of robustness 

and cost. The cost of the microgrid included investment, operation, and CO2 penalty costs. In 

the CO2 penalty cost, the declining emission intensity in the electrical grid due to the 

increasing renewables and the increase in the emission certificate cost is considered. 

The methods were implemented in a case study of a new settlement area Alte Ziegelei 

Magdeburg, Germany. The settlement area is planned from scratch, where the statistics and 

available areas for PV systems, electrical, and heat grid with settlement demand are modeled. 

A microgrid based on the above-stated method is planned for a planning horizon of 10 years 

for the investigated settlement area.  

Based on people's acceptance, three scenarios (negative, trend, and positive) for the 

development of the number of electric vehicles are generated. Based on investment costs, 

operational costs, driving benefits, and other benefits, a projection for the percentage of EVs 

over conventional cars in 2026 is made. The rising rate of EVs is then retropolated till 2026 

and extrapolated till the end of the planning horizon. It was concluded that the number of EVs 

will be one in 2022, which will be raised to 17, 33, and 43 in negative, trend, and positive 

scenarios, respectively. At the end of the planned horizon, electric vehicles might constitute 

up to 31 percent of all vehicles. In the investigated settlement area, these EVs will be charged 

at home using private charging stations with a rated power of 11 kW and at public electric 

vehicle charging stations (EVCS) with a rated power of 22 kW. Based on the results for EVs 
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behaviors from the Monte-Carlo simulation, the EVs will increase the electrical load up to 48 

percent n a particular day. Furthermore, because consumers arrive at their homes mostly at 

the same time in the evening, roughly 3 to 34 percent of all EVs might be charging 

simultaneously, resulting in a significant peak in the settlement load. In the trend scenario, 

the EV in the settlement area will require at least three EVCS by 2031, based on EVCS 

occupancy times of less than 30 minutes. The planned three EVCS must be installed at the 

nodes with a node voltage-sensitive index (NVSI) of less than 0.2. Due to this, the optimal 

location for the public EVCS was concluded to be K1, K14, and K2. 

The investigated settlement area is optimally planned and operated using a deterministic 

optimization approach based on the rise in the EV. When comparing the negative, trend, and 

positive scenarios, the overall cost of the investigated settlement area decreased by 12.6 

percent in the negative scenario and increased by 32 percent in the positive scenario. A rise 

per EV in the settlement area indicates a 2.3 to 2.9 percent increase in overall cost. The 

dimension of the DERs in the investigated settlement area for the trend scenario for 2031 is 

shown in Table 6.1. 

Table 6.1 DERs dimension in 2031 for investigated settlement area 

DERs PV Wind EESS HP TESS FC Elec HESS 

Capacities 224. kW 100 kW 368.3 kWh 18.6 kW 12.8 kWh 56.0 kW 20.8 kW 52.3 m3 

It was concluded that implementing these DERs in the settlement area needed an overall cost 

of 127029 € in the trend scenario. From the overall cost, 58.4 percent of the cost is contributed 

by investment cost, 38.4 percent is contributed by operation cost, and only 3.1 percent is 

contributed by the CO2 Penalty cost. The CO2 Penalty cost is less due to the low emission 

certificate cost set by the government. Due to this, the CO2 penalty cost might not be a good 

instrument to support the local use of renewable energy sources at this moment. The 

operational cost can still be minimized by 12 percent, which decreases the overall cost by 4 

percent if the proposed flexible tariff is used in the settlement area in the trend scenario. 

However, due to the higher CO2 emissions and the demand response programs being out of 

this dissertation's context, the flat tariff system has been used for further demonstrations of 

the results. Because of its combined heat and electricity feature, the hydrogen system (fuel 

cell, electrolyzer, and hydrogen storage system) fuel was shown to be the most effective 

among the DERs in terms of utilization. By adding a hydrogen system, the overall cost has been 

decreased up to 38 percent. 

Considering the multi-type uncertainties, it was concluded that the microgrid resulting from 

the deterministic approach is just 28 percent robust against the long-term uncertainty. Such 
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low robustness will be risky in long-term planning. To achieve full robustness, the cost of the 

microgrid needs to be increased by 80 percent. If the confidence level is reduced to 96 percent 

by including short-term uncertainty, robustness of around 60 percent will be obtained. With 

the robustness of the allowable budget of 80 percent and confidence level of 96 percent, 66.7 

percent of the cost has been increased as compared deterministic approach in the trend 

scenario in 2031. The increase in the cost resulted from the higher capacities needed to hedge 

the uncertainties. Due to this, the deterministic approach is considered to be better in terms 

of cost, and IGDM-DRO is recommended if the robustness against uncertainties needs to be 

planned.  

By the proposition of scalability for the IGDM-DRO by using multi-cut bender decomposition 

in the current dissertation, the methodology is well suited for planning and operation under 

multi-type uncertainties for larger settlement areas such as cities. However, high 

computational time with a duration of days depending on the grid sizes is expected. As e-

mobility infrastructure planning under uncertainties is more effective in larger cities, a further 

decrease in computational time can be a future research area. A study on the propagation of 

these uncertainties to other sectors, such as gas and heat, is also worthy. In general, the 

microgrid has other associated short and long-term uncertainty such as daily renewables 

generation, declining or inclining cost of the DERs, and technological development. 

Considering a higher number of uncertainties will give a better perspective on microgrid 

planning and operation. The replacement of DERs, such as PV systems and energy storage 

systems, will increase the material waste trash, which is not environmentally friendly. 

Considering a study to minimize the DERs trash as much as possible might be an interesting 

field of further research. The introduction of microgrids can well handle the development of 

the e-mobility infrastructure in the cities. However, there is still a limitation in terms of 

capacities for DERs installations due to the negative impacts of DERs. It is recommended that 

the microgrids need to be allowed to install higher capacity DERs to accommodate more 

renewable energy sources. The negative impact of the DERs can be dealt with locally in the 

microgrid by a different method, such as demand response and control policies. A solution is 

to integrate the microgrid with a middle voltage grid. However, higher wind installation 

capacity is not always possible, depending on people and space's local conditions and 

acceptance.  
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𝐹∆𝜗 
Correction factor for the deviating temperature difference in 

condenser during operation 

𝜂 Electrical efficiency 

T° Temperature at standard conditions 

p° Pressure at standard conditions 

Θ Heating efficiency 

𝛾 Binary variables 

𝑡 Time 

𝐸 Energy capacity 
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GHG Greenhouse gases 

RES Renewable energy sources 

DERs Distributed energy resources 

PV Photovoltaic 

EESS Electrical energy storage system 

TESS Thermal energy storage  

HESS Hydrogen energy storage systems 

ICE Internal combustion engines  

EV Electric vehicles 

EVCS Electric vehicle charging station 

CHP Combined heat and power 

P2H Power to heat 

GA Genetic algorithm 

PSO Particle swarm optimization 

DHW District hot water 

SCOP Seasonal Coefficient of performance 

MINP Mixed-integer nonlinear programming 

DRO Distribution robust optimization 

IGDM Information gap decision method 

BESS Battery energy storage system 

MILP Mixed-integer linear programming 

ESS Energy storage system 

SFH Single-family houses 

MFH Multi-family houses 

CRE Commercial real estate  

EnEV energy saving ordinance 

IZES Institut für ZunkunftsEnergieSysteme 

HTW University of Applied Sciences 

DIN German Institute for Standardization 

VDI Verein Deutscher Ingenieure 

UWH Transition Workday Fine 

UWB Transition Workday cloudy 

USH Transition Holiday Fine 

USB Transition Holiday cloudy 

SWX Summer Workday Fine/cloudy 
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SSX Summer Holiday Fine/cloudy 

WWH Winter Workday Fine 

WWB Winter Workday cloudy 

WSH Winter Holiday Fine 

WSB Winter Holiday cloudy 

DWD Deutscher Wetterdienst 

NR Newton-raphson 

SDP Semi definite programming 

SOCP Second-order cone programming 

min Minimum 

max Maximum 

𝐻𝑁 Heating nodes 

𝐻𝐵 Heating branches 

𝑆𝑂𝐶 State of charge 

𝐺𝐶𝑅 Ground coverage ratio 

SOFC Solid oxide fuel cells 

PEM polymer electrolyte membrane fuel cells 

𝑆𝑂𝐶 State of charge 

NVSI Node voltage-sensitive index 

DG Distributed generation 

SP Stochastic programming 

RO Robust optimization 

VAR Value at risk 

CVAR Conditional value at risk 

KBA Germany's federal motor vehicle authority 
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A. Appendix: Introduction 

The power to heat classification in a multi-energy microgrid is shown in Figure A.1. 

 
Figure A.1 P2H structure [19] 
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B. Appendix: Component modeling 

B.1 Electrical load profile 

 

Figure B.1 Comparison between Second and hour resolution 

B.2 Electrical grid modeling 

 NR power flow used for the EVCS placement algorithm  

Electrical lines can be calculated according to the Pi equivalent circuit diagram shown in Figure 

B.2   [193,194]. The calculations in this section are primarily taken from references [193,194]. 

The capacitive and inductive coupling results in a fully occupied impedance matrix for the 

three conductors. 

 
Figure B.2 Pi equivalent circuit diagram [194] 

It makes sense to work with the reciprocal of the impedances, and the admittances for further 

consideration. The complex admittance resistance of the line is determined by an ohmic 

resistance (𝑅) and an inductance (𝐿) as well as two capacitances (𝐶) as given in  (B.1) and (B.2). 



 

131 

𝑌A = 𝑌B =
1

2
(𝐺 + 𝑗𝜔𝐶) 

 
(B.1) 

𝑌m = 𝑅 + 𝑗𝜔𝐿  (B.2) 

The current equation for modeling the line is set up from the equivalent circuit diagram. Here 

the admittance for the current flow directions from point A in idle, A to B, B to A, and B in idle 

is determined by (B.3), (B.4), and (B.5). 

𝑌AA = 𝑌A + 𝑌m  (B.3) 

𝑌AB = 𝑌BA = −𝑌m  (B.4) 

𝑌BB = 𝑌B + 𝑌m  (B.5) 

Since the asymmetrical structure of the equipment and symmetrical consumption of the 

consumers is assumed, a single-phase analysis is sufficient. The calculated admittances result 

from the line occupancy and the couplings between the conductors and are represented as a 

current equation for the connection with other equipment according to the junction method 

as given in (B.6). 

[
𝒊A

𝒊B
] = [

𝒀AA 𝒀AB

𝒀BA 𝒀BB
] [

𝒖A

𝒖B
] 

 

(B.6) 

The transformer is then modeled with Delta-Wye (Dy5) type [193]. 

 
Figure B.3 Dy5 transformer model [194] 

In the Dy5, the middle voltage side is connected in a delta fashion, and the low voltage side is 

connected in a star [193]. A phase shift of 150 ° is taken into account between the primary and 

secondary sides. To set up the current equation, the admittances of the individual equivalent 

circuits are required in parallel to the modeling of the line. The ohmic and reactive resistances, 

as well as the transformation ratio (𝜏) from the primary to the secondary side, are determined 

from the transformer parameters as given in (B.7) and (B.8)  [193]. 
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𝑅A = 𝑅B
′ =

1

2

𝑃k

3𝐼r
2
 

 (B.7) 

𝑋A = 𝑋B
′ =

1

2
𝑢𝑠

𝑈T
2

√3𝑆T

 
 (B.8) 

Where 𝑃k is the short circuit losses of the transformer. 𝐼r is the rated current and is equal to 

the rated power of the transformer (𝑆T) divide by voltage at the primary side (𝑈T). The value 

of 𝑃k  is assumed to be 7.6 kW [195]. 𝑢s is the relatively short circuit voltage. The value of 𝑢s 

is assumed to be 5.9 percent [195]. The admittances can then be derived from the circuit 

diagram so that equivalent circuits can be determined for the primary and secondary sides as 

well as the center point described from (B.9) till (B.12).  

𝑌A =
1

𝑅A + 𝑗𝑋A
 

 (B.9) 

𝑌B
′ =

1

𝑅B
′ + 𝑗𝑋B

′  
 (B.10) 

𝑌m =
1

𝑅Fe
+

1

𝑗𝑋h
 

 (B.11) 

𝑅Fe =
𝑈T

2

𝑃o
 

 (B.12) 

Where 𝑃o is the no-load loss of the transformer and is assumed to be 1.1 kW [195]. The winding 

sizes are represented using the node point method as an admittance matrix, based on the 

primary side as given in (B.13). 

[
𝒊A

𝒊B
] =

𝟏

𝒀A + 𝒀′B + 𝒀m
[
𝒀A(𝒀′B + 𝒀m) −𝜏𝒀A𝒀′B

−𝜏𝒀A𝒀′B |𝜏|2𝒀′B(𝒀A + 𝒀m)
] [

𝒖A

𝒖B
] (B.13) 

A diagonal matrix with all resources 𝑌T can then be created, and the node admittance matrix 

𝑌KK can be set up using the node-terminal incidence matrix 𝐾KT 
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T,AA T,AB

T,BA T,BB

T

L,AA L,AB

L,BA L,BB

 
 
 
 
 
 
  

Y Y

Y Y

Y

Y Y

Y Y

 

 

(B.14) 

𝑌KK = −𝐾KT𝑌T𝐾KT
T   (B.15) 

In addition to the 𝑌KK , the loads and the generators, and the nominal voltage serve as input 

data for the load flow calculation. The definition of the slack node (reference node) ensures a 

balanced power balance and means that a constant voltage U, with an associated angle δ, is 

specified. The slack node is assumed to be at the medium-voltage level. All other nodes are 

defined as load nodes, i.e., active and reactive power is specified as load or generation. The 

calculation of the power balance of the network nodes is based on the Newton-Raphson 

method. The network power can be calculated with the help of the established nodal 

admittance matrix and the network voltage and divided into active and reactive power. 

𝑠N = 3𝑈K(𝑌KK𝑢K)∗  (B.16) 

The difference between network and node power and network and node reactive power can 

be set to zero to create a balanced balance. The first step in this strategy is to make 

initial guesses about all unknown variables (voltage magnitude and angles at Load Buses and 

voltage angles at Generator Buses). After that, a Taylor Series is written for each of the power 

balance equations in the system of equations, with the higher-order terms omitted. 

Approximate values or improvement vectors of ∆U and ∆δ are computed using a Taylor series 

expansion. As a result, a linear system of equations looks like in (B.17). 

[

𝜕∆𝑝

𝜕𝛿

𝜕∆𝑝

𝜕𝑢
𝜕∆𝑞

𝜕𝛿

𝜕∆𝑞

𝜕𝑢

]

v

[
𝜕𝛿
𝜕𝑢

]
v+1

= [
𝜕𝑝
𝜕𝑞

]
v

 

 (B.17) 

𝐽v∆𝑥v+1 = ∆𝑦v  (B.18) 
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 SOCP Distflow used for the optimal power flow  

The structure of the two-node system is shown in Figure B.4. The bus injection model is the 

standard approach for calculating the power flow [105]. The voltages, currents, and power 

injection on the nodes are all considered. The bus injection concepts do not directly address 

the power flow on individual branches. On the other hand, the Branch Flow Approach 

concentrates on currents and powers on the branches. 

 
 Figure B.4 Two-node branch flow [105] 

The branch flow equation is given as, 

𝑈𝑗 − 𝑈𝑖 = 𝑍ij𝐼ij  (B.19) 

𝑈𝑖 = 𝑈𝑗 − 𝑍ij𝐼ij  (B.20) 

𝑆𝑆 = 𝑈j𝐼ij
∗  (B.21) 

𝑆𝑆 − 𝑍ij|𝐼ij|
2

+ 𝑠i = ∑ 𝑆in  (B.22) 

Relaxing the branch flow equation by introducing the square of the voltage and current 

magnitude [105] 

𝑈 = |𝑈|
2
  (B.23) 

𝐼ij = |𝐼ij|
2

 
 (B.24) 

Then the equation (B.22) becomes 

𝑃𝑆 − 𝑅ij𝐼ij + 𝑝𝑆 = ∑ 𝑃in 

 (B.25) 
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𝑄𝑆 − 𝑋ij𝐼ij + 𝑞𝑆 = ∑ 𝑄in  (B.26) 

The equation (B.25) and (B.26) can be transformed into the equation using matrices A and B. 

By the ohms law square, both sides of the equation are multiplied with the complex conjugate. 

Considering the following basic rule of a complex number in mathematics given as 

𝑍 = 𝑅 + 𝑗𝑋 𝑍∗ = 𝑅 − 𝑗𝑋    (B.27) 

The magnitude of the complex number square is given in (B.26) and replacing values given as, 

|𝑍|2 = (𝑅 + 𝑗𝑋)(𝑅 − j𝑋)= 𝑅2 + 𝑋2  (B.28) 

𝑄𝑆 − 𝑋ij𝐼ij + 𝑞𝑆 = ∑ 𝑄in  (B.29) 

𝑈i𝑈i
∗ = (𝑈j − 𝑍ij𝐼ij)(𝑈j − 𝑍ij𝐼ij)

∗  (B.30) 

𝑈i𝑈i
∗ = (𝑈j𝑈j

∗ − 𝑈j
∗𝑍ij𝐼ij − 𝑈j𝑍ij

∗𝐼ij
∗ + 𝑍ij𝐼ij𝑍ij

∗𝐼ij
∗  (B.31) 

The product of a complex number with its conjugate is equal to the square of the number's 

modulus 

|𝑈i|
2 = |𝑈𝑗|

2
− 𝑈j

∗𝑍ij𝐼ij − 𝑈j𝑍ij
∗𝐼ij

∗ + |𝑍ij|
2

|𝐼ij|
2
  (B.32) 

From equation (B.28), equation (B.32) becomes 

𝑈i = 𝑈j − 2(𝑈j𝑍ij
∗𝐼ij

∗ ) + |𝑍ij|
2

|𝐼ij|
2
  (B.33) 

From (B.23) and (B.24) replacing the quadratic term, the final term is drawn as given, 

𝑈i = 𝑈j − 2(𝑆S𝑍ij
∗) + |𝑍ij|

2
𝐼ij 

 (B.34) 

𝑈i = 𝑈j − 2(𝑃S + 𝑗𝑄S)(𝑅ij − 𝑗𝑋ij)) + |𝑍ij|
2

𝐼ij 
 (B.35) 

𝑈i = 𝑈j − 2(𝑅ij𝑃S + 𝑅ij𝑗𝑄S−𝑃S 𝑗𝑋ij − (𝑗𝑄S)(𝑗𝑋ij)) + |𝑍ij|
2

𝐼ij 
 (B.36) 

𝑈i = 𝑈j − 2(𝑅ij𝑃S + 𝑅ij𝑗𝑄S−𝑃S 𝑗𝑋ij + 𝑄S𝑋ij) + |𝑍ij|
2

𝐼ij 
 (B.37) 

𝑈i = 𝑈j − 2(𝑅𝑒𝑎𝑙(𝑅ij𝑃S + 𝑅ij𝑗𝑄S−𝑃S 𝑗𝑋ij + 𝑄S𝑋ij)) + |𝑍ij|
2

𝐼ij 
 (B.38) 

𝑈i = 𝑈j − 2(𝑅ij𝑃S + 𝑋ij𝑄S) + (𝑅ij
2 + 𝑋ij

2)𝐼ij  (B.39) 
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B.3 District heating grid model 

Some of the low-temperature heating grid case studies are given in Table B.1.  

Table B.1 case studies of low-temperature heating grid [109] 

Case study Country Supply temperature (°C) Return temperature (°C) 

Aarhus Denmark 55 30 

Albertslund  Denmark 35-40 10-15 

Birmingham  United Kingdom 55 35 

Kassel Germany 40 - 

Kortrijk Belgium 50 25 

Okotoks Canada 37-55 - 

Slough United Kingdom 55 25 

B.4 Battery energy storage system (BESS) as electric energy storage 

system (EESS)  

EESS can be classified as non - rechargeable (primary battery) and rechargeable (secondary) 

batteries. Vanadium redox flow batteries (VRFB), zinc-bromine (ZnBr), sodium-sulfate (NaS), 

zero-emission batteries research activity (ZEBRA), lead-acid (LA), lithium-ion (Li-ion), Nickel-

cadmium battery (NiCd), and nickel-metal hydride (NiMH) belongs to the rechargeable 

batteries, which have basic parameters like efficiency, power density, energy density and 

environmental  [196]. 

The mature technology as LA BESS is a 150-year-old device with a short lifespan. These 

batteries are needed to be replaced every 4-5 years, which raises the system's lifetime 

cost  [197]. Undoubtedly, the appearing energy battery technologies such as Li-ion, NaS, and 

flow batteries (for example, VRFB) have more beneficial features. Li-ion batteries are often 

used in power systems due to lower maintenance, superior safety, and volumetric and 

gravimetric energy densities. Less weight and size also improve their advantages [198]. Based 

on the above literature, the conclusion for BESS is shown in Table B.2. 

 
Table B.2 BESS types and characteristics 

Parameters LA NiCd  NaS Li-ion VRFB 

Power rating  0-20 MW 0-40MW 50kW-

8MW 

0-100kW 30kW-3MW 

Energy density (Wh/kg) 30-50, 50-75, 150-250, 75-200, 15-50, 

Power density (W/kg)  75–300, 150–300 150–230 150–315 - 

Discharge time  Hours Hours Hours Hours Hours 

Lifetime 5–20 10–20 10–15 5–20 5–20 

Storage duration Mins– days Mins– 

days 

Sec-hours  Mins–days Hrs–months  



 

137 

Parameters LA NiCd  NaS Li-ion VRFB 

Self-discharge per day 0,1%-0,3% 0,2%-

0,6% 

20% 0,1%-0,3% Small 

Cycles 500–1000 2000–

2500 

2500 1000–

10000+ 

12000+ 

Efficiency (%) 70–90% 60–73% 75–90% 85–95% 65–85% 

Response time Seconds Seconds Seconds Seconds Seconds 

Class Long term  Long term Short term Long term Real long term 

Capital cost ($/KW) 200–300 500–1500 1000– 3000 1200–4000 600–1500  

Capital cost ($/KWh) 120–150 800–1500 300–500 300–1300 150–1000 

Impact on environment Very 

poisonous, 

contaminatin

g the soil and 

water 

Toxic, 

dangerou

s for 

health 

and 

environm

ent 

The liquid 

sodium 

reacts 

easily with 

the water 

in the 

atmospher

e 

Rather a low 

impact, 

mostly 

through 

emissions in 

the 

manufacturi

ng of the 

cells. 

Toxic remains. 

Li-ion batteries are characterized by energy density, cell voltage, cycle life, cost, and rate 

capability. The existing seven renowned Li-ion battery chemistries are presented as lithium 

manganese oxide, lithium nickel-cobalt aluminum oxide, lithium nickel-manganese-cobalt 

oxide, lithium iron phosphate, lithium manganese-oxide cathode, lithium nickel-manganese-

cobalt oxide cathode, and lithium-iron-phosphate cathode. The flow batteries are 

uncompetitive in the cost market with Li-ion and LA batteries, analyzed in the study [199]. The 

reference [200] has paid attention to the high efficiency (95 percent) of the Li-ion technology, 

long calendar, and cycle life (20 years at 60 percent Depth of Discharge (DOD) per day). 

However, some batteries have many advantages and disadvantages in connection with 

lifetime, cycle time, and costs. The comparison of parameters of 5 types of batteries is 

considered in Table B2 [201,202]. 

B.5 Thermal electric energy storage (TESS) 

In the physical sense, heat or cold is a type of energy that may be stored in a variety of ways 

and used for a variety of purposes. Thermal energy storage can be classified in several ways 

as shown in Figure B.5.  
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Figure B.5 TESS types [203] 

There are three types of TES systems that are routinely used: 

 Sensible heat storage causes an increase or decrease in the temperature of the storage 

material; the amount of energy stored is proportional to the temperature difference 

between the employed materials. 

 Latent heat storage is associated with a phase transformation of the storage materials 

(phase change materials - PCM). The physical phase of the storage materials changes 

from solid to liquid and vice versa. At a steady temperature, the phase transition is 

always accompanied by heat absorption or release. As a result, the added or released 

heat is undetectable and appears to be latent. The heat (enthalpy) required for melting 

and freezing is equal to stored energy. 

 Thermochemical heat storage uses reversible thermochemical reactions to store heat. 

An endothermic process stores energy in chemical compounds, which can then be 

recovered by recombining the compounds in an exothermic reaction. The heat stored 

and released is the same as the heat of the reaction (enthalpy). 

The fact that TES systems are diverse in terms of temperature, power level, and heat transfer 

fluids and that each application has its own set of operating parameters is one of its 

distinguishing features. This necessitates a thorough understanding of a wide range of storage 

designs, media, and processes. The temperatures range from below 0°C (e.g., ice slurries and 

latent heat ice storage) to about 1000°C (e.g., regenerator in the high-temperature industry). 

Water is the most common liquid storage medium in the intermediate temperature range (0 

to 120 °C) (e.g., space heating). Heating, ventilation, air conditioning (HVAC), and residential 
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hot water supply use this low-temperature heat. The temperature range above 120 °C for 

applications in concentrated solar power (CSP) generation is the main topic of this chapter. 

Similar high-temperature TES devices can be used for industrial waste heat recovery. 

The hot water tank is an essential part of the thermal storage system. On the market, there is 

a wide range of designs and capacities, most of which are geared toward residential 

applications (houses and multi-dwelling structures) and industrial and commercial systems. 

The water heater, which can be built into the tank or installed outside, is the second 

component. The water heater might be dedicated to hot water production, or it can be used 

for many purposes (space heating, cogeneration, etc.). When considering the storage system's 

efficiency, it's essential to evaluate the efficiency of both primary components: the tank and 

the water heater. This is one of the key reasons why an HP is being used in more and more 

home applications to provide domestic hot water. The parameters for TESS are given in Table 

B.3. 

Table B.3 TESS parameters [204] 

Parameters Small residential Multi-dwelling building 

Power range Max 40 kW Max 400 kW 

Energy range 6 kWh - 25 kWh 25 kW – 320 kWh 

Discharge time ≤1 h ≤1 h 

Cycle life No limit No limit 

Life duration 15- 30 years 20 – 40 years 

Reaction time Sec Sec 

Efficiency 50-85 % 70 – 95 % 

Energy(power) density 0.06 kWh/kg 0.08 kWh/kg 

CAPEX: Energy 40 €/kWh 15 €/kWh 
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C. Appendix: E-mobility infrastructure 

C.1 Monte-Carlo simulation 

Monte-Carlo simulation is a computer-assisted mathematical technique for incorporating risk 

into quantitative analysis and decision-making. Professionals in various sectors, including 

economics, project planning, energy, industry, education, research and technology, health, oil 

and natural gas, mobility, and the environment, employ the approach. For each given course 

of action, the Monte-Carlo simulation provides the judgment with a range of probable 

outcomes as well as the probabilities that they will occur. It depicts the ability to impact 

outcomes of going all-in and the most prudent course of action and all probable outcomes for 

an intermediate decision. The Monte-Carlo simulation can be formed with the following steps: 

 Determine the variables and create a model 

 An initial sensitive analysis to identify the parameters (variables) for which the 

probability distribution should be evaluated 

 Determine the form of each random variable's probability distribution 

 Random variable sampling (Creation of random variable sample) 

 Statistical analysis of the generated results by the iteration of the simulation 

For a Monte-Carlo simulation, the random samples need to be drawn from a distribution 

function. There are two ways to classify distributions: discrete or continuous. The distribution 

exists in a probability density function (PDF) or a cumulative distribution function (CDF). The 

fitted curved in section 5.3 is analyzed by PDF in the present study. The standard PDFs for a 

function for the variable (x) in the Monte-Carlo simulation is as follows: 

Normal 

𝑓(𝑥 : 𝜇 , 𝜎) =
1

σ√2Π
𝑒

−(x−μ)2

2σ2   −∞ < 𝑥 < ∞ 
 (C.1) 

µ: mean 

σ: standard deviation 

For the morning arrival: 

𝜇=8.4 

𝜎=1.50 

For the morning arrival: 

𝜇=16.588 

𝜎=1.953 

  

T-location-distribution  
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𝑓(𝑥 : 𝜇 , 𝜎, 𝜕) =
𝛤(

𝜕 + 1
2 )

𝜎√𝜕𝜋 𝛤(
𝜕
2)

[
𝜕 + (

𝑥 − 𝜇
𝜎 )2

𝜕
]

−
𝜕+1

2

 

 (C.2) 

𝛤 is the gamma function 

𝜕: shape parameter 

For kilometer traveled: 

𝜇=2.67 

𝜎=1.50 

𝜕=1.24 

For the duration of travel: 

𝜇=5.64 

𝜎=2.48 

𝜕=1.62 

  

Gamma 

𝑓(𝑥: 𝑘1, 𝑘2) =
1

𝑘2𝑘1𝛤(𝑘1)
𝑥𝑘1−1𝑒

𝑥
𝑘2 

 (C.3) 

𝛤(𝑘1) = ∫ 𝑡𝑘1𝑒−𝑡𝑑𝑡
∞

0

 

𝛤(𝑘1): Gamma function 

K1: Parameters shape 

K2: Parameter scale 

 (C.4) 

Apart from the distributions utilized in this study, there are several alternative distribution 

functions available such as Lognormal, Beta, Weibull, Logistic, Log-Logistic, Birnbaum 

Saunders, Exponential, and Rayleigh 

C.2 EV arrival time distributions 

The distribution of EV arrival in different districts from project INKOLA [125]. 
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Figure C.1 EV arrivals 

 
Figure C.2 distribution fit for the duration of travel 

C.3 Methodology for EVCS occupancy time 

The EV has three states charged, waiting, or queuing for charging. Three variables 

represent the three states. 𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒 variable holds the ID of EVs that require charging, 

𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 variable holds the ID of EVs already charging at the charging station, and the 

𝐸𝑉_𝑤𝑎𝑖𝑡𝑖𝑛𝑔 variable has the ID of EVs in the waiting queue from the previous time step. After 

setting those variables at the start of the iteration, the 𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 state is checked first, as 

shown in Figure C.3 (left).  If two EVs are charging, then the EVs arriving at that time are added 

to the waiting queue. If there is one EV charging, one slot is empty and is assigned from the 

waiting queue, if any, or from the EVs arriving at that time. After setting the EVs to an empty 

slot, updating variables for the next step is done, as shown in Figure C.3 (right). If there are no 

EVs charging, then two slots are empty, and already waiting EVs are given priority, and if there 

are any left, then EVs arriving at that time step are assigned.  
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Figure C.3 Method for calculation of occupancy time 
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D. Appendix: Optimization 

D.1 Information gap decision method (IGDM) 

The IGDM was first proposed in [151]. IGDM comes under the class of non-probabilistic, 

likelihood-free uncertainty modeling methods that can make decisions that make the system 

robust against severe uncertainty. IGDT deals mainly with the type of problems where a 

particular critical performance requirement must be met while taking uncertainty into 

account  [151]. 

𝑟(𝑑, w) ≥ 𝑟∗ 
 (D.1) 

Where 𝑟 is the performance function that relates the decision variables and the uncertainty. 

𝑟∗ is the critical performance level. 𝑑 is the decision space, while 𝑤 is the uncertainty space. 

The optimizer controls decision variables but not the uncertainty variable, which depends on 

some unknown parameter or behavior. The concept of IGDT can be reduced to a problem 

statement of selecting the best decision in 𝑑, satisfying the critical performance requirement 

of (D1), given that the actual value of 𝑊 is uncertain. However, the problem is still not 

complete as the uncertainty associated with the variable is not clearly defined except that it 

lies in uncertainty space. The definition does not assign a probability or likelihood of the true 

value taking a value in a certain interval that lies in the uncertainty space. Instead, it is 

assumed that a point estimate of the true value is termed a predicted value. As the main 

purpose of introducing IGDM is to tackle problems with severe uncertainty, there is a need 

for a clear definition of severe uncertainty.  

Severe uncertainty is a condition in which it is difficult to forecast what will happen in the 

future due to a lack of sufficient data. As a result, while dealing with severe uncertainty 

situations, it's important to recall the nature of decision-making based on estimating quality 

and the uncertainty space. 

 IGDM robustness 

Since the traditional IGDM is not well-defined, it is formulated as a robust model defined as 

IGDM robustness given as,  

�̂�(𝑑, �̃�) = 𝑚𝑎𝑥{𝛼 ≥ 0: 𝑟∗ ≤ 𝑟(𝑑, w)} ∀𝑤 ∈ 𝑊(𝛼, �̃�) (D.2) 

Unlike the previous formulation, the uncertainty space is clearly defined by size 𝛼 centered 

around the predicted value �̃�. Hence, it is safe to say that the uncertainty set 𝑊 is the smallest 

subset of the uncertainty space (ϖ) such  that the 𝑊(𝛼, �̃�)⊆ ϖ   ∀ 𝛼 ≥ 0. 



 

145 

The decision problem is reformulated based on the robustness of the decision equal to the 

largest possible value of 𝛼 such that the decision satisfies the critical performance 

requirement ( 𝑟∗ ≤ 𝑟(𝑑, w) ). The idea of robustness is defined as the largest safe deviation 

from the estimate�̃�, where the worst-case w in 𝑊(𝛼, �̃�) determines whether the deviation 

of 𝛼 from w is safe concerning decision 𝑑. A higher value of 𝛼 implies the model is more robust 

towards severe uncertainty. The regions of uncertainty are nested, which gives a set that has 

varied intervals based on the value of 𝛼. The ideal case is when the 𝛼 = 0, and the second 

case is when uncertainty space is increased with a range of a factor (𝜀1) given as 

𝛤(0, �̃�) = �̃�  (D.3) 

𝛤(𝛼, �̃�) ⊆   𝛤(𝛼 + 𝜀1, �̃�),   ∀𝛼, 𝜀1 ≥ 0 (D.4) 

 IGDM for Microgrid planning and operation 

The general formulation is shown when applying IGDM for microgrid planning and operation. 

min
X

𝑓(𝑋, 𝛾) ∀ 𝛾 ∈ Γ (D.5) 

𝐻i(𝑋, 𝛾) ≤ 0  ∀ 𝑖 ∈ Ψineq (D.6) 

𝐺j(𝑋, 𝛾) = 0 ∀ 𝑗 ∈ Ψeq (D.7) 

∀  𝛾 ∈ 𝛤(𝛾, 𝛼) = {𝛾: |
𝛾 − 𝛾

𝛾
| ≤ 𝛼} 

 (D.8) 

Where there is a set of decision variables (𝑋), vectors of uncertain input parameters (𝛾), and 

uncertainty sets (𝛤(𝛾, 𝛼)). These sets and variables are associated with the input parameters, 

equality constraints (Ψeq), equality constraints (Ψineq) and the objective function. The 

uncertainty set defined in (D8) is the defining factor of the model. Where uncertain input is a 

function of two parameter’s forecasted values (𝛾) and the deviated value (𝛾). The deviation, 

also known as the radius of the uncertainty region, controls the uncertainty range. The IGDM-

based microgrid planning and operation can be done in the following approaches. 

 Risk-averse 

 Risk seeker 

D.1.2.1 Risk Averse 

Decision-maker has two options when the realized uncertainty is different from the estimated 

base value. Robust decision-making in such a way that they are made in the face of the risk of 

possible errors from the predicted unknown input parameter [50]. It is mostly selected by 
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conservative decision-makers to make a robust decision. The model must be optimized while 

maximizing the radius of uncertainty given by (D9).  

max
X

 �̂�  (D.9) 

𝐻i(𝑋, 𝛾) ≤ 0,  ∀ 𝑖 ∈ Ψineq (D.10) 

𝐺j(𝑋, 𝛾) = 0 ∀ 𝑗 ∈ Ψeq (D.11) 

𝑓(𝑋, 𝛾) ≤ Λ𝑐  (D.12) 

Λ𝑐 = 𝑓𝑏(𝑋, 𝛾) + 𝛿𝑐|𝑓𝑏(𝑋, 𝛾)| 𝛾 ∈ Γ (D.13) 

𝛿𝑐  is the possible deviation allowed from the base value and is set by the decision-maker. It 

can be viewed as the degree of acceptable tolerance in the presence of uncertainties. Λ𝑐 is 

the critical value of the objective function that should not be violated. 

D.1.2.2 Risk seeker 

Risk seeker strategy, selected by optimistic decision-makers looking at the uncertain events 

that may positively affect the objective function. It indicates the greediness of the decision-

maker as its main idea is profit-seeking. Unlike in the risk-averse strategy, the decision here is 

made to take advantage of the existing uncertainty using the lack of information and is made 

by minimizing the radius of uncertainty given as, 

min
X

 �̂�  (D.14) 

𝐻i(𝑋, 𝛾) ≤ 0  ∀ 𝑖 ∈ Ψineq (D.15) 

𝐺j(𝑋, 𝛾) = 0 ∀ 𝑗 ∈ Ψeq (D.16) 

𝑓(𝑋, 𝛾) ≤ Λ𝑐  (D.17) 

Λ𝑜 = 𝑓𝑏(𝑋, 𝛾) + 𝛿𝑜|𝑓𝑏(𝑋, 𝛾)| 𝛾 ∈ Γ (D.18) 

𝛿𝑜 is the possible decrease from the base value and is set by the decision-maker. It can be 

viewed as the degree of profit maximization in the presence of uncertainties. The objective 

function value should be less than the opportunity value (Λ𝑜). 

D.2 Distributional robust optimization (DRO) 

Distributionally robust optimization (DRO) is a modeling system that overcomes the 

disadvantages of stochastic programming and robust modeling. In this modeling framework, 
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the unknown distribution of the uncertain variable is assumed to lie in an ambiguity set that 

has all the possible distributions of the uncertain variable. The probability distribution is 

formulated based on the partial information available. Hence it does not need a large dataset 

like probabilistic modeling to generate PDF. DRO optimizes the system for worst-case 

distribution in the ambiguity set. The solution and performance depend on the ambiguity set 

used. The ambiguity set should be formulated using data-driven methods. It contains true 

distribution, is small enough not to give any over-conservative results, requires fewer data to 

generate it, and gives a tractable formulation. 

Ambiguity sets can be classified as moment-based, distance-based, structural, hypothesis-

test-based, and likelihood-based. Out of these most commonly used ambiguity sets are 

moment-based. The distributions share moment information and are distance-based, in which 

distributions are selected that are close to a reference distribution with a predetermined 

probability discrepancy metric. The most commonly used metrics are Wasserstein-distance, 

phi-divergence, KL-divergence, and Prokhorov-metric. When dealing with a complex system, 

individual ambiguity sets are not sufficient as they have their disadvantages and convergence 

problems for the moment-based set. In such cases, ambiguity sets are combined such that 

disadvantages are compensated. Moment-based and Wasserstein-based are combined, which 

give a less conservative model and have a better convergence rate. 

A data-driven Wasserstein-based ambiguity set was generated to model the wind power 

uncertainty for a rural microgrid to adjust economy and robustness, and  DRO results are 

compared with SO and RO results [54]. EVCS siting and sizing problem was proposed in [57] to 

consider the load's uncertainty using a data-driven KL-divergence-based DRO. In [205], the 

wind power uncertainty was modeled using a moment-based ambiguity set for the energy 

management of an islanded microgrid. In terms of performance, it doesn’t require large 

datasets to formulate PDF and gives less conservative results compared to RO. Even though 

DRO modeling addresses the technical challenge of stochastic and resilient optimization when 

applied to high-dimensional problems with a larger number of features than observations, it 

still needs to be improved. A general representation of ambiguity ser is shown in the Figure 

 

 

Figure D.1 Ambiguity set [156] 
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 CVAR approximation of chance-constraint 

The chance constraint needs to be in the general form [162,206] 

ℙt{ℎ0(𝑥t) + ℎ(𝑥t)𝑃𝐸�̃� ≤ 0} ≥ 1 − 𝜖, ∀ℙt ∈ Ρ𝑡
2 , 𝑥t ∈ 𝑋  (D.19) 

𝑃𝐸�̃� is the random variable of EV arrivals. For simplicity, the CVAR form is shown according to 

[162,206,207]. 

inf
𝛽,𝜐,𝜏,𝑧,𝑠,𝜈1,𝜈2

𝛽 +  
1

𝛼aux
(𝜐 + 𝑠) ≤ 0 

 (D.20) 

Subject to 

‖
𝜏

ℎ(𝑥t)𝜎𝐸�̃�

𝑧 − 𝑠
‖ ≤ 𝑧 + 𝑠 

 (D.21) 

𝑧 > 0  𝜐 > 0  (D.22) 

𝜈1 > 0  𝜈2 > 0  (D.23) 

ℎ(𝑥) =  𝜈1 − 𝜈2  (D.24) 

𝜐 − ℎ0(𝑥) + 𝛽 + 𝜏 − (𝜈1𝜇EV,up − 𝜈2𝜇EV,down) − 𝑧 > 0  (D.25) 

 Here the 𝛽, 𝜐, 𝜏, 𝑧, 𝑠, 𝜈1, 𝜈2 are the auxiliary variables.  
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E. Appendix: Results 

E.1 Person distributions 

 
Table E.1 Person distribution in the settlement 

Dwelling SFH MFH1 MFH2 MFH3 MFH4 MFH5 MFH6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

5 
3 
1 
4 
2 
 

1 
3 
4 
2 
4 
1 
2 
3 
3 
2 
2 
4 
 

3 
2 
4 
4 
2 
3 
2 
2 
2 
3 
1 
1 

4 
2 
2 
2 
2 
3 
4 
4 
4 
3 
3 
1 
1 
1 
4 
4 

2 
2 
2 
3 
2 
3 
2 
3 
2 
4 
4 
1 
4 
1 
3 
4 

2 
3 
1 
4 
4 
1 
1 
1 
2 
3 
4 
2 
4 
3 
4 
4 

3 
2 
4 
4 
1 
1 
2 
3 
2 
3 
2 
4 
4 
3 
3 
4 

E.2 Heating load 

Table E.2 DHW heating energy factor 

Type SFH MFH 

UWH - 0.000133 0.000013284 

UWB - 0.0000682 0.0000043766 
USH 0.000307 0.000004 
USB 0.000359 0.000017 

SWX - 0.00021027 - 0.000053029 

SSX 0.00014301 - 0.000044121 
WWH 0.000073893 0.00002912 
WWB 0.000023972 0.000028131 
WSH 0.00074399 0.000021202 
WSB 0.000398 0.000015 

 
Table E.3 DHW energy demand in kWh per day type 

Type UWH UWB USH USB SWX SSX WWH WWB WSH WSB 

SFH 0.65 0.67 0.76 0.77 0.63 0.72 0.70 0.69 0.87 0.78 

SFH 1.24 1.30 1.68 1.73 1.16 1.51 1.44 1.39 2.11 1.77 

SFH 1.76 1.90 2.75 2.86 1.58 2.38 2.22 2.11 3.73 2.95 

SFH 2.21 2.47 3.97 4.18 1.89 3.31 3.03 2.84 5.72 4.33 

SFH 2.59 2.99 5.34 5.67 2.11 4.31 3.89 3.57 8.75 5.91 

MFH 17.39 16.75 16.75 17.68 16.43 16.43 18.54 18.46 17.96 17.54 
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Type UWH UWB USH USB SWX SSX WWH WWB WSH WSB 

MFH 23.61 22.47 22.48 24.12 21.91 21.92 25.65 25.52 24.63 23.87 

CRE 40.10 37.09 37.09 41.44 35.61 35.62 45.46 45.12 42.78 40.77 

 
Figure E.1 Yearly DHW heating 
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E.3 Development in the e-mobility 

 
Figure E.2 Microgrid structure with private charging station in trend 2031 

Table E.4 Share of EV in the settlement area in percentage 
 

Negative Trend Positve 

2022 0.8 0.8 0.8 

2023 1.7 1.6 1.6 

2024 2.8 3.0 3.2 

2025 3.9 4.6 5.3 

2026 5.1 6.6 7.9 

2027 6.4 9.1 11.2 

2028 7.8 11.9 15.4 

2029 9.2 15.4 20.7 
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2030 10.8 19.5 26.7 

2031 12.4 24.5 32.7 

 

 
Figure E.3 Number of EVs replacing new registered conventional vehicles per year in the settlement 

area 

 
Figure E.4 Impact of a private charging station on string 
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E.4 Dimension of DERs in the settlement area 

 
Figure E.5 Capacities of DERs in the negative scenario 

 
Figure E.6 Capacities of DERs in the positive scenario 
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E.5 Energy balance in summer 

 
Figure E.7 Electrical energy balance in summer 

E.6 Voltage in the settlement area 

 
Figure E.8 Voltage distribution in the settlement area in trend 2030 
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E.7 Heating grid 

 
Figure E.9 Heating losses in string 1 of the heat grid 

The heating losses are also considered on the mass flow rate. The nodes from 6 to 7 have 

higher losses because of the low mass flow rate. 

E.8 Flexible tariff system 

 
Figure E.10 Operation and CO2 penalty cost comparison of flat and flexible tariffs 
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E.9 IGDM-DRO 

 
Figure E.11 Deterministic versus IGDM at allowable budget (fb=0) 

 
Figure E.12 Capacities of DERs for different allowable budget 

 
Figure E.13 Capacities comparison between deterministic and IGDM 
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