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Abstract
Transmission lines play an important role in many electronic and electrical systems.
They guide signals and power between different components. However, they can also
act unintentionally as an antenna that receives surrounding electromagnetic fields that
might destroy sensitive components. Furthermore, the transmission line might emit
electromagnetic fields that could interfere with other devices in the same environment.
Hence, the analysis of the transmission line is important, especially in the context of
electromagnetic compatibility analysis.

There are different kinds of transmission lines, e.g. microstrip lines on printed circuit
boards or thin wires above a large ground plane. The goal of this thesis is the analytic
and semi-analytic analysis of the current along thin wires above a large ground plane in
frequency domain. The general understanding of the wave propagation along and the field
coupling to this important class of transmission lines shall be improved by this work.

The considered thin wires are excited by a plane wave. They are assumed to be long
compared to the wave length and must have a uniform section somewhere along the
trajectory. Apart from the uniform section the trajectory of the wire can be arbitrary and
lumped impedances can be present at the ports. Multiple wires above a ground plane are
considered as well.

For these transmission lines the so called asymptotic approach is applicable. It provides
an analytic expression for the current in the uniform section of the wire and plays a key
role in the analytic and semi-analytic analysis of the current. It is assumed that the
current in the uniform section is a superposition of transverse electromagnetic modes
and a forced response. The amplitudes of these modes depend on the scattering and
reflection coefficients of the wire ports. These coefficients are in general complex, frequency
dependent and consider the trajectory of the wire at the ports. They might include
high frequency effects like radiation at discontinuities. This is a notable difference to the
classical transmission line theory. Hence, the asymptotic approach is applicable to much
higher frequencies than the classical theory.

The scattering and reflection coefficients can be approximated by numerical and analytic
methods. The main focus of this thesis lays on the analytic approximation. An iterative
method is used that is derived from the general mixed potential integral equations for
thin wires. The iteration is initialized by the classical transmission line solution. Each
following solution depends on the previous iteration step. The analytic approximation is
compared to a numerical one (method of moments) and a very good agreement is observed.
Furthermore, the examples show the significantly improved accuracy compared to the
classical transmission line theory.

Moreover, the analytic and numerical approximations are compared to measurement
results. The complex radar cross section of thin wires above a ground plane is measured
and the complex resonant frequencies, the so called natural frequencies, are extracted.
The analytic natural frequencies are obtained by using the asymptotic approach and the
iterative method. Very good agreement between measurement, analytic and numerical
solution is observed for multiple examples.
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Kurzfassung
Leitungen spielen in vielen elektrischen und elektronischen Geräten eine große Rolle. Sie
werden zur Übertragung von Informationen oder Leistung zwischen unterschiedlichen
Komponenten verwendet. Sie können jedoch auch ungewollt als Antenne wirken und
somit ein Einfallstor für elektromagnetische Störungen durch externe elektromagnetische
Felder sein. Außerdem können über die Leitungen elektromagnetische Felder abgestrahlt
werden, die wiederum andere benachbarte Geräte stören. Daher ist es speziell im Bere-
ich der elektromagnetischen Verträglichkeit wichtig die physikalischen Mechanismen der
Feldeinkopplung in und Datenübertragung auf Leitungen zu untersuchen.

Es gibt verschiedene Leitungstypen, z.B. Mikrostreifenleitungen auf Leiterplatten oder
dünnen Drähte über einer Masseebene. Das Ziel dieser Dissertation ist die analytische
und semi-analytische Untersuchung der Ströme auf dünnen Drähten über einer großen
Masseebene im Frequenzbereich. Das allgemeine Verständnis der Ausbreitung von Wellen
auf Leitungen soll hiermit verbessert werden.

Die untersuchten dünnen Drähte werden durch ebene Wellen angeregt. Verglichen
mit der Wellenlänge sind die Leitungen lang und besitzen einen gleichförmigen Abschnitt
entlang der Trajektorie. Bis auf den gleichförmigen Abschnitt ist die Trajektorie der
Leitung beliebig und Abschlussimpedanzen werden berücksichtigt. Mehrere parallele
Drähte werden ebenfalls untersucht.

Für diese Leitungen ist der sogenannte asymptotischen Ansatz anwendbar. Der Ansatz
liefert einen analytischen Ausdruck für den Strom im gleichförmigen Abschnitt des Drahtes.
Er spielt eine zentrale Rolle bei der analytischen und semi-analytischen Untersuchung des
Stromes. Es wird angenommen, dass der Strom eine Superposition aus mehrere transversal
elektromagnetischen Moden und einer erzwungenen Antwort ist. Die Amplituden der
Moden hängen von sogenannten Streu- und Reflexionskoeffizienten an den Leitungstoren ab.
Diese Koeffizienten sind im Allgemeinen komplex, frequenzabhängig und von der Trajektorie
am Leitungsende abhängig. Daher beinhalten die Koeffizienten Hochfrequenzeffekte,
wie z.B. Feldabstrahlung an Ungleichförmigkeiten entlang der Leitung. Dies ist ein
entscheidender Unterschied zur klassischen Leitungstheorie. Daher ist der asymptotische
Ansatz für deutlich höhere Frequenzen anwendbar als die klassischen Theorie.

Die Streu- und Reflexionskoeffizienten können durch numerische und analytische Metho-
den approximiert werden. Das Hauptaugenmerk liegt in dieser Arbeit auf der analytischen
Näherung. Eine iterative Methode wird verwendet, um die Koeffizienten ausgehend von
den “Mixed Potential Integral Equations” für dünne Drähte analytisch zu approximieren.
Die Iteration wird mit der Lösung der klassischen Leitungstheorie initialisiert. Jeder
weitere Iterationsschritt nutzt die vorheriege Lösung als Quelle, um eine bessere Approxi-
mation zu finden. Die analytische Lösung wird mit einer numerischen (Momentenmethode)
verglichen. Es ist eine sehr gute Übereinstimmung zu beobachten. Außerdem zeigen die
Beispiele, dass die iterative Lösung signifikant genauer ist als die klassische Lösung aus
der Leitungstheorie.

Darüber hinaus werden die analytischen und numerischen Approximationen mit
Messergebnissen verglichen. Der komplexe Radarrückstreuquerschnitt von dünnen Drähten
wird dazu gemessen und die komplexen Resonanzfrequenzen, die sogenannten natürlichen
Frequenzen, werden extrahiert. Die analytischen natürlichen Frequenzen werden mithilfe
des asymptotischen Ansatzes und der iterativen Methode bestimmt. Eine sehr gute
Übereinstimmung zwischen den Messergebnissen, der analytischen Näherung und der
numerischen Lösung ist für alle gewählte Beispiele zu beobachten.
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Chapter 1

Introduction

High-tech cars, computers, smartwatches and many more electronic devices are an indis-
pensable part of today’s life. They all need to function while not disturbing other devices
and while not being disturbed by other devices in the same environment. These two
problems are the core of the electromagnetic compatibility (EMC) analysis.

One important component that is often considered in EMC analysis is the transmission
line. There are different kinds of transmission lines, e.g. thin wires, microstrip lines on
printed circuit boards, big cable harnesses. On one hand, transmission lines guide power
and signals between different components and systems. On the other hand, they can pick
up surrounding electromagnetic (EM) fields that can create disturbances in the system.
This might lead to the malfunction of the electronic device or the destruction of components.
Furthermore, transmission lines can unintentionally radiate EM fields that could interfere
with other surrounding electronic systems. Hence, the analysis of transmission lines plays
an important role. Transmission lines can be analyzed by numerical methods, analytic
methods or a combination of both, so called semi-analytic methods.

There are different numerical solvers available to analyze all different kinds of transmis-
sion lines, e.g. the method of moments (MoM) [1], the finite elements method [2], [3], the
finite differences method [4], and the finite integration technique [5]. However, they only
give numeric solutions to specific problems. Further physical insight to understand the
propagation of the EM waves along transmission lines can only be gained with analytic or
semi-analytic methods.

The classical transmission line theory gives an analytic description of the transmission
line problem (see e.g. [6], [7]). A summary of its development is presented in [8]. The
theory can be seen as a simplified form of the complete Maxwell theory. It is widely used
and a quite accurate approximation for low frequencies, i.e. for wavelengths that are much
larger than the transverse dimensions of the transmission line. The theory only considers
transverse electromagnetic (TEM) or quasi-TEM modes and only uniform transmission
lines are regarded. Hence, high frequency effects, e.g. radiation effects, that usually appear
at discontinuities and ports, are neglected. Numerous extensions to the classical theory to
incorporate specific effects or to push the frequency limit are sought. Some of them are
given in [8]–[11].

Thin wires above a ground form an important class of transmission lines. In [12]–[14]
an asymptotic approach is introduced to describe the current in the middle of a partially
uniform wire above a ground. The asymptotic approach assumes only TEM modes and
a forced response in the middle section of the wire. These modes are reflected at the
ports or other discontinuities. The amplitudes of the TEM modes depend on reflection
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and scattering coefficients in a certain way. These coefficients characterize each port or
discontinuity along the transmission line. The coefficients can be determined using the
classical transmission line theory, which results in the well known classical transmission line
approximation. However, the asymptotic approach allows for a more complex definition of
the scattering and reflection coefficient as well. It is possible to include high frequency
effects that appear at the port for the coefficients. Hence, the general asymptotic approach
is more versatile than the classical transmission line theory for thin wires.

Apart from a numerical method to determine the complex and frequency dependent
scattering and reflection coefficient an iterative method is introduced in [13], [15] for the
simplest possible configuration, i.e. a straight open circuited wire above an infinite ground
plane. The iterative method yields an analytic approximation for the coefficients. The
iteration is initialized with the classical transmission line result. Each following iteration
uses the previous one to improve the overall approximation. Excellent results are shown
in [13], [15] for the example of the open circuited straight wire above a ground, with only
one iteration step. The solution is valid for much higher frequencies than the classical one
when compared to a numerical reference.

The goal of this thesis is to continue the work on the asymptotic approach and the
iterative method. The objectives can be summarized as follows:

1. Generalize the iterative method to ports with an arbitrary wire trajectory and
lumped loads.

2. Generalize the iterative method to multiple wires above a ground.

3. Compare the analytic approximations to numerical ones and experimental results to
validate the asymptotic approach and iterative method.

Furthermore, it is interesting to analyze the iterative solution. One question that arises is:
Can the solution be obtained by another way and are there similarities to other known
methods? Hence, it is compared to the induced electromotive force (EMF) method. The
induced EMF method is usually used to determine the input impedance on wire antennas.
However, it can also be used to approximate the reflection coefficient of a wire port.

Structure of the thesis

After the introduction Ch. 2 presents mostly known results and methods that are needed
throughout the thesis, e.g. the mixed potential integral equations, the method of moments
and the singularity expansion method. Some novel derivations are presented. Chapter 3
describes and derives the asymptotic approach in a new way (compared to [13]). All details
are given for the single wire case. The asymptotic approach for multiple wires is presented
as well. The iterative method to analytically approximate the scattering and reflection
coefficient is derived in detail in Ch. 4. The first order iteration is presented and compared
to a numerical solution. Moreover, the convergence and uniqueness of the iterative method
is discussed. An extension to multiple wires above a ground is presented as well. The
numerical and analytic approximations are compared in Ch. 5 to experimental results. The
measurement setup is described in detail and multiple examples are shown. The general
findings and an outlook is presented in Ch. 6.

10



Chapter 2

Fundamentals

Theoretical results that are important for the rest of this thesis are summarized in this
chapter. The mixed potential integral equations and the electric field integral equation are
derived for thin wires above a ground plane. Furthermore, the current on an infinitely
long, straight, thin wire above a ground is analytically analyzed. A short summary of the
classical transmission line theory is presented. Finally, an introduction for the method of
moments for thin wires and the singularity expansion method are given.

2.1 The general mixed potential integral equations and
the electric field integral equation

In this section the mixed potential integral equations and the electric field integral equation
are derived for perfect electric conductors that are surrounded by vacuum.

Let there be a three dimensional scatterer above an infinite ground plane as shown
in Fig. 2.1. The scatterer is assumed to be a three dimensional object that is a perfect
electric conductor. It is illuminated by an electromagnetic field (Eex,Hex). The goal of
this section is to derive known equations that connect the electric field strength Eex and
the current density on the scatterer.

x3

x1

x2 x

Scatterer

xS

n̂

Figure 2.1: Arbitrary three dimensional scatterer above an infinite perfect electric ground.

Maxwell’s equations fully describe the electromagnetic field strengths (E,H) that
arise from a current density J and a corresponding charge density %. They are given in
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frequency domain for the vacuum (see [16]) as

divE =
%

ε0

(2.1)

divH = 0 (2.2)
curlE = −jωµ0H (2.3)
curlH = jωε0E + J , (2.4)

where ω is the angular frequency and the imaginary unit is denoted by j. The permittivity
and permeability of vacuum are denoted by ε0 and µ0 respectively. From Eqs. (2.1) and
(2.4) follows directly the continuity equation

divJ = −jω% . (2.5)

It is convenient to introduce auxiliary potentials, i.e. the scalar potential Φ and the
vector potential A. They are defined as

divA+
jω

c2
Φ = 0 (2.6)

curlA = µ0H (2.7)
−jωA− grad Φ = E . (2.8)

Equation (2.6) is the so called Lorenz gauge [17], where c denotes the speed of light in
vacuum. The Lorenz gauge is used for the rest of this thesis, due to its practicability.

Combining the potential definitions and Maxwell’s equations results in the inhomoge-
neous Helmholtz equation for the scalar potential and the inhomogeneous vector Helmholtz
equation for the vector potential, i.e.

(∆ + k2)Φ = − %

ε0

(2.9)

(∆ + k2)A = −µ0J (2.10)

with the wave number

k =
ω

c
. (2.11)

The current density vector can be resolved into the product of its complex scalar value J
and a unit vector êJ indicating the direction, i.e.

J(x) = J(x)êJ(x) . (2.12)

Equations (2.9) and (2.10) are solved using the integral kernels GΦ and GA. It holds

Φ(x) =
1

4πε0

∫
V
GΦ(x,x′)%(x′) dx′ (2.13)

A(x) =
µ0

4π

∫
V
GA(x,x′)J(x′) dx′ , (2.14)

where the integration variable x′ denotes the so called source points. The volume V
contains all physical sources % and J . The vector x is an arbitrary vector in space with
the Cartesian components (x1, x2, x3).
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The kernels depend on the boundary conditions of the problem. Since an infinite
perfect electric ground plane is present for the considered problems, the kernels are

GΦ(x,x′) =
exp(−jk‖x− x′‖)
‖x− x′‖

− exp(−jk‖x−
ˇ
x′‖)

‖x−
ˇ
x′‖

(2.15)

GA(x,x′) =
exp(−jk‖x− x′‖)
‖x− x′‖

êJ −
exp(−jk‖x−

ˇ
x′‖)

‖x−
ˇ
x′‖ ˇ

êJ (2.16)

where ‖ ‖ denotes the Euclidean norm and the vector
ˇ
x′ is x′ mirrored at the ground

plane at x2 = 0, i.e.

ˇ
x′ = x′ − 2(x′ · x̂2)x̂2. (2.17)

The kernels are obtained from the free space Green’s function and using the image theory
[18]. They satisfy the Sommerfeld radiation condition [19] and include the reflections at
the ground plane.

The tangential component of the total electric field vanishes on the surface of perfect
electric conductors [20]. The total electric field is in this context the sum of the exciting
electric field Eex and the scattered electric field E . Hence, it holds

n̂(xS)× (Eex(xS) +E(xS)) = 0 (2.18)

where xS is a vector pointing on the surface of the perfectly conducting scatterer and n̂ is
the normal vector on the scatterer surface as shown in Fig. 2.1.

Inserting Eqs. (2.8) and (2.14) into Eq. (2.18) and rearranging the terms yields

n̂(xS)×
[
grad Φ(xS) + jω

µ0

4π

∫
V
GA(xS,x

′)J(x′) dx′
]

= n̂(xS)×Eex(xS) . (2.19)

The variables ε0 and µ0 are substituted by the speed of light c and the free space impedance
Z0 for better readability. It holds

ε0 =
1

Z0 c
(2.20)

µ0 =
Z0

c
. (2.21)

With these substitutions Eq. (2.19) and (2.13) become

n̂(xS)×
[
grad Φ(xS) + jk

Z0

4π

∫
V
GA(xS,x

′)J(x′) dx′
]

= n̂(xS)×Eex(xS) (2.22)∫
V
GΦ(xS,x

′) divJ(x′) dx′ + jk
4π

Z0

Φ(xS) = 0 . (2.23)

Equation (2.23) is obtained by inserting Eq. (2.5) into Eq. (2.13) with Eq. (2.20).
Equations (2.22) and (2.23) are the so called Mixed Potential Integral Equations

(MPIE) for general perfectly conducting surfaces. They hold for any point on the surfaces.
From a given exciting electric field Eex a current density J can be found with Eqs. (2.22)
and (2.23).
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For some applications it is convenient to insert Eq. (2.23) into Eq. (2.22) to eliminate
the scalar potential. The so called Electric Field Integral Equation (EFIE) for general
surfaces above a ground is obtained, namely

n̂(xS)×
[
grad

∫
V
GΦ(xS,x

′) divJ(x′) dx′ + k2

∫
V
GA(xS,x

′)J(x′) dx′
]

= −jk
4π

Z0

n̂(xS) × Eex(xS) . (2.24)

The EFIE and the MPIE are equivalent. Both will be used in a simplified form for
thin wires throughout the thesis.

2.2 Thin wires above a ground
In this section the MPIE are formulated for thin wires above an infinite ground plane. The
thin wire approximation is used to approximate and to simplify Eqs. (2.22) and (2.23).
Furthermore, the EFIE for thin wires is formulated.

Let there be a single wire above an infinite ground plane as shown in Fig. 2.2. The
wire is characterized by the trajectory xc(l), where l is a parameter with Lmin < l < Lmax.
The wire is excited by an external electromagnetic field (Eex,Hex) as in Sec. 2.1.

O x3

x1

x2
xc(Lmin)

xc(Lmax)

xc(l)

τ̂ (l)

η̂(l)

β̂(l)

Figure 2.2: Arbitrary thin wire above an infinite perfect electric ground.

A new coordinate description is convenient to describe the vectors pointing on the wire
surface. Hence, the so called Frenet-Serret frame is introduced [21]. It is shown in Fig. 2.2
and moves along the wire trajectory with the parameter l. The three orthonormal vectors
are defined as

τ̂ (l) =
1

ξ(l)

d

dl
xc(l) (tangential unit vector) (2.25)

η̂(l) =
1

κ(l)ξ(l)

d

dl
τ̂ (l) (normal unit vector) (2.26)

β̂(l) = τ̂ (l)× η̂(l) (binormal unit vector) (2.27)

where ξ(l) ensures the normalization of τ̂ . The curvature of the trajectory is denoted by
κ(l).

All points inside or on the wire can now be easily characterized by the coordinates
(l, r, φ), i.e.

x(l, r, φ) = xc(l) + r cos(φ)η̂(l) + r sin(φ)β̂(l) . (2.28)
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The shortest distance between the point x and the wire core is denoted by r with the
corresponding polar angle φ as depicted in Fig. 2.3. With Eq. (2.28) the integral and
differential operators used in Eqs. (2.22) and (2.23) can be expressed for the new coordinates
(l, r, φ). This is shown in detail in App. A.1.

η̂

β̂

τ̂

O

r

φ

xc

x

Figure 2.3: Non-circular wire cross section with polar coordinates to characterize each
point inside the wire.

In the following, the wire is assumed to be thin with a circular cross section and with
the wire radius a. That means a is small compared to the wavelength λ and to the total
wire length L, i.e.

a� λ,L . (2.29)

This leads to further assumptions for the physical quantities on the wire surface:

• J , Φ and Eex are independent of φ on the wire surface,

• J points only in the direction tangential to the wire core τ̂ .

The current density exists only on the wire surface since the wire is assumed to be a perfect
electric conductor. These assumptions lead to the following model of the current density

J(x) = JS(l)δ(r − a)τ̂ (l) (2.30)

with the surface current density JS. The Dirac delta function is denoted by δ .
Furthermore, the integral kernels in Eq. (2.24) depend on ‖xS−x′S‖. For the thin wire

kernel approximation the distance between two surface points is approximated with

‖xS − x′S‖ ≈
√
‖xc(l)− xc(l′)‖2 + a2 , (2.31)

where l and l′ are two parameters that characterize the position along the wire core.
This means the φ and φ′ dependence is ignored for the distance of two surface points.
In a physical context this means that the source terms x′ are on the wire core and the
observation point is chosen for one specific φ so that Eq. (2.31) holds. This approximation
strictly holds if the two surface points xS and x′S are in a great distance from each other.
Nevertheless, good results are obtained if Eq. (2.31) is used for the entire domain as long
as the radius a is small [22]. Moreover, an integration over a singular point is omitted with
the approximation in Eq. (2.31). This simplifies the following treatments while maintaining
a good accuracy.

With this model of the current density, Eq. (2.31) and the results derived in App. A.1
the general MPIE are modified in the following.
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2.2.1 First mixed potential integral equation for thin wires

First, Eq. (2.22) is analyzed. The cross product (n̂(xS) × . . . ) extracts the tangential
components. Since every physical quantity on the wire surface is assumed to be independent
of φ and the surface current density points only in the direction of τ̂ , the cross product
can be replaced by the dot product (τ̂ (l) · . . . ). Inserting the current density (2.30) into
(2.22) results in

τ̂ (l) ·grad Φ(l, a)+jk
Z0

4π

∫
V
τ̂ (l) ·GA(xS,x

′)JS(l′)δ(r′−a) dx′ = τ̂ (l) ·Eex(l, a) . (2.32)

Next, the gradient in direction of τ̂ is inserted from Eq. (A.21) and the differential volume
element dx′ is expanded as in Eq. (A.19). It follows

1

ξ(l)[1− aκ(l) cos(φ)]

∂

∂l
Φ(l, a)

+ jk
Z0

4π

Lmax∫
Lmin

2π∫
0

a∫
0

τ̂ (l) ·GA(xS,x
′)JS(l′)δ(r′ − a)ξ(l′)r′[1− r′κ(l′) cos(φ′)] dr′ dφ′ dl′

= τ̂ (l) · Eex(l, a) , (2.33)

where l′, r′ and φ′ characterize the points containing the sources. Solving the integral in
the r′ coordinate yields

1

ξ(l)[1− aκ(l) cos(φ)]

∂

∂l
Φ(l, a)

+ jk
Z0

4π

Lmax∫
Lmin

2π∫
0

τ̂ (l) ·GA(xS,x
′
S)JS(l′)ξ(l′)a[1− aκ(l′) cos(φ′)] dφ′ dl′

= τ̂ (l) · Eex(l, a) . (2.34)

Due to the approximate φ-independence of all physical quantities on the wire surface, φ is
chosen such that cos(φ) = 0 is fulfilled. Furthermore, instead of evaluating the exciting
electric field Eex(l, a) at the radius a it is evaluated at the location of the wire core. This
is justified because of a� λ. Hence, it follows

1

ξ(l)

∂

∂l
Φ(l, a) + jk

Z0

4π

Lmax∫
Lmin

2π∫
0

τ̂ (l) ·GA(xS,x
′
S)JS(l′)ξ(l′)a[1− aκ(l′) cos(φ′)] dφ′ dl′

= τ̂ (l) · Eex(l, 0) . (2.35)

Furthermore, the integral kernel is approximated by using Eq. (2.31) to allow a straight
forward integration in the φ′ coordinate.

Finally, the substitutions

gA(l, l′) =
exp(−jk

√
‖xc(l)− xc(l′)‖2 + a2)√

‖xc(l)− xc(l′)‖2 + a2
τ̂ (l) · τ̂ (l′)

−
exp(−jk

√
‖xc(l)−

ˇ
xc(l′)‖2 + a2)√

‖xc(l)−
ˇ
xc(l′)‖2 + a2

τ̂ (l) ·
ˇ
τ̂ (l′) (2.36)
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and

I(l) = JS(l)2πa (2.37)
Etan(l) = τ̂ (l) ·Eex(l, 0) (2.38)

are made and the integration in the φ′ coordinate is evaluated to result in the approximation
of Eq. (2.22) for thin, perfect electrically conducting wires. It holds

1

ξ(l)

∂

∂l
Φ(l, a) + jk

Z0

4π

Lmax∫
Lmin

gA(l, l′)I(l′)ξ(l′) dl′ = Etan(l) . (2.39)

2.2.2 Second mixed potential integral equation for thin wires

Similar approximations are applied to Eq. (2.23). The divergence operator from Eq. (A.23)
and the differential volume element from Eq. (A.19) are inserted into Eq. (2.23) with
Eq. (2.30). It holds

Lmax∫
Lmin

2π∫
0

a∫
0

GΦ(xS,x
′)
∂

∂l′
JS(l′)δ(r′ − a)r′ dl′ dφ′ dr′ + jk

4π

Z0

Φ(l, a) = 0 . (2.40)

The integral kernel GΦ is approximated with Eq. (2.31) as well. With the substitution

gΦ(l, l′) =
exp(−jk

√
‖xc(l)− xc(l′)‖2 + a2)√

‖xc(l)− xc(l′)‖2 + a2

−
exp(−jk

√
‖xc(l)−

ˇ
xc(l′)‖2 + a2)√

‖xc(l)−
ˇ
xc(l′)‖2 + a2

(2.41)

the integration in the r′ and φ′ coordinate can be carried out to yield

Lmax∫
Lmin

gΦ(l, l′)
∂

∂l′
JS(l′)2πa dl′ + jk

4π

Z0

Φ(l, a) = 0 . (2.42)

Furthermore, the current I can be substituted via Eq. (2.37) to finally result in the second
MPIE for thin wires

Lmax∫
Lmin

gΦ(l, l′)
∂

∂l′
I(l′) dl′ + jk

4π

Z0

Φ(l, a) = 0 . (2.43)

2.2.3 Summary for the mixed potential integral equations for thin
wires

For a shorter notation the scalar potential Φ(l, a) is written as Φ(l). Furthermore, it is
assumed that the wire trajectory is parametrized with its arc length. This means

ξ(l) = 1 = const. (2.44)
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In theory this parametrization is always possible [21]. However, not for all cases a closed
form natural parametrization can be obtained, e.g. for elliptic curves. Nevertheless, in this
thesis rather simple trajectories are analyzed and the parameter ξ is omitted from now on.

The MPIE for thin wires are summarized as

∂

∂l
Φ(l) + jk

Z0

4π

Lmax∫
Lmin

gA(l, l′)I(l′) dl′ = Etan(l) (2.45)

Lmax∫
Lmin

gΦ(l, l′)
∂

∂l′
I(l′) dl′ + jk

4π

Z0

Φ(l) = 0 . (2.46)

With the thin wire MPIE the current I and the scalar potential Φ on a thin wire can be
determined from a given tangential electric field Etan.

2.2.4 Electric field integral equation for thin wires

The EFIE for thin wires is obtained by inserting Eq. (2.46) into Eq. (2.45) to eliminate
the scalar potential. It holds

∂

∂l

Lmax∫
Lmin

gΦ(l, l′)
∂

∂l′
I(l′) dl′ + k2

Lmax∫
Lmin

gA(l, l′)I(l′) dl′ = −jk
4π

Z0

Etan(l) . (2.47)

Equation (2.47) is the thin wire version of Eq. (2.24). It is equivalent to the thin wire
MPIE. Both, the MPIE and the EFIE for thin wires, are used throughout this thesis.

2.3 The straight, infinite wire above an infinite ground
plane

The problem setup of the straight, infinite wire above a ground is shown in Fig. 2.4. The
small wire radius is again denoted by a and the wire height above the ground is h. It is
assumed that a� h . With no loss of generality, it is assumed that the wire is located
at x1 = 0. An exact analytic solution of the thin wire EFIE for the infinite wire can be
obtained [23]–[26]. The exact solution is briefly derived and discussed in this section.

. . . . . .

h

2a

x3

x1

x2

Figure 2.4: Straight, infinite wire above an infinite perfect electric ground.

First, the thin wire EFIE (see Eq. (2.47)) is derived to suit the specific problem. The
wire is parameterized with

xc(l) = h x̂2 + l x̂3 , (2.48)
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where

−∞ < l <∞ . (2.49)

According to Eq. (2.25) the tangential unit vector is

τ̂ (l) = x̂3 = const. (2.50)

Furthermore, it holds with Eq. (2.17)

ˇ
xc(l) = −h x̂2 + l x̂3 (2.51)

ˇ
τ̂ (l) = x̂3 . (2.52)

Inserting the trajectory and tangential unit vector into Eqs. (2.36) and (2.41) results in

gA(l, l′) = gΦ(l, l′) = g0(l − l′) (2.53)

with

g0(l − l′) =
exp(−jk

√
(l − l′)2 + a2)√

(l − l′)2 + a2
−

exp(−jk
√

(l − l′)2 + 4h2)√
(l − l′)2 + 4h2

. (2.54)

For the second term in the latter equation 4h2 + a2 ≈ 4h2 is used.
Therefore, the EFIE for the infinite wire is

∂

∂l

∞∫
−∞

g0(l − l′) ∂
∂l′
I(l′) dl′ + k2

∞∫
−∞

g0(l − l′)I(l′) dl′ = −jk
4π

Z0

Etan(l) . (2.55)

There is now only one single integral kernel g0. It depends on the difference l − l′ .
Hence, the integrals can be interpreted as convolutions of g0 with the current I(l′) or its
derivative, i.e. ∂

∂l′
I(l′).

The spacial Fourier transform can be used to solve Eq. (2.55). It is defined as

Ĩ(kl) =

∞∫
−∞

I(l) exp(−jkll) dl (2.56)

with the corresponding inverse Fourier transform

I(l) =
1

2π

∞∫
−∞

Ĩ(kl) exp(jkll) dkl , (2.57)

where kl is an auxiliary wave number and the tilde marks the transform respectively. The
convolution becomes a multiplication of the transforms and the differentiation becomes a
multiplication with jkl. It follows an algebraic equation for the transform of the current Ĩ,
i.e.

(k2 − k2
l )g̃0(kl)Ĩ(kl) = −jk

4π

Z0

Ẽtan(kl) . (2.58)
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Here, the tilde marks the Fourier transform. The Fourier transform of the kernel is

g̃0(kl) =

{
2
[
K0

(
a
√
k2
l − k2

)
−K0

(
2h
√
k2
l − k2

)]
for k2

l 6= k2

2 ln
(

2h
a

)
for k2

l = k2 .
(2.59)

where Kn is the modified Bessel function of the second kind and order n.
Rearranging Eq. (2.58) and applying the inverse (spatial) Fourier transform (ref.

Eq. (2.57)) results in

I(l) = jk
2

Z0

∞∫
−∞

Ẽtan(kl) exp(jkll)

(k2
l − k2)g̃0(kl)

dkl . (2.60)

This is the exact solution of the current for any excitation Etan. In the following Eq. (2.60)
is solved for two important kinds of excitation:

1. the lumped excitation and

2. the plane wave excitation.

The solution for the lumped excitation can be seen as a Green’s function for the problem
with a general excitation. A plane wave excitation is a good model for many practical
problems.

2.3.1 Lumped excitation

The goal is to solve the integral in Eq. (2.60) for a lumped excitation. That means there
is a lumped voltage source along the wire at the point l = 0. The tangential electric field
along the wire and its Fourier transform is modeled as in [27, p. 131], namely

Etan(l) = V0 δ(l) (2.61)

Ẽtan(kl) = V0 (2.62)

with the complex voltage amplitude V0 . Inserting the tangential electric field into Eq. (2.60)
results in

I(l) = jk
2V0

Z0

∞∫
−∞

exp(jkll)

(k2
l − k2)g̃0(kl)

dkl . (2.63)

The integral in Eq. (2.63) can be solved using the residue theorem as in [24]–[26]. The
integrand is extended for complex kl. The residue theorem states that the integration
along the closed path in the complex plane is equal to the sum of the residues of all
enclosed poles of the integrand if the integrand is analytic along the path.

The integrand in Eq. (2.63) has infinitely many complex poles kn as indicated in
Fig. 2.5. Furthermore, there are two branch cuts with branch points at kl = ±k. The
original integration path along the real axis is extended to a closed path in the complex
plane as shown in Fig. 2.5. From Cauchy’s residue theorem follows

∞∫
−∞

+

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

+

∫
C5

= 4πj
∑
n

Res(kn) . (2.64)
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<{kl}
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−k
k0

ρ→∞

×

×

×

×

×

×

C1

C5

C2C4

C3

original path
additional paths
branch cut
pole & branch pt.

× pole kn

Figure 2.5: Closed integration contour in the complex kl plane.

The radius ρ tends to ∞. Due to the exponential function in the integrand, the
integration along C1 and C5 is zero for l > 0. If l < 0 , the contour is mirrored at the origin
kl = 0. Rearranging Eq. (2.64) leads to

∞∫
−∞

= −
∫
C3

+ 4πj
∑
n

Res(kn)−
∫
C2
−
∫
C4
. (2.65)

The current I is composed of three kinds of modes as shown in [26], i.e. a TEM mode
ITEM, leaky modes In,Leaky and a radiation mode IRad. It holds

I(l) = ITEM(l) +
∑
n

In,Leaky(l) + IRad(l) . (2.66)

The TEM mode arises from the integration around the branch point at kl = ±k. The
residues in Eq. (2.65) are connected to the leaky modes and the integration along the
branch cut gives rise to the radiation mode. As shown in [25], [26] in more detail, it holds

ITEM(l) =
V0

2ZC

e−jk|l| (2.67)

In,Leaky(l) = − V0

2Zn,Leaky

ejkn|l| (2.68)

with

ZC =
Z0

2π
ln

(
2h

a

)
(2.69)

Zn,Leaky =
Z0

2π

kn
√
k2
n − k2

2k

[
aK1

(
−a
√
k2
n − k2

)
− 2hK1

(
−2h

√
k2
n − k2

)]
(2.70)
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For the radiation mode holds (see [26] for details)

IRad(l) = k
V0

Z0

e−jk|l|

∞∫
0

exp(−ζ|l|)
ζ(ζ + 2jk)

[
1

K0(−a
√
ζ(ζ + 2jk))−K0(−2h

√
ζ(ζ + 2jk))

− 1

K0(a
√
ζ(ζ + 2jk))−K0(2h

√
ζ(ζ + 2jk))

]
dζ , (2.71)

where ζ is an auxiliary variable.
The TEM mode experiences no damping along the wire. It is excited at the voltage

source and travels outward towards ±∞ with a constant amplitude and with the frequency
k. The EM field associated with ITEM is a wave traveling in positive and negative x3-
direction away from the source. The field components are only present in the transverse
plane of the transmission line, i.e. the x1-x2-plane.

The leaky modes are exponentially damped with increasing distance from the source.
The damping coefficient is |={kn}| and the oscillation frequency is |<{kn}| . Hence, they
only contribute to the total current in a small region around the lumped source.

The integral of the radiation mode has to be evaluated numerically. However, for large
|l| the asymptotic behavior can be analyzed [26], i.e.

IRad(l) ∼
V0

2ZC

jkh2

ln
(

2h
a

) exp(−jk|l|)
|l|

=
jkh2

ln
(

2h
a

) ITEM(l)

|l|
for |l| � 0 (2.72)

Hence, the radiation mode oscillates with frequency k and is damped with |l|−1 far away
from the source.

Another representation for the exact current is given in [23]. The amplitude of all
modes is proportional to V0. Hence, it holds

I(l) = V0 [YTEM(l) + YLeaky(l) + YRad(l)] (2.73)

with the admittance functions

YTEM(l) =
1

2ZC

e−jk|l| (2.74)

YLeaky(l) = −
∑
n

1

2Zn,Leaky

e−jkn|l| (2.75)

YRad(l) = k
1

Z0

e−jk|l|

∞∫
0

exp(−ζ|l|)
ζ(ζ + 2jk)

[
1

K0(−a
√
ζ(ζ + 2jk))−K0(−2h

√
ζ(ζ + 2jk))

− 1

K0(a
√
ζ(ζ + 2jk))−K0(2h

√
ζ(ζ + 2jk))

]
. (2.76)

If the voltage source is located at l = l0 the current is obtained by shifting the solution
for l = 0 by l0, i.e.

Il0(l) = V0 [YTEM(l − l0) + YLeaky(l − l0) + YRad(l − l0)] (2.77)

To conclude, at a far distance from the source only the TEM mode has a significant
influence on the total current. The leaky modes and radiation mode decay with increasing
distance.
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2.3.2 Plane wave excitation

In this subsection Eq. (2.60) is analytically solved for the plane wave excitation of the
infinite wire. The plane wave is characterized by the angle of incidence θ as shown in
Fig 2.6. The vectors of the plane wave are defined as

k = k[− sin(θ) x̂2 + cos(θ) x̂3] (2.78)
Einc(x) = E0[cos(θ) x̂2 + sin(θ) x̂3] e−jk·x (2.79)

H inc(x) = −E0

Z0

x̂1 e−jk·x (2.80)

where E0 is an arbitrary complex amplitude of the electric field. A more general definition
of the plane wave is possible, e.g. a general polarization or a second angle in the x3-x1-plane
could be included. However, this specific example is enough to show the desired effects
while keeping the equations simple.

θ

k

Einc

H inc

. . . . . .

x3

x1

x2

Figure 2.6: Straight, infinite wire above an infinite perfect electric ground with a plane
wave excitation.

The external electric field that excites the current in Eq. (2.55) is obtained from the
superposition of the plane wave and its reflection. Therefore, it holds

Etan(l) = 2jE0 sin(θ) sin(kh sin(θ)) e−jkθl (2.81)

with

kθ = k cos(θ) . (2.82)

The Fourier transform of the the tangential electric field is

Ẽtan(kl) = 4πjE0 sin(θ) sin(kh sin(θ)) δ(kl + kθ) . (2.83)

Inserting Eq. (2.83) into Eq. (2.60) and using the integral property of the delta function
yields

I(l) = k
8π

Z0

E0 sin(θ) sin(kh sin(θ))

(k2 − k2
θ)g̃0(kθ)

e−jkθl . (2.84)

Rearranging the terms finally results in

I(l) =
4π

Z0g̃0(kθ)

2E0 sin(kh sin(θ))

k sin(θ)
e−jkθl . (2.85)
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Equation (2.85) is the exact solution of the thin wire EFIE for the infinite wire above a
ground with a plane wave excitation.

As for the TEM mode for the lumped excitation (see Eq. (2.67)) the amplitude of
the current is constant along the wire. However, it depends on the angle of incidence θ.
Furthermore, the effective wave number kθ is smaller or equal to k and depends on the
angle of incidence as well (see Eq. (2.82)).

If θ tends to zero, the plane wave travels along the wire axis as a TEM mode. Taking
the limit θ → 0 for Eq. (2.85) yields

lim
θ→0

I(l) =
2hE0

ZC

e−jkl . (2.86)

The current has a similar form as ITEM in Eq. (2.67) with an equivalent voltage 4hE0.
This behavior is also noted in [26], [28].

2.4 Classical transmission line theory
It is possible to find exact solutions for the current along infinite wires. For practical,
finite problems no exact general solution is known. However, if the wave length is much
greater than the transverse dimensions of a long uniform wire, the classical transmission
line theory (CTLT) can be applied.

To simplify the treatment of the problem, it is assumed that the TEM mode is the
dominant mode and that other modes can be neglected. Under this condition Maxwell’s
equations simplify and are reduced to the so called telegraphers equations [6], [7], [13],
[27]. For the scalar potential Φ and the current I along lossless uniform wires holds

∂

∂l
Φ(l) + jkZCI(l) = 0 (2.87)

∂

∂l
I(l) + jk

1

ZC

Φ(l) = 0 (2.88)

with the characteristic impedance ZC from Eq. (2.69).
The solution of the telegraphers equations has a form similar to the TEM mode for the

infinite wire. However, on the finite wire two TEM modes that travel in opposite directions
coexist. The amplitudes of the two TEM modes depend on the boundary conditions, i.e.
the lumped loads and sources at the wire ends.

Field coupling is included in the homogeneous telegraphers equations by inserting
source terms in Eqs. (2.87) and (2.88), i.e.

∂

∂l
Φ(l) + jkZCI(l) = V ′ex(l) (2.89)

∂

∂l
I(l) + jk

1

ZC

Φ(l) = I ′ex(l) . (2.90)

There are three well known models that define the two source terms V ′ex and I ′ex, namely
the Taylor model [29], the Agrawal model [30], and the Rachidi model [31]. The three
models are all equivalent.

The Agrawal model is closely related to the MPIE for thin wires (see Eqs. (2.45) and
(2.46)). In this model the source terms are

V ′ex(l) = Ex2(l, h) (2.91)
I ′ex(l) = 0 , (2.92)
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where Ex2 is the electric field component that is orthogonal to the ground plane. This way
the total current and a scattered potential Φ are determined with Eqs. (2.89) and (2.90).
The total scalar potential is obtained with

Φtot(l) = Φ(l)−
h∫

0

Ex2(l, x2) dx2 . (2.93)

The boundary conditions are

Φ(0) = −Z1I(0) +

h∫
0

Ex2(0, x2) dx2 (2.94)

Φ(L) = −Z2I(L) +

h∫
0

Ex2(L, x2) dx2 , (2.95)

where Z1 and Z2 are the loads at the ports, L is the wire length and h is the wire height
above the ground. Risers at the wire ends are usually neglected in the Agrawal model [30],
due to the small transverse dimensions of the wire. Only the horizontal part of the wire
and the loads are considered.

The advantage of the CTLT is its simplicity. The telegraphers equations are solvable
using standard methods as is shown in Ch. 4. Furthermore, the theory can be used to
generate stable networks for frequency and time domain simulations [32], [33].

However, the CTLT simplifies the general Maxwell theory significantly. The method
does not include radiation effects at the wire terminals. Furthermore, it is difficult to
include the non-uniformity of the wire terminals, e.g. risers, which play a significant role
for smaller wavelengths. Hence, it is restricted to large wavelengths compared to the wire
height above the ground.

2.5 The method of moments for thin wires

The method of moments (MoM) is a widely used numerical method to solve linear boundary
value problems. It is often used to approximate the current on wires induced by external
electromagnetic fields in frequency domain. In the following the general idea of the MoM
is described. Furthermore, it is applied to the thin wire EFIE.

2.5.1 General aspects

The MoM can be used to discretize linear operators. The solution can then be approximated
by solving a linear system of equations. The method is described in full detail in [1], [34].

A general linear problem is described by

(T̂ I)(l) = F (l) , (2.96)

where T̂ is an arbitrary linear operator acting on an unknown function I (in this case the
current) and F is the excitation or forcing function. To solve this problem numerically, the
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sought function I is described as a weighted sum of N linearly independent basis functions
βn, i.e.

I(l) =
N∑
n=1

inβn(l) (2.97)

where in are unknown coefficients, sometimes called the degrees of freedom. Since the
operator is linear, it acts on the basis functions independently. It holds

N∑
n=1

in(T̂ βn)(l) = F (l) . (2.98)

The latter equation is weighted with N test functions wm, i.e.

N∑
n=1

in〈wm, T̂ βn〉 = 〈wm, F 〉 for m = 1, 2, ..., N , (2.99)

where 〈·, ·〉 denotes the inner product depending on the domain of T̂ . Equation (2.99) can
be rewritten in matrix form as

〈w1, T̂ β1〉 〈w1, T̂ β2〉 · · · 〈w1, T̂ βN〉
〈w2, T̂ β1〉 〈w2, T̂ β2〉 · · · 〈w2, T̂ βN〉

...
... . . . ...

〈wN , T̂ β1〉 〈wN , T̂ β2〉 · · · 〈wN , T̂ βN〉



i1
i2
...
iN

 =


〈w1, F 〉
〈w2, F 〉

...
〈wN , F 〉

 . (2.100)

Many numerical methods (finite element method, finite integration technique, . . . )
result in a system of equations with a form similar to (2.100). Therefore, the MoM can be
seen as some kind of generalization of the numerical methods for linear operators. But
usually the MoM refers to the numerical solution of integro-differential equations.

The performance of the algorithm, e.g. the accuracy and speed, depends on the choice
of test and basis functions. Global basis functions, that span the whole domain of interest,
are possible choices. Their specific form depends on the properties of T̂ [35], [36].

However, local basis and test functions, that have a compact support, are more
convenient for general numerical applications [22], [35], [36].

2.5.2 Thin wires above a ground plane

In this section the same thin wires are considered as in Sec. 2.2. For thin wires the EFIE,
i.e. Eq. (2.47), has to be solved for the current. The MoM shall be applicable for complex
frequencies s for later application. This is established by substituting jω with s .

Therefore, the linear operator is

(T̂ I)(l) =
∂

∂l

Lmax∫
Lmin

gΦ(l, l′)
∂

∂l′
I(l′) dl′ − s2

c2

Lmax∫
Lmin

gA(l, l′)I(l′) dl′ (2.101)

and the forcing function is

F (l) = −s
c

4π

Z0

Etan(l) . (2.102)
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The inner product for this problem is defined to be

〈wm, F 〉 =

Lmax∫
Lmin

wm(l)F (l) dl . (2.103)

The wire is divided into straight segments to approximate the wire trajectory as described
in [1], [34].

The physical current is continuously differentiable. Hence, the so called Numerical
Electromagnetics Code (NEC) basis functions are chosen [34]. They are defined as

βn(l) =


AL,n +BL,ne

+
n−1(l) + CL,ne

−
n−1(l) for ln−1 < l < ln

−1 +BM,ne
+
n (l) + CM,ne

−
n (l) for ln ≤ l ≤ ln+1

AR,n +BR,ne
+
n+1(l) + CR,ne

−
n+1(l) for ln+1 < l < ln+2

0 otherwise

(2.104)

with

e±n (l) = exp
(
±s
c

(l − cn)
)
. (2.105)

The bounds of segment n are denoted by ln and ln+1 respectively. The center of segment
n is at l = cn. The NEC basis functions span three complete wire segments and are zero
elsewhere.

The eight coefficients AL,n, BL,n, CL,n, BM,n, CM,n, AR,n, BR,n, and CR,n are determined
by enforcing that βn has a continuous first derivative for all l = ln or that all βn fulfill the
current boundary conditions at the wire ends, i.e.

I(lend) = 0 open-circuit boundary condition (2.106)
∂

∂l
I(lend) = 0 short-circuit boundary condition (2.107)

Four example basis functions are shown in Fig. 2.7 with an open circuit at l = l1 and a
short circuit at l = l5 (connection to ground). With the NEC basis functions the integrals
in (T̂ βn)(l) can be solved almost completely analytically leaving only a well behaved
integrand that can be evaluated by straight forward numerical integration [34].

l

|βn|

0
l1 l2 l3 l4 l5

c1 c2 c3 c4

β1 β2 β3 β4

Figure 2.7: Absolute value of NEC basis functions for a wire consisting of four segments
with an open circuit on the left side and a short circuit on the right side.

Since all basis functions βn are continuously differentiable the resulting current approx-
imation is continuously differentiable for all l. Hence, the charge per unit length q′ can be
determined directly from the current for all l. The continuity equation for the current is

∂

∂l
I(l) = −sq′(l) . (2.108)
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Therefore, it holds

q′(l) = −1

s

N∑
n=1

in
∂

∂l
βn(l) (2.109)

with

∂

∂l
βn(l) =

s

c


BL,ne

+
n−1(l)− CL,ne

−
n−1(l) for ln−1 < l < ln

BM,ne
+
n (l)− CM,ne

−
n (l) for ln ≤ l ≤ ln+1

BR,ne
+
n+1(l)− CR,ne

−
n+1(l) for ln+1 < l < ln+2

0 otherwise.

(2.110)

Next the test functions need to be chosen. Point matching is used for thin wires [1],
[34]. That means

wm(l) = δ(l − cm) . (2.111)

The main advantage is that the integration from the inner product can be solved analytically.
As a drawback the test functions enforce the electric field boundary condition only on the
segment center cm. Nevertheless, accurate results are achieved with point matching.

2.6 The singularity expansion method and natural fre-
quencies

The singularity expansion method (SEM) is introduced in this section. After a general
description of the main idea, two possibilities to obtain the important complex natural
frequencies are presented.

2.6.1 General aspects

The SEM was developed in the 1970s for the analysis of electromagnetic field interaction
with general passive objects [27], [37]–[40]. Figure 2.8 shows the absolute value of an
example response of the current I at one point on a thin dipole in free space as a function of
a normalized frequency. The length of the dipole is denoted by L. The specific dimensions
of the dipole are not important at this moment. Many peaks with different relative widths
can be seen. This observation is characteristic for the responses of all passive objects.

The main idea of the SEM is the decomposition of the response of any passive object
into a series of infinitely many resonators. In the context of the SEM physical quantities,
e.g. the current I, are modeled as

I(s) =
∑
n

rn
s− sn

+ Iforced(s) + Ianalytic(s) (2.112)

in frequency domain, where s is the complex frequency that arises from the two sided
Laplace transform, sn are the so called natural frequencies, and rn are the corresponding
residues. The current Iforced is a current that depends on the excitation and may include
singularities as well. The current Ianalytic is an analytic function, i.e. a function without
any singularities that is differentiable for all s, that exists in theory. However, Ianalytic

vanishes for most practical problems [27], [37].
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Figure 2.8: Absolute value of the complex current on a thin dipole in free space that is
illuminated by a plane wave as a function of a normalized frequency with many visible
resonances.

Equation (2.112) fully describes any passive system that is excited by a specific source.
There are different approaches to find the unknowns in Eq. (2.112), e.g. fitting algorithms
for measurement or numerical data. Analytic expressions can usually be developed into a
series that looks similar to Eq. (2.112).

An advantage of the model in Eq.(2.112) is the possibility to easily find the transform
in time domain. It holds

Î(t) =
∑
n

rn exp(snt) + Îforced(t) + Îanalytic(t) , (2.113)

where the hat denotes the transforms in time domain. The significance of the parameters
rn and sn becomes clearer in Eq. (2.113).

The imaginary part of each natural frequency sn is the oscillation frequency of each
resonator. The real part describes the damping of the corresponding oscillation in time
domain. In frequency domain the imaginary part of the natural frequencies is the frequency
where a maximum of the amplitude response is located. The real part corresponds to the
relative width of each resonant peak. The complex natural frequencies sn of each resonator
are independent of the excitation. Their location in the complex plane just depends on the
properties of the object, e.g. its geometry, material properties, lumped elements [27], [37].

The complex residues rn describe the coupling of the excitation to each natural mode.
Hence, they depend on the system and the specific excitation. For practical problems
the specific excitation, e.g. direction of the source, number of sources, etc., is not always
known. Therefore, the analysis of the rn is usually omitted. The analysis of the natural
frequencies is often sufficient to gain relevant information about the system behavior. It
can be used to detect vulnerabilities of the system or to identify unknown objects.

The complex natural frequencies of the current on a conducting sphere with radius R can
be determined analytically [37], [41]. Figure 2.9 shows the normalized natural frequencies
in the complex s-plane. The natural frequencies can be grouped into different layers as
indicated in Fig. 2.9. The first layer is the closest to the imaginary axis. Therefore, these
natural frequencies would have the biggest influence on an observed frequency response.
The higher order layers are further away from the imaginary axis and contribute less to
the physical response. Hence, it is difficult or impossible to detect them from measurement
data. This is further illustrated by the example at the end of this section.
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Figure 2.9: Normalized natural frequencies of a perfectly conducting sphere with radius
Rsphere in free space.

2.6.2 Determining the natural frequencies

It is usually straight forward to determine the natural frequencies from analytic expressions,
e.g. for the perfectly conducting sphere [37], [41]. If numerical methods are used or
measurement data is available, there are different time domain and frequency domain
methods to extract the natural frequencies. In the following, two frequency domain
methods that are used later in the thesis are shortly described, i.e.

1. Contour integration for MoM and

2. Vector fitting for frequency domain data.

There are methods that work on time domain data, e.g. the matrix pencil method
[42]. However, it is not further used in this thesis and is, therefore, not described in the
following.

Contour integration for the method of moments

The contour integration method can be applied if the current can be evaluated for complex
frequencies, e.g. using the MoM. To apply the method, the system of equations in Eq. (2.100)
is written in a shorter notation as

ZMoM(s)IMoM(s) = V MoM(s) (2.114)

with the matrix

ZMoM(s) =


〈w1, T̂ β1〉(s) 〈w1, T̂ β2〉(s) · · · 〈w1, T̂ βN〉(s)
〈w2, T̂ β1〉(s) 〈w2, T̂ β2〉(s) · · · 〈w2, T̂ βN〉(s)

...
... . . . ...

〈wN , T̂ β1〉(s) 〈wN , T̂ β2〉(s) · · · 〈wN , T̂ βN〉(s)

 (2.115)
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and the column vectors

IMoM(s) =
[
i1(s) i2(s) . . . iN(s)

]T (2.116)

V MoM(s) =
[
〈w1, F 〉(s) 〈w1, F 〉(s) · · · 〈w1, F 〉(s)

]T
. (2.117)

Hence, it follows for the coefficient vector

IMoM(s) = Z−1
MoM(s)V MoM(s) . (2.118)

If s = sn , there exists a nontrivial current vector IMoM even if there is no excitation [43].
This holds if and only if the determinant of ZMoM is zero. Hence, the task of finding the
natural frequencies is reduced to finding the zeros of detZMoM(s), i.e. for all singularities
sn holds

detZMoM(sn) = 0 . (2.119)

The algorithm in [44] uses contour integration in the complex s-plane to find the
complex roots of an analytic function. The main idea is to use Cauchy’s argument
principle [45].

A closed contour in the complex s-plane is chosen. A numerical integration of detZMoM

along the contour is performed. After straight forward data processing an accurate
approximation of all zeros inside the contour is obtained. Details can be found in [44].

The advantage of the algorithm is the accuracy. It finds all zeros (i.e. natural frequencies)
in the given area in the complex frequency plane (see [46] for comparison). Furthermore,
no excitation is need. The algorithm only uses the properties of the passive system that
are completely contained in ZMoM .

However, the algorithm uses a lot of computing time since the determinant of ZMoM

needs to be evaluated for a lot of different frequency points in the complex plane to obtain
accurate integrals.

Vector fitting for frequency domain data

The vector fitting algorithm [47]–[49] can be applied to any kind of data in frequency
domain, i.e. measurement data or numerical results. The main idea is to fit for example
the current response I(jω) with

Ifit(jω) =
N∑
n=1

rn,fit

jω − sn,fit

+ jω rN+1,fit + rN+2,fit . (2.120)

The unknowns rn,fit and sn,fit are determined iteratively with data points from the MoM
algorithm. If a satisfying fit is found, the algorithm terminates and N singularities sn,fit

are found.
The advantage of the vector fitting algorithm is its fast computing time compared to

the contour integration method. Only 2N + 2 data point are needed to find N singularities.
Furthermore, it can be applied to noisy measurement data [47].

However, the accuracy of the found singularities strongly depends on the number of
starting poles N . Moreover, only the first layer of natural frequencies is accurately found
with the vector fitting algorithm. This is shown in the following example.
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Example and comparison

To illustrate the performance of the two mentioned algorithms the natural frequencies of a
thin dipole (with length L = 1 m and radius a = 5 mm) are approximated. The dipole
is excited by a plane wave and the current on one wire segment is determined using the
MoM algorithm. The number of segments to discretize the dipole is always 40 to get an
accurate numerical result. The number of poles for the vector fitting algorithm are 12 and
16. The fitting curves are shown in Fig. 2.10 alongside the original simulation data. Both
fits look similar and are accurate compared to the original data.

Figure 2.11 shows the extracted natural frequencies from both algorithms with different
numbers of poles for the vector fitting algorithm. The natural frequencies in the first layer
(close to the imaginary axis) are found by both methods. However, the second and third
layer are only found by the contour integration algorithm.

Furthermore, it can be seen that the vector fitting solution is sensitive to the number
of starting poles N . If N is chosen too large (e.g. N ≥ 16), more poles are found close to
the imaginary axis. The algorithm then finds an incorrect sharp pole with small residue
to take numerical noise into account. Hence, the number N needs to be chosen carefully.
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Figure 2.10: Complex current from a simulation compared to the fits from the vector
fitting algorithm with a different number of starting poles N .
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Figure 2.11: Natural frequencies of a thin dipole in free space extracted from numerical
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Chapter 3

Asymptotic approach for the current on
a finite wire above a ground

In this chapter the asymptotic approach is described. The asymptotic approach yields
a general, analytic description of the current along a uniform part of a thin wire above
a ground plane. Besides analyzing the plane wave coupling to a finite wire, it can be
used to find a fixed point equation for the natural frequencies of the current on the wire.
The asymptotic approach is introduced in [12], [13]. However, a different derivation is
presented in the following.

Starting from the infinite wire with lumped loads and lumped sources above a ground
plane an equation for the current on a long finite wire above a ground with arbitrary ports
is derived. The solution is restricted to the uniform part of the wire. It depends on the
reflection and scattering coefficients. Furthermore, it is shown how the coefficients can be
extracted from numerical data. A fixed point equation for the natural frequencies is derived.
Extensions of the asymptotic approach to piecewise uniform wires and multiconductor
transmission lines are described as well.

3.1 Infinite wire with a lumped impedance and a plane
wave excitation – the scattering coefficient

Let there be an infinite wire with a lumped impedance Z and a plane wave excitation as
shown in Fig. 3.1. The lumped impedance is located at l = lZ and the parameterization
(2.48) is used. The current on the wire generates a voltage across the impedance. This
additional voltage has to be taken into account for the electric field boundary condition.
The tangential field along the infinite wire (see also Eq. (2.81)) becomes

Etan(l) = 2jE0 sin(θ) sin(kh sin(θ)) e−jkθl − VZ(I) δ(l − lZ) (3.1)

with

VZ(I) = ZI(lZ) , (3.2)

where kθ is defined in Eq. (2.82). The additional voltage VZ across the impedance is
subtracted since it arises due to the current. It is no external voltage source and, hence,
has a different sign than the lumped source in Sec. 2.3.

The resulting current along the infinite wire is the superposition of the current imposed
by the plane wave and the current scattered from the lumped impedance. With the results
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Figure 3.1: Infinite wire above an infinite perfect electric ground with a lumped
impedance.

from Sec. 2.3 it holds

I(l) = I∞e−jkθl − VZ(I)Y∞(l − lZ) (3.3)
= I∞e−jkθl − ZI(lZ)Y∞(l − lZ) . (3.4)

The current I∞ is the amplitude of the current that is enforced by the plane wave on the
infinite wire (see Eq. (2.85)), i.e.

I∞ =
4π

Z0g̃0(kθ)

2E0 sin(kh sin(θ))

k sin(θ)
. (3.5)

The admittance function Y∞(l) combines the admittance functions of all modes that arise
at the lumped impedance on the uniform, infinite wire (see Eqs. (2.74), (2.75), (2.76)), i.e.

Y∞(l) = YTEM(l) + YLeaky(l) + YRad(l) . (3.6)

Setting l = lZ in (3.4) results in

I(lZ) = I∞e−jkθlZ
1

1 + ZY∞(0)
(3.7)

and

I(l) = I∞e−jkθl − I∞e−jkθlZ
Z

1 + ZY∞(0)
Y∞(l − lZ) . (3.8)

The admittance Y∞(0) is the total input admittance of the infinite wire that is seen by a
lumped voltage source. The latter equation is the exact current for the infinite wire above
a ground with a lumped impedance and a plane wave excitation. The solution consists
of the forced response from the plane wave and the lumped voltage source solution. At
the location of the lumped impedance all modes are excited by the plane wave current
I∞e−jkθlZ and travel away from the lumped element. The amplitude of the voltage VZ
depends on the impedance Z and I∞ .

In a far distance from the impedance, i.e. if |l − lZ | becomes large, only a scattered
TEM mode and the forced response I∞ are dominant. It holds asymptotically

I(l) ∼ I∞e−jkθl − I∞e−jkθlZ
Z

1 + ZY∞(0)
YTEM(l − lZ) (3.9)

= I∞e−jkθl − I∞e−jkθlZ
Z

2ZC(1 + ZY∞(0))
e−jk|l−lZ | , (3.10)
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where YTEM is given in Eq. (2.74). The amplitude of the scattered TEM mode is the
product of the forced current I∞ and a constant factor that depends on the impedance Z.
The constant factor is the so called scattering coefficient Υ. With

Υ = − Z

2ZC(1 + ZY∞(0))
(3.11)

it follows

I(l) ∼ I∞e−jkθl + I∞e−jkθlZΥ e−jk|l−lZ | . (3.12)

Comparing this asymptotic approximation to Eq. (3.3) results in

−VZ(I)Y∞(l − lZ) ∼ I∞e−jkθlZΥ e−jk|l−lZ | . (3.13)

3.2 Infinite wire with a lumped impedance and a
lumped voltage source – the reflection coefficient

Now, let there be an infinite wire with a lumped impedance as before but with a lumped
voltage source instead of a plane wave excitation. The lumped impedance Z is again
located at l = lZ and the lumped voltage source V0 is located at l = lV .

The tangential electric filed is then

Etan = V0 δ(l − lV )− VZ(I) δ(l − lZ) . (3.14)

with the voltage VZ as in Eq. (3.2). The resulting total current is then

I(l) = V0Y∞(l − lV )− ZI(lZ)Y∞(l − lZ) . (3.15)

Setting l = lZ in Eq. (3.15) results in

I(lZ) = V0Y∞(lZ − lV )
1

1 + ZY∞(0)
(3.16)

and

I(l) = V0Y∞(l − lV )− V0Y∞(lZ − lV )
Z

1 + ZY∞(0)
Y∞(l − lZ) . (3.17)

If the voltage source and the lumped impedance are far apart, i.e. |lZ − lV | is large, it
holds

I(l) ∼ V0Y∞(l − lV )− V0

2ZC

e−jk|lZ−lV | Z

1 + ZY∞(0)
Y∞(l − lZ) . (3.18)

If, furthermore, the observation point l is at a large distance to the two lumped elements,
it holds asymptotically

I(l) ∼ V0YTEM(l − lV )− V0

2ZC

e−jk|lZ−lV | Z

1 + ZY∞(0)
YTEM(l − lZ) (3.19)

=
V0

2ZC

e−jk|l−lV | − V0

2ZC

e−jk|lZ−lV | Z

2ZC(1 + ZY∞(0))
e−jk|l−lZ | . (3.20)
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The latter equation describes a TEM mode that travels from the lumped source towards
the lumped impedance and one that is reflected at the load. Hence, a TEM reflection
coefficient Γ is defined as

Γ = − Z

2ZC(1 + ZY∞(0))
. (3.21)

The asymptotic approximation for the current is then

I(l) ∼ V0

2ZC

e−jk|l−lV | +
V0

2ZC

e−jk|lZ−lV |Γ e−jk|l−lZ | . (3.22)

The amplitude of the reflected TEM mode depends on the reflection coefficient Γ and the
amplitude of the incoming current wave V0

2ZC
. Strictly speaking another TEM mode with

the same amplitude as the reflected TEM mode is transmitted by the lumped impedance
and travels away from the source and the impedance. In this case a transmission coefficient
T could be introduced. However, this differentiation by cases is omitted here for simplicity.

The TEM scattering and reflection coefficient for the lumped impedance on the infinite
wire have the same value. The difference is the way the scattered wave is excited compared
to the reflected one. This concept is soon generalized and the difference between the two
parameters will be more obvious for the next case.

3.3 Infinite wire with two lumped impedances and a
plane wave excitation

Next, an infinite wire with two lumped impedances above a ground is excited by a plane
wave (see Fig. 3.2). The impedances Z1 and Z2 are located at l = l1 and l = l2 respectively.
An asymptotic approximation for the current in-between the impedances is sought. It is
assumed that the impedances are far apart and that the observation point is not near the
impedances. Then only the forced response from the plane wave and two TEM modes are
dominant at the observation point. The two TEM modes travel in opposite directions and
include all re-reflections.
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Z1 Z2
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x2

Figure 3.2: Infinite wire above an infinite perfect electric ground with two lumped
impedances.

The plane wave excites a current with amplitude I∞ as for the undisturbed infinite wire.
This current is scattered at the impedances as described above for the single impedance
case. The scattered TEM modes reach the opposite impedance and are then reflected.
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The reflected TEM modes travel back and forth due to infinitely many re-reflections at
the loads.

The total current in the asymptotic region between the loads is

I(l) ∼ I∞e−jkθl + IZ1(l) + IZ2(l) , (3.23)

where IZ1 and IZ1 are the currents that arise due to the scattering at the impedance Z1 or
Z2 respectively. It holds

IZ1(l) = I∞e−jkθl1Υ1 e−jk|l−l1|︸ ︷︷ ︸
scattered TEM mode at Z1

+ I∞e−jkθl1Υ1 e−jk|l2−l1|Γ2 e−jk|l−l2|︸ ︷︷ ︸
reflection at Z2

+ I∞e−jkθl1Υ1 e−2jk|l2−l1|Γ2Γ1 e−jk|l−l1|︸ ︷︷ ︸
re-reflection at Z1

+ I∞e−jkθl1Υ1 e−3jk|l2−l1|Γ2
2Γ1 e−jk|l−l2|︸ ︷︷ ︸

re-reflection at Z2

+ . . . (3.24)

There are infinitely many re-reflections of the TEM modes. Compiling similar terms results
in

IZ1(l) = I∞e−jkθl1Υ1

(
e−jk|l−l1| + Γ2 e−jk|l1−l2|e−jk|l−l2|

) ∞∑
n=0

(
Γ1Γ2 e−2jk|l1−l2|

)n
. (3.25)

Due to the passivity of the loads, no reflection coefficient is larger than 1. The geometric
sum converges if and only if the absolute value of at least one reflection coefficient is
smaller than one, i.e. if and only if |Γ1Γ2| < 1. Then it holds

IZ1(l) = I∞e−jkθl1Υ1

(
e−jk|l−l1| + Γ2 e−jk|l1−l2| e−jk|l−l2|

) 1

1− Γ1Γ2 e−2jk|l1−l2|
. (3.26)

Similarly, for the current that arises due to the scattering at the second load Z2 holds

IZ2(l) = I∞e−jkθl2Υ2

(
e−jk|l−l2| + Γ1 e−jk|l1−l2| e−jk|l−l1|

) 1

1− Γ1Γ2 e−2jk|l1−l2|
. (3.27)

Inserting Eqs. (3.26) and (3.27) into Eq. (3.23) and rearranging the terms finally results
in

I(l) = I∞e−jkθl + I∞
Υ1 e−jkθl1 + Υ2 e−jkθl2Γ1 e−jkL

1− Γ1Γ2 e−2jkL e−jk|l−l1|

+ I∞
Υ2 e−jkθl2 + Υ1 e−jkθl1Γ2 e−jkL

1− Γ1Γ2 e−2jkL e−jk|l−l2| (3.28)

with the distance L between the two lumped loads, i.e.

L = |l1 − l2| . (3.29)

Equation (3.28) is the asymptotic approximation for the current between the two
lumped impedances. It is composed of the forced response and two TEM modes that
travel in opposite directions. The amplitudes of the TEM modes depend on the forced
current I∞ and the scattering and reflection coefficients at both loads. The asymptotic
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approximation is valid if leaky and radiation modes can be neglected compared to the
TEM mode at the location l. As shown in Eq. (2.72) this is the case when

kh2

ln
(

2h
a

) � |l − l1| (3.30)

and

kh2

ln
(

2h
a

) � |l − l2| . (3.31)

Next, the reflection and scattering coefficients are generalized for long finite wires to
find an asymptotic description for the current.

3.4 Finite wire with arbitrary ports and a plane wave
excitation

Let there be a thin wire above a ground with arbitrary ports, i.e. with an arbitrary wire
trajectory and arbitrary lumped impedances, at both ends. The wire is excited by a plane
wave as depicted in Fig. 3.3. The goal is to find an analytic expression for the current on
the straight part in the middle of the wire. This is possible if the wire is long compared to
the wire height. Similar results as shown here are published in [12], [13], [50], [51]. But a
different approach is used.

θ

k

Einc

H inc

Z1

Z2

x3

x1

x2

l = −lp1

l = 0 l = L

l = L+ lp2

Figure 3.3: Finite wire above a ground with an arbitrary wire trajectory at the ports
and a uniform middle section.

The wire parameterization is

xc(l) =


xc1(l) for − lp1 ≤ l < 0

h x̂2 + l x̂3 for 0 ≤ l ≤ L
xc2(l) for L < l ≤ L+ lp2 .

(3.32)

The length of the straight horizontal wire part is denoted with L. The arbitrary trajectory
and the port length of port n are denoted with xcn and lpn respectively. The ports are
terminated by an impedance Z1 or Z2 respectively.

The wire is uniform in the middle section. The trajectory of the wire ports, i.e. for
l < 0 and l > L, is in general nonuniform. To fulfill the electric field boundary conditions
on the wire surface different kinds of modes apart from the TEM modes, e.g. transerve
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electric and magnetic modes, are excited at the ports. As for the infinite wire with lumped
elements it can be assumed that only the TEM modes are dominant in a far distance from
the ports. The other modes radiate away from the wire and are damped along the wire.

This is the same idea as for the infinite wire with two lumped loads. Therefore, for the
current in the asymptotic region the ansatz

I(l) = I∞e−jkθl + I∞
Υ1 + Υ2 e−jkθLΓ1 e−jkL

1− Γ1Γ2 e−2jkL e−jkl

+ I∞
Υ2 e−jkθL + Υ1Γ2 e−jkL

1− Γ1Γ2 e−2jkL e−jkL ejkl (3.33)

is made (see Eq. (3.28)). However, the reflection and scattering coefficients are different
as for the infinite wire. The coefficients depend on the wire trajectories at the ports xcn

and the loads Zn . They can include the influence of all modes at the port depending on
the chosen method to determine the coefficients. Hence, the task of finding an accurate
approximation of the current in the asymptotic region on a long wire is reduced to finding
the scattering and reflection coefficients for each isolated port.

After finding a general expression for the current on the finite wire in the asymptotic
region, it can be used to find the natural frequencies of the wire as well. The natural
frequencies sn can be determined by finding the roots of the denominator in Eq. (3.33),
i.e.

1− Γ1(sn)Γ2(sn) e−2snL/c = 0 . (3.34)

For the latter equation the physical frequency ω is expanded to the complex frequency s
by the substitution jω → s. In general the reflection coefficients are frequency dependent.
Therefore, the reflection coefficients of the ports determine the location of the natural
frequencies sn in the complex plane.

Equation (3.34) can be rearranged to yield

2
sn
c
L − 2πjn = ln

(
Γ1(sn)Γ2(sn)

)
. (3.35)

The reflection coefficients are in general complex, i.e. they have an amplitude and a phase
denoted with arg(Γ). Applying the logarithm on the complex reflection coefficient results
in the fixed point equation

sn =
ln
(∣∣Γ1(sn)Γ2(sn)

∣∣)
2L

c+ j
arg
(
Γ1(sn)Γ2(sn)

)
2L

c+ j
πnc

L
. (3.36)

The fixed point equation is solved in detail in Ch. 5.

3.5 Numerical evaluation of the scattering and reflec-
tion coefficients

There are different methods to determine the scattering and reflection coefficients. In the
following, one possible way to extract the coefficients from numerical simulation data is
described.

The coefficients are independent of the wire length L. Hence, a much shorter wire can
be used to find the coefficients as long as there is an asymptotic region.
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The current in the asymptotic region is given by Eq. (3.33). It has the form

I(l) = I∞e−jkθl + I1 e−jkl + I2 e−jkL ejkl (3.37)

with

I1 = I∞
Υ1 + Υ2 e−jkθLΓ1 e−jkL

1− Γ1Γ2 e−2jkL (3.38)

I2 = I∞
Υ2 e−jkθL + Υ1Γ2 e−jkL

1− Γ1Γ2 e−2jkL . (3.39)

The scattering coefficients can be expressed as a function of I1 and I2 by rearranging
Eqs. (3.38) and (3.39), i.e.

Υ1 =
I1 − I2Γ1 e−jkL

I∞
(3.40)

Υ2 =
I2 − I1Γ2 e−jkL

I∞
ejkθL . (3.41)

Therefore, if the amplitudes I1 and I2 and the reflection coefficients are known, the
scattering coefficients can be determined.

Next, the amplitudes are extracted from numerical data. Usually, the charge per unit
length q′ (ref. Eq. (2.108)) is determined by standard MoM algorithms as well. It holds
with Eq. (3.23)

cq′(l) = I∞
kθ
k

e−jkθl + I1 e−jkl − I2 e−jkL ejkl . (3.42)

Combining Eqs. (3.37) and (3.42) and solving for I1 and I2 results in

I1 =
1

2

(
I(l) + cq′(l)− I∞

(
1 +

kθ
k

)
e−jkθl

)
ejkl (3.43)

I2 =
1

2

(
I(l)− cq′(l)− I∞

(
1− kθ

k

)
e−jkθl

)
ejkL e−jkl . (3.44)

Finally, the reflection coefficients are sought. A different excitation is needed to extract
the reflection coefficients of each port separately. To determine Γ1, i.e. the reflection
coefficient of the left port in Fig. 3.3, the wire in Fig. 3.4 is used. The second port is left
open and a lumped voltage source is placed at the open end.

V

Z1

x3

x1

x2

Figure 3.4: Finite wire above ground for the simulation to extract the reflection coefficient
of the left port.

Since no plane wave excitation is present the current in the asymptotic region has to
be adapted. There is no forced response I∞. The lumped voltage source excites a TEM
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mode that travels to the left port and is reflected. Infinitely many re-reflections occur. To
get an expression for the current in the asymptotic region, the scattering coefficients in
Eq. (3.33) are adapted. It holds

I∞ΥV 1 = 0 (3.45)
I∞e−jkθLΥV 2 = IV 2 , (3.46)

where IV 2 is an unknown current that is excited by the lumped voltage source. Hence, the
current in the asymptotic region excited by the lumped voltage source is

IV (l) =
IV 2Γ1 e−jkL

1− Γ1ΓV 2 e−2jkL e−jkl +
IV 2

1− Γ1ΓV 2 e−2jkL e−jkL ejkl . (3.47)

The reflection coefficient of the right port is denoted with ΓV 2 and differs in general from
Γ2 . For the charge per unit length holds

cq′V (l) =
IV 2Γ1 e−jkL

1− Γ1ΓV 2 e−2jkL e−jkl − IV 2

1− Γ1ΓV 2 e−2jkL e−jkL ejkl . (3.48)

Solving Eqs. (3.47) and (3.48) for Γ1 yields

Γ1 =
IV (l) + cq′V (l)

IV (l)− cq′V (l)
e2jkl . (3.49)

Similarly, Γ2 can be obtained from simulation.
To conclude, the steps to obtain the scattering and reflection coefficients from numerical

simulation data are:

1. Simulation of isolated ports (see Fig. 3.4 for port 1) with lumped voltage source to
find Γ1 (with Eq. (3.49)) and Γ2 respectively.

2. Simulation of the original wire with plane wave excitation to find Î1 and Î2 with
Eqs. (3.43) and (3.44) and Υ1 and Υ2 with Eqs. (3.40) and (3.41).

The procedure makes clear that the reflection coefficients are in general independent of
the plane wave excitation. The plane wave is excluded in the simulation for Γ . However,
the scattering coefficients depend on the plane wave excitation, i.e. the angle of incidence.

In [13] an alternative method is shown. There the finite wire is simulated with two
different lengths L and the plane wave excitation. The results are comparable.

Example

The current on an example wire is approximated using the asymptotic approach to illustrate
its accuracy. The example wire is shown in Fig. 3.5. It consists of a horizontal part and a
riser with a connection to the ground at port 1. The wire is left open at port 2. The wire
parameterization is

xc(l) =

{
(h+ l) x̂2 for − h ≤ l < 0

h x̂2 + l x̂3 for 0 ≤ l ≤ L .
(3.50)

with the dimensions
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Wire radius a 0.5 mm
Height above ground h 10 mm
Horizontal length L 200 mm.

The excitation is a plane wave as described before with the following parameters

Angle of incidence θ 40◦

Amplitude of plane wave E0 1 V m−1

Wave number k π · 102 m−1

θ

k

Einc

H inc

x3

x1

x2

h

L

2a

Figure 3.5: Example wire above a ground with a short-circuit at port 1 and an open-circuit
at port 2.

The current along the wire is obtained using the MoM algorithm with 107 segments.
Figure 3.6 shows the current obtained with the asymptotic approach compared to the
numeric reference form the MoM algorithm. The scattering and reflection coefficients are
extracted from the current at l = 100 mm. As expected the asymptotic approach yields
inaccurate results at the wire ends (i.e. if l ≈ −h and l ≈ L). However,the asymptotic
approximation and the full wave solution are indistinguishable in a large distance from
the ports.

The coefficients can be extracted from any point lloc on the horizontal wire part.
Figures 3.7 and 3.8 show the dependence of the scattering and reflection coefficients as
a function of lloc . They are approximately constant in a large middle region of the wire.
The behavior of the coefficients is unpredictably at the ports. The region with almost
constant coefficients is the asymptotic region.

The wave length is about twice as large as the wire height above the ground. Hence,
the CTLT is not applicable. Therefore, the reflection coefficients for the short-circuit at
the left port and the open-circuit at the right port are not as expected from CTLT. In
Ch. 4 more details on the behavior of the reflection and scattering coefficients are shown.
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Figure 3.6: Complex current along the example wire to illustrate the accuracy of the
asymptotic approach.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

2

lloc/L

Υ

real part Υ1 imaginary part Υ1

real part Υ2 imaginary part Υ2

Figure 3.7: Complex scattering coefficients extracted from the current at different
locations along the wire.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

lloc/L

Γ

real part Γ1 imaginary part Γ1

real part Γ2 imaginary part Γ2

Figure 3.8: Complex reflection coefficients extracted from the current at different locations
along the wire.
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3.6 Analytic method to determine the scattering and
reflection coefficients

The scattering and reflection coefficients characterize each port in a far distance from the
port. Each port has to be viewed separately to determine the coefficients. An equivalent
problem is depicted in Fig. 3.9. The second port of the finite wire is replaced by an
infinite wire. This way, no re-reflections at the second port exist and only the scattering
or reflection of a TEM mode at port 1 can be observed. Since the wire is infinitely long in
only one direction it is a so called semi-infinite wire (ref. [13]).

θ

k

Einc

H inc

. . .

Z1

x3

x1

x2

l = −lp1

l = 0 l→∞

Figure 3.9: Semi-infinite wire with a plane wave excitation to determine the scattering
and reflection coefficient of port 1.

3.6.1 Scattering coefficient

The scattering coefficient Υ characterizes the amplitude of the TEM mode that is scattered
by the plane wave at the port. The TEM mode travels from the port to infinity along the
wire. The wire is parametrized as

xc(l) =

{
xc1(l) for − lp1 ≤ l < 0

h x̂2 + l x̂3 for 0 ≤ l <∞ .
(3.51)

In a far distance from the port, i.e. if l→∞, the asymptotic behavior of the current is

I(l) ∼ I∞e−jkθl + I∞Υ1 e−jkl . (3.52)

If an analytic expression for the current on the semi-infinite wire is known, it can be
asymptotically approximated. The scattering coefficient can then be picked up from the
asymptotic approximation.

The current on the semi-infinite wire satisfies the thin wire MPIE with the plane wave
excitation, i.e.

∂

∂l
Φ(l) + jk

Z0

4π

∞∫
−lp1

gA(l, l′)I(l′) dl′ = Etan(l) (3.53)

∞∫
−lp1

gΦ(l, l′)
∂

∂l′
I(l′) dl′ + jk

4π

Z0

Φ(l) = 0 (3.54)
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with

Etan =

{
Ep1(l) for − lp1 < l < 0

Etan(l) = 2jE0 sin(θ) sin(kh sin(θ)) e−jkθl for 0 ≤ l <∞ .
(3.55)

The electric field Ep1 depends on the trajectory of port 1. In Ch. 4 the thin wire MPIE
is approximately solved for the semi-infinite wire. The scattering coefficient is extracted
from the asymptotic approximation. Equation (3.53) does not include the influence of
the lumped impedance at l = −lp1. Hence, it is only valid for l > −lp1 . The lumped
impedance at the wire port is included in the boundary condition for the current as shown
in detail in Ch. 4.

3.6.2 Reflection coefficient

The semi-infinite wire shown in Fig. 3.9 is used to find the reflection coefficient. However,
the plane wave excitation is replaced by a lumped voltage source at l →∞ . The source
excites a TEM mode that travels towards the port. A TEM mode is reflected with an
amplitude proportional to Γ1. For the asymptotic approximation of the current on the
semi-infinite wire holds

I(l) ∼ IV ejkl + IV Γ1 e−jkl , (3.56)

where IV is an unknown amplitude.
To obtain the current for l > −lp1 , the homogeneous thin wire MPIE, i.e.

∂

∂l
Φ(l) + jk

Z0

4π

∞∫
−lp1

gA(l, l′)I(l′) dl′ = 0 (3.57)

∞∫
−lp1

gΦ(l, l′)
∂

∂l′
I(l′) dl′ + jk

4π

Z0

Φ(l) = 0 (3.58)

have to be solved. An approximation for the reflection coefficient is shown in detail in
Ch. 4. The influence of the lumped impedance at the wire end is included in the boundary
condition of the current as shown in Ch. 4 .

3.7 Scattering and reflection coefficients for piecewise
uniform wires

Let there be a wire with two long uniform parts that are separated by a lumped impedance
Z as depicted in Fig. 3.10. The lengths of the horizontal parts are L1 and L2 respectively.
Suppose there is an asymptotic region on each uniform part.

Each asymptotic region is bounded by one port and the lumped impedance in the
middle. The reflection coefficients at the ports Γ1 and Γ2 are unaltered by the lumped
impedance, due to the large lengths L1 and L2.

However, the effective TEM reflection coefficient at the lumped impedance is a combi-
nation of the reflection coefficient Γ0 of the isolated impedance, the transmission coefficient
T0 of the isolated impedance and the reflection coefficient of the following port respectively.
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x3
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L1 L2

Figure 3.10: Finite wire with a lumped impedance as an addition discontinuity in the
middle.

The idea of inifitely many re-reflections at each discontinuity is used again. For the
reflection coefficient at the lumped impedance seen from port 1 holds

Γ01 = Γ0 + T 2
0 e−2jkL2Γ2 + T 2

0 e−4jkL2Γ2
2Γ0 + T 2

0 e−6jkL2Γ3
2Γ2

0 + . . . (3.59)

= Γ0 +
T 2

0

Γ0

∞∑
n=1

(
Γ2Γ0 e−2jkL2

)n (3.60)

= Γ0 +
T 2

0 Γ2 e−2jkL2

1− Γ2Γ0 e−2jkL2
(3.61)

Similarly, it holds for the reflection coefficient on the other side

Γ02 = Γ0 +
T 2

0 Γ1 e−2jkL1

1− Γ1Γ0 e−2jkL1
(3.62)

The effective scattering coefficient at the lumped impedance can be determined in
a similar way. From the view of port one a TEM mode is scattered at the lumped
impedance in the middle with the scattering coefficient Υ0 . Moreover, a second TEM
mode is scattered at the second port with Υ2 . The scattered TEM modes are reflected,
transmitted and re-reflected in the second asymptotic region. The superposition of all
TEM modes gives the amplitude of the effective scattering coefficient. More specifically it
holds

Υ01 = Υ0 + Υ0T0Γ2 e−2jkL2 + Υ0T0Γ2
2Γ0 e−4jkL2 + Υ0T0Γ3

2Γ2
0 e−6jkL2 + . . .︸ ︷︷ ︸

Scattering at Z and reflections in second asymptotic region

+ Υ2 e−jkθL2T0 e−jkL2 + Υ2 e−jkθL2T0Γ0Γ2 e−3jkL2 + Υ2 e−jkθL2T0Γ2
0Γ2

2 e−5jkL2 + . . .︸ ︷︷ ︸
Scattering at port 2 and reflections in second asymptotic region

(3.63)

It follows

Υ01 = Υ0 +
Υ0T0

Γ0

∞∑
n=1

(
Γ0Γ2 e−2jkL2

)n
+ Υ2 e−jkθL2T0 e−jkL2

∞∑
n=0

(
Γ0Γ2 e−2jkL2

)n (3.64)
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and

Υ01 = Υ0 + T0
Υ0Γ2 e−2jkL2 + Υ2 e−jkθL2 e−jkL2

1− Γ0Γ2 e−2jkL2
. (3.65)

Similarly, the scattering coefficient seen from port 2 is

Υ02 = Υ0 + T0
Υ0Γ1 e−2jkL1 + Υ1 ejkθL1 e−jkL1

1− Γ0Γ1 e−2jkL (3.66)

For the current in the first asymptotic region (for 0� l� L1) holds

I(l) = I∞e−jkθl + I∞
Υ1 + Υ01 e−jkθL1Γ1 e−jkL1

1− Γ1Γ01 e−2jkL1
e−jkl

+I∞
Υ01 e−jkθL1 + Υ1Γ01 e−jkL1

1− Γ1Γ01 e−2jkL1
e−jkL1 ejkl (3.67)

and in the second asymptotic region (for L1 � l� L1 + L2) holds

I(l) = I∞e−jkθl + I∞
Υ02 + Υ2 e−jkθL2Γ02 e−jkL2

1− Γ02Γ2 e−2jkL2
e−jkθL1 ejkL1 e−jkl

+I∞
Υ2 e−jkθL2 + Υ02Γ2 e−jkL2

1− Γ02Γ2 e−2jkL2
e−jkθL1 e−jk(L1+L2) ejkl . (3.68)

In this example the discontinuity in the middle of the wire is symbolized by a lumped
impedance. However, other modifications are possible. In [52] a bend in the wire is
investigated using the asymptotic approach to yield good results. The difference is the
specific value of Γ0, T0 and Υ0. These parameters characterize the discontinuity in a far
distance where only the TEM mode is dominant.

3.8 Extension to multiconductor transmission lines
Up to this point only a single conductor above a ground is analyzed. In [53] a similar
derivation as in [13] is used to generalize the asymptotic approach to multiconductor
transmission lines above a ground. For the asymptotic approach to be applicable there
needs to be an asymptotic region, i.e. a region where all wires are uniform and in parallel.

The idea is that the reflection and scattering coefficients are matrices that include the
coupling between the wires. The derivation from above can be applied here as well. The
intermediate steps are omitted. The current in the asymptotic region is

I(l) = I∞e−jkθl +
(
1− Γ1Γ2 e−2jkL

)−1(
Υ1 + Γ1Υ2 e−jkθL e−jkL

)
I∞e−jkl

+
(
1− Γ2Γ1 e−2jkL

)−1(
Υ2 e−jkθL + Γ2Υ1 e−jkL

)
I∞e−jkL ejkl , (3.69)

where 1 is the unit matrix. The components of the vector I are the currents on each wire.
Similarly, I∞ contains the forced response on each wire.

The natural frequencies of multiconductor transmission lines are obtained by solving

det
(
1− Γ1(sn)Γ2(sn) e−2snL

)
= 0 (3.70)

and

det
(
1− Γ2(sn)Γ1(sn) e−2snL

)
= 0 . (3.71)

Sylvester’s determinant theorem [54] states that the two problems are equivalent. Hence,
the natural frequencies are the same for both TEM modes. More details are given in Ch. 5.
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3.9 Summary
The asymptotic approach is derived in this chapter. A different derivation than in [12],
[13] is presented. The asymptotic approach yields an analytic description of the current in
an asymptotic region, i.e. a uniform part, of a thin wire above a ground that is excited by
a plane wave. The current is characterized by TEM scattering and reflection coefficients
(see Eq. (3.33)). These coefficients depend on the wire trajectory and loads at the port.
In general these coefficients are frequency dependent and may include radiation and other
effects at the ports. The asymptotic approach is also applicable to piecewise uniform wires
and multiple wires with at least one long uniform section above a ground.

Moreover, an algorithm to determine the scattering and reflection coefficients from
numerical data is derived. The method is different than the one described in [13]. The
basic idea to analytically approximate the scattering and reflection coefficients is presented
in this chapter as well.
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Chapter 4

Iterative method

The iterative method is an analytic method to approximate the scattering and reflection
coefficients. The method is described in detail in this chapter. The MPIE for thin wires are
modified and perturbation theory is applied to find a current approximation for the semi-
infinite wire introduced in Sec. 3.6. An analytic solution for the scattering and reflection
coefficients is extracted from the current. The analytic approximation is compared to
numerical results for three example ports. Lastly, it is shown that the first order iterative
solution coincides with an approximation that is obtained with the induced EMF method.

4.1 Reflection coefficient
First, the reflection coefficient is approximated using the iterative method. The same
problem is solved in [55], [56] using the same method. A special case is solved in [13],
[15]. The idea is to solve the homogeneous MPIE for the semi-infinite wire (see Eqs. (3.57)
and (3.58)) for the current and to extract the reflection coefficient from the current
approximation with Eq. (3.56).

For the formulation of the iterative method it is convenient to introduce operators.
The first derivative of a function is expressed with the operator D̂, i.e.

D̂I(l) =
∂

∂l
I(l) . (4.1)

Furthermore, two integral operators are introduced

ĜΦI(l) =

∞∫
−lp

gΦ(l, l′)I(l′) dl′ (4.2)

ĜAI(l) =

∞∫
−lp

gA(l, l′)I(l′) dl′ , (4.3)

where lp denotes the length of the port trajectory (see Fig 3.9). The kernels gA and gΦ are
defined in Eqs. (2.36) and (2.41).

With these operators the MPIE for the semi-infinite wire become

D̂Φ(l) + jk
Z0

4π
ĜAI(l) = 0 (4.4)

ĜΦD̂I(l) + jk
4π

Z0

Φ(l) = 0 , (4.5)
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for l > −lp.
The operators ĜA and ĜΦ contain the information about the trajectory of the wire.

Hence, they depend on the specific problem at hand. In general the integral kernels are
quite complicated. They have a singular behavior for l = l′. Therefore, it is useful to
regularize these operators. For the regularization the operator Ĝ0 with

Ĝ0I(l) =

∞∫
−lp

g0(l − l′)I(l′) dl′ , (4.6)

where g0 is defined in Eq. (2.54), is used. The MPIE are extended to

D̂Φ(l) + jk
Z0

4π
Ĝ0I(l) = −jk

Z0

4π
[ĜA − Ĝ0]I(l) (4.7)

Ĝ0D̂I(l) + jk
4π

Z0

Φ(l) = −[ĜΦ − Ĝ0]D̂I(l) . (4.8)

Now the operators ĜA and ĜΦ are regularized since Ĝ0 has the same singular behavior
for l = l′. But Ĝ0 is easier to handle and independent of the specific port trajectory.

The MPIE for the semi-infinite wire are difficult to solve. The simplest example is a
straight horizontal wire above a ground. Then

ĜA = ĜΦ = Ĝ0 (4.9)

holds, due to the specific trajectory as is shown later in the first example on page 59.
However, even for this simple semi-infinite problem there is only a very complicated exact
solution available [57] that is difficult to extend to the general case. Hence, perturbation
theory is used to find an approximate solution. The idea is that the very difficult original
problem is split into infinitely many easier problems [58]. The easier problems are often
solved iteratively.

For low frequencies, i.e. large wavelengths compared to the transverse dimensions of
the wire, the classical transmission line theory (see Sec. 2.4) is an accurate approximation.
It should be the initialization of the iteration. Each following iteration should then include
more and more high frequency effects that were ignored before.

Hence, the regularized MPIE are extended even further in such a way that the
telegraphers equations can be found, i.e.

D̂Φ(l) + jkZCI(l) = jkZC

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(l)− jk

Z0

4π
[ĜA − Ĝ0]I(l) (4.10)

D̂I(l) + jk
1

ZC

Φ(l) =

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
D̂I(l)− 1

2 ln
(

2h
a

) [ĜΦ − Ĝ0]D̂I(l) , (4.11)

where the characteristic impedance ZC is defined in Eq. (2.69) and Îd denotes the identity
operator.

Equations (4.10) and (4.11) have the same form as the telegraphers equations (compare
with Eqs. (2.89) and (2.90)) but with sources on the right hand side. However, the
additional sources depend on the unknown current I .

The additional sources are negligible if the wire is uniform, the frequency is small, and
l is large. For uniform wires Eq. (4.9) is true. Then the last term on the right hand side
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of Eqs. (4.10) and (4.11) becomes zero. For small frequencies, i.e. if k ≈ 0, and for large l
holds [

Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(l) = I(l)− 1

2 ln
(

2h
a

) ∞∫
−lp1

g0(l − l′)I(l′) dl′ (4.12)

≈ I(l)− I(l)

2 ln
(

2h
a

) ∞∫
−lp1

g0(l − l′) dl′ (4.13)

≈ I(l)− I(l)

2 ln
(

2h
a

) ∞∫
−∞

g0(l − l′) dl′ (4.14)

= I(l)− I(l)

2 ln
(

2h
a

) g̃0(0) (4.15)

≈ 0 . (4.16)

The kernel g0 behaves approximately like a delta function if the wire radius a is small.
The kernel becomes very large for l = l′ compared to the values at l 6= l′ . This property is
used in Eq. (4.13) to move I in front of the integral. In Eq. (4.14) the lower limit of the
integral is extended. Again the idea is that the intervals where |l − l′| is much larger than
0 can be neglected and have no influence on the integral. The integral is then the Fourier
transform of g0 with kl = 0 (see Eq. (2.59)). Finally, k ≈ 0 is used to obtain Eq. (4.16).

Hence, it is shown, that the right hand side in Eqs. (4.10) and (4.11) are small for
uniform wires and small frequencies. Furthermore, this only holds if the distance to the
port is large, i.e. if l� 0 . This can be seen as an alternative derivation of the telegraphers
equations.

In the following the current dependent source terms are treated as small perturbations.
Formally, an auxiliary parameter χ is introduced. This parameter is equal to one but is
treated as a variable first

D̂Φ(l) + jkZCI(l) = χ

(
jkZC

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(l)− jk

Z0

4π
[ĜA − Ĝ0]I(l)

)
(4.17)

D̂I(l) + jk
1

ZC

Φ(l) = χ

([
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
D̂I(l)

− 1

2 ln
(

2h
a

) [ĜΦ − Ĝ0]D̂I(l)

)
. (4.18)

Furthermore, the current I and scalar potential Φ are represented as a power series with
the parameter χ, i.e.

Φ(l) =
∞∑
n=0

Φ(n)(l)χn (4.19)

I(l) =
∞∑
n=0

I(n)(l)χn (4.20)

Inserting this ansatz into Eqs. (4.17) and (4.18) and comparing the coefficients results
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in

D̂Φ(0)(l) + jkZCI
(0)(l) = 0 (4.21)

D̂I(0)(l) + jk
1

ZC

Φ(0)(l) = 0 (4.22)

and

D̂Φ(n)(l) + jkZCI
(n)(l) = jkZC

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(n−1)(l)

− jk
Z0

4π
[ĜA − Ĝ0]I(n−1)(l) (4.23)

D̂I(n)(l) + jk
1

ZC

Φ(n)(l) =

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
D̂I(n−1)(l)

− 1

2 ln
(

2h
a

) [ĜΦ − Ĝ0]D̂I(n−1)(l) (4.24)

for n > 0 .
Equations (4.21), (4.22), (4.23) and (4.24) form the basis for the iterative method. The

initialization I(0) is the classical transmission line result. The other iterations I(n) are the
solution of the telegraphers equations with an excitation that depends on the previous
iteration.

The coupled telegrapher’s equations can be decoupled to get a single equation for each
current iteration, i.e.

[D̂2 + k2]I(0)(l) = 0 (4.25)

and

[D̂2 + k2]I(n)(l) = − 1

2 ln
(

2h
a

)(D̂[ĜΦ − Ĝ0]D̂I(n−1)(l) + k2[ĜA − Ĝ0]I(n−1)(l)
)

+ D̂
[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
D̂I(n−1)(l) + k2

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(n−1)(l) (4.26)

for n > 0 .
Due to the l − l′ dependence of g0, the operator Ĝ0 and the differentiation D̂ can be

interchanged using integration by parts, i.e.

Ĝ0D̂I(l) =

∞∫
−lp

g0(l − l′) ∂
∂l′
I(l′) dl′ (4.27)

=
[
g0(l − l′)I(l′)

]∞
l′=−lp

−
∞∫
−lp

∂

∂l′
g0(l − l′)I(l′) dl′ (4.28)

= −g0(l + lp)I(−lp) +

∞∫
−lp

∂

∂l
g0(l − l′)I(l′) dl′ (4.29)

= −g0(l + lp)I(−lp) + D̂Ĝ0I(l) . (4.30)
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Hence it follows

D̂Ĝ0D̂I(l) = D̂2Ĝ0I(l)− I(−lp)D̂g0(l + lp) (4.31)

= Ĝ0D̂2I(l) + g0(l + lp)D̂I(l′)
∣∣∣
l′=−lp

. (4.32)

Using the latter identities for Eq. (4.26) results in

[D̂2 + k2]I(n)(l) = − 1

2 ln
(

2h
a

)(D̂[ĜΦ − Ĝ0]D̂I(n−1)(l) + k2[ĜA − Ĝ0]I(n−1)(l)
)

+

[
Îd − 1

2 ln
(

2h
a

)Ĝ0

]
[D̂2 + k2]I(n−1)(l)

− 1

2 ln
(

2h
a

)g0(l + lp)D̂I(n−1)(l′)
∣∣∣
l′=−lp

(4.33)

or

[D̂2 + k2]I(n)(l) = − 1

2 ln
(

2h
a

)(D̂[ĜΦ − Ĝ0]D̂I(n−1)(l) + k2[ĜA − Ĝ0]I(n−1)(l)
)

+ [D̂2 + k2]

[
Îd − 1

2 ln
(

2h
a

)Ĝ0

]
I(n−1)(l)

+
1

2 ln
(

2h
a

)I(n−1)(−lp)D̂g0(l + lp) . (4.34)

for n > 0 . Equations (4.26), (4.33) and (4.34) are equivalent.

Boundary conditions

The current on the semi-infinite wire has the asymptotic behavior described in Eq. (3.56).
When the reflection coefficient is represented as a power series as well, i.e.

Γ =
∞∑
n=0

Γ(n)χn , (4.35)

it follows
∞∑
n=0

I(n)(l)χn = I(l) (4.36)

∼ IV
(
ejkl + Γ e−jkl

)
(4.37)

= IV

(
ejkl +

∞∑
n=0

Γ(n)χne−jkl

)
. (4.38)

Comparing the coefficients results in the asymptotic behavior of each iteration I(n), i.e.

I(0)(l) ∼ IV
(
ejkl + Γ(0)e−jkl

)
(4.39)

I(n)(l) ∼ IV Γ(n)e−jkl for n > 0 . (4.40)

Equations (4.39) and (4.40) can be seen as boundary conditions for the current iterations
on the infinite wire end.
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A boundary condition at the wire port has to be found to solve the boundary value
problems. The lumped impedance is located at l = −lp and the current at l = −lp should
depend on the lumped terminal impedance Z . For the special cases Z = 0 and Z →∞
Eqs. (2.106) and (2.107) hold.

The impedance can be included as an additional current controlled voltage as in Sec. 3.1.
To obtain a boundary condition for the current the impedance is moved by a small ∆l > 0
along the wire. For the zeroth iteration holds

D̂Φ(0)(l) + jkZCI
(0)(l) = −ZI(∆l − lp)δ(l −∆l + lp) (4.41)

D̂I(0)(l) + jk
1

ZC

Φ(0)(l) = 0 (4.42)

Integrating both sides of Eq. (4.41) in a small interval from −lp to 2∆l − lp yields

Φ(0)(2∆l − lp)− Φ(0)(−lp) + jkZC

2∆l−lp∫
−lp

I(0)(l′) dl′ = −ZI(0)(∆l − lp) . (4.43)

The impedance was moved by ∆l to ensure that the delta function is not on the boundary
of the integration interval. The scalar potential at l = −lp, i.e. at the ground, is defined to
be 0. The remaining scalar potential is replaced by the current with Eq. (4.42). It holds

−ZC

jk
D̂I(0)(2∆l − lp) + jkZC

2∆l−lp∫
−lp

I(0)(l′) dl′ = −ZI(0)(∆l − lp) . (4.44)

Finally, the limit ∆l → 0 is taken. The integral vanishes since I(0) is continuous. The
boundary condition for the current at l = −lp is(

D̂ − jk
Z

ZC

Îd

)
I(0)(−lp) = 0 . (4.45)

The derivative D̂I(0)(−lp) is interpreted as the one-sided limit where l approaches −lp
from the right.

The boundary condition Eq. (4.45) is only valid for the zeroth iteration I(0). For the
higher order iterations a similar method is applied to Eqs. (4.23) and (4.24) to obtain a
boundary condition. It holds(

D̂ − jk
Z

ZC

Îd

)
I(n)(−lp) = D̂I(n−1)(−lp) . (4.46)

Zeroth iteration solution

After finding boundary conditions for each current iteration the second order differential
equation is solved. First, the zeroth iteration is sought. Equation (4.25) is solved with
Eqs. (4.39) and (4.45). The solution process is straight forward. It holds

I(0)(l) = IV
(
ejkl + Γ(0)e−jkl

)
, (4.47)

where

Γ(0) =
ZC − Z
ZC + Z

e−2jklp . (4.48)

As by design the zeroth iteration current and reflection coefficient coincide with the
classical result.
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First iteration solution

The first iteration current solution is obtained by solving Eq. (4.33) with the boundary
conditions Eqs. (4.40) and (4.46). Since the zeroth iteration satisfies Eq. (4.25) it holds

[D̂2 + k2]I(1)(l) = − 1

2 ln
(

2h
a

)(D̂[ĜΦ − Ĝ0]D̂I(0)(l) + k2[ĜA − Ĝ0]I(0)(l)
)

− 1

2 ln
(

2h
a

)g0(l + lp)D̂I(0)(−lp) (4.49)

The solution of the inhomogeneous ordinary differential equation is composed of a
solution of the homogeneous problem and a particular solution. The particular solution is
determined using the Green’s function

K(l, l′) = − 1

2jk

(
e−jk|l−l′| + Γ(0)e−jk(l+l′)

)
. (4.50)

The Green’s function K satisfies the homogeneous boundary condition(
∂

∂l
− jk

Z

ZC

)
K(l, l′)

∣∣∣
l=−lP

= 0 (4.51)

and it has the asymptotic behavior

K(l, l′) ∼ − 1

2jk

(
ejkl′ + Γ(0)e−jkl′

)
e−jkl for l� 0 . (4.52)

The solution of the homogeneous problem is (under consideration of the asymptotic
behavior in Eq. (4.40)) A(1)e−jkl with a constant A(1). Therefore, it holds for the first
iteration current

I(1)(l) = A(1)e−jkl − D̂I(0)(−lp)

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)g0(l′ + lp) dl′

− 1

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)
(
D̂[ĜΦ − Ĝ0]D̂I(0)(l′) + k2[ĜA − Ĝ0]I(0)(l′)

)
dl′ . (4.53)

The constant A(1) is determined by enforcing the boundary condition Eq. (4.46). Since
K satisfies the homogeneous boundary condition it holds(

D̂ − jk
Z

ZC

Îd

)
I(1)(l) =

(
D̂ − jk

Z

ZC

Îd

)
A(1)e−jkl = D̂I(0)(−lp) . (4.54)

It follows

A(1) = −IV
2ZZC

(ZC + Z)2
e−2jklp . (4.55)

Hence, the current from the first iteration is

I(1)(l) = −IV
2ZZC

(ZC + Z)2
e−2jklpe−jkl − D̂I(0)(−lp)

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)g0(l′ + lp) dl′

− 1

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)
(
D̂[ĜΦ − Ĝ0]D̂I(0)(l′) + k2[ĜA − Ĝ0]I(0)(l′)

)
dl′ . (4.56)

57



The reflection coefficient Γ(1) can be extracted from the current by analyzing I(1)

asymptotically for large l and comparing the result with Eq. (4.40). The asymptotic
behavior of K is given in (4.52). For a shorter notation the function

P (0)(l) = ejkl + Γ(0)e−jkl (4.57)

is introduced. With this it holds

I(0)(l) = IV P
(0)(l) (4.58)

K(l, l′) ∼ − 1

2jk
P (0)(l′) e−jkl . (4.59)

The asymptotic approximation of I(1) is then

I(1)(l) ∼ −IV
2ZZC

(ZC + Z)2
e−2jklpe−jkl + IV

D̂P (0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)g0(l′ + lp) dl′ e−jkl

+
IV e−jkl

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)
(
D̂[ĜΦ − Ĝ0]D̂P (0)(l′) + k2[ĜA − Ĝ0]P (0)(l′)

)
dl′. (4.60)

Comparing this result with Eq. (4.40) results in the first iteration reflection coefficient

Γ(1) = − 2ZZC

(ZC + Z)2
e−2jklp +

D̂P (0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)g0(l′ + lp) dl′

+
1

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)
(
D̂[ĜΦ − Ĝ0]D̂P (0)(l′) + k2[ĜA − Ĝ0]P (0)(l′)

)
dl′. (4.61)

Equation (4.61) can be simplified as described in App. B.2 to yield

Γ(1) =
Z2

C + Z2

(ZC + Z)2

E1(2jkh)− E1(jka) + ln
(

2h
a

)
ln
(

2h
a

) e−2jklp

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

{
∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′)

− k2P (0)(l′)[gA(l′, l′′) − g0(l′ − l′′)]P (0)(l′′)

}
dl′′dl′, (4.62)

where E1 is the exponential integral. It is defined as (see [59])

E1(x) =

∞∫
x

e−t

t
dt . (4.63)

The double integral cannot be solved in general since the kernels depend on the specific
trajectory of the wire at the port. For complex problems the double integration needs to
be solved numerically. However, due to the regularization with g0 a large portion of the
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integrals is zero. If l′ and l′′ are larger than 0 the kernels gΦ, gA and g0 agree and the
integrals vanish. Hence, it holds

∞∫
−lp

∞∫
−lp

. . . dl′′dl′ =

0∫
−lp

0∫
−lp

. . . dl′′dl′ +

0∫
−lp

∞∫
0

. . . dl′′dl′ +

∞∫
0

0∫
−lp

. . . dl′′dl′. (4.64)

Furthermore, the integrands are symmetric in l′ and l′′. Hence, the last two double
integrations in (4.64) are identical. It follows

Γ(1) =
Z2

C + Z2

(ZC + Z)2

E1(2jkh)− E1(jka) + ln
(

2h
a

)
ln
(

2h
a

) e−2jklp

− 1

4jk ln
(

2h
a

) 0∫
−lp

0∫
−lp

{
∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′)

− k2P (0)(l′)[gA(l′, l′′) − g0(l′ − l′′)]P (0)(l′′)

}
dl′′dl′

− 1

2jk ln
(

2h
a

) 0∫
−lp

∞∫
0

{
∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′)

− k2P (0)(l′)[gA(l′, l′′) − g0(l′ − l′′)]P (0)(l′′)

}
dl′′dl′. (4.65)

As shown in App. B.3 the integration in the infinite domain can be evaluated using the
exponential integral function E1. The remaining integrals can be solved quickly using
standard numerical methods.

The reflection coefficient is approximated using the zeroth and first iteration by setting
χ = 1 in Eq. (4.35), i.e.

Γ ≈ Γ(0) + Γ(1) . (4.66)

Higher order approximations are possible. However, as is shown in the following examples
the first order approximation already greatly improves the classical solution Γ(0).

The classical solution Γ(0) includes almost no information about the trajectory of the
wire at the port. Only a phase shift is included in Γ(0). The first iteration Γ(1) includes the
non-uniformity of the port. The information of the trajectory is included in the kernels gΦ

and gA. Furthermore, the first iteration includes a frequency dependency. In the following,
three examples illustrate the improved accuracy of the analytic solution.

Examples

The following dimensions are used for the three examples:

Wire radius a 0.5 mm
Height above the ground h 100 mm.

First, the wire is just left open. It holds lp = 0 and Z =∞ . The wire trajectory is

xc(l) = h x̂2 + l x̂3 . (4.67)
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The zeroth and first iteration are

Γ(0) = −1 (4.68)

Γ(1) =
E1(2jkh)− E1(jka) + ln

(
2h
a

)
ln
(

2h
a

) . (4.69)

Hence, it holds

Γ ≈ E1(2jkh)− E1(jka)

ln
(

2h
a

) . (4.70)

The analytic approximation is compared to a numerical reference in Fig. 4.1. The numerical
reference is obtained as described in Sec. 3.5. Excellent agreement can be observed even if
the wavelength λ is close to the wire height. The classical reflection coefficient is real and
constant. This approximation only holds if h/λ < 0.05 . After that the absolute value of
the real part decreases and the imaginary part differs from 0. This illustrates the limits
of the classical transmission line approximation. Furthermore, it can be seen that it is
sufficient to determine the first order iteration to get an excellent result.
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Figure 4.1: Complex reflection coefficient for the open-circuited port.

The second example is a transmission line with a ramp at the port that is terminated
with a short-circuit, i.e. it is simply connected to the ground plane. Figure 4.2 shows the
port. The port is mainly characterized by the angle α . The wire trajectory is parameterized
as

xc(l) =

{
(l sin(α) + h) x̂2 + l cos(α) x̂3 for − lp < l < 0

h x̂2 + l x̂3 for 0 ≤ l <∞
(4.71)

with the port length

lp =
h

sin(α)
. (4.72)
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. . .

α
x3

x1

x2

Figure 4.2: Semi-infinite wire with a ramp at the port that is terminated by a short
circuit.

The classical solution for this example is

Γ(0) = e−2jklp . (4.73)

The integrals in (4.65) need to be solved numerically for this example. However, due to
the regularization the computation time is negligible. Figure 4.3 compares the analytic
solution with a numerical reference. For this example α = 40◦ is chosen. Again, the
agreement is very good. For larger frequencies the solutions begin to deviate slightly.

The normalized classical solution, i.e. Γ(0)e2jklp , is just 1. The frequency dependence
that is seen in Fig. 4.3 strongly depends on the angle α. For a short-circuited port with a
different trajectory the reflection coefficient would have a different behavior.
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Figure 4.3: Complex reflection coefficient for the port with a ramp and a short-circuit.

The third example is a transmission line with a vertical riser. The wire can be seen
as a special case from the previous example with α = 0◦. It is matched, i.e. a terminal
impedance Z = ZC is chosen. Hence, the classical solution is

Γ(0) = 0 . (4.74)
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The wire trajectory is parameterized as

xc(l) =

{
(l + h) x̂2 for − h < l < 0

h x̂2 + l x̂3 for 0 ≤ l <∞ .
(4.75)

The integrals in (4.65) cannot be solved analytically for this example, as well. The results
are depicted in Fig. 4.4. The same behavior as for the first two examples can be seen
here, too. The classical result is only valid for very large wave lengths compared to the
wire height. The first iteration improves the overall approximation significantly. The
numerical reference is obtained by using a segment length of 2 mm. This is necessary to
model the lumped impedance in a very concentrated point. The lumped load can only
be included as a distributed impedance along a single wire segment in the NEC model.
An even smaller segment length would return problems since then the ratio of segment
length to segment radius becomes too small. Hence, the numerical model and the analytic
one do not completely agree and, therefore, slightly larger deviations as seen before are
present for this example.
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Figure 4.4: Complex reflection coefficient for the port with a riser and a load Z = ZC.

4.2 Scattering coefficient

Approximating the scattering coefficient can be done in a similar manner as for the
reflection coefficient. However, the tangential electric field that arises due to the plane
wave excitation has to be taken into account for the scattering coefficient. For the semi-
infinite wire Eqs. (3.53) and (3.54) need to be solved for the current. The scattering
coefficient can be extracted from the current using the asymptotic behavior in Eq. (3.52).
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The inhomogeneous MPIE for the semi-infinite wire in operator form are

D̂Φ(l) + jk
Z0

4π
ĜAI(l) = Etan(l) (4.76)

ĜΦD̂I(l) + jk
4π

Z0

Φ(l) = 0 . (4.77)

for l > −lp. The tangential electric field along the wire is

Etan(l) =

{
Ep(l) for − lp < l < 0

Ex3 e−jkθl for 0 ≤ l <∞
(4.78)

with

Ex3 = 2jE0 sin(θ) sin(kh sin(θ)) . (4.79)

The function Ep(l) depends on the trajectory of the port.
The inhomogeneous MPIE are extended in a similar form as for the reflection coefficient.

Furthermore, perturbation theory is applied as above to result in similar equations for
each current iteration. For the zeroth iteration it holds

[D̂2 + k2]I(0)(l) = −jk
1

ZC

Etan(l) . (4.80)

For the higher iterations Eq. (4.34) is used.
The boundary condition at l = −lp is the same as for the reflection coefficient, i.e.

Eqs. (4.45) and (4.46). The asymptotic behavior for l→∞, i.e. the second boundary
condition, is different. It holds

∞∑
n=0

I(n)(l)χn = I(l) ∼
∞∑
n=0

I(n)
∞ χn e−jkθl +

∞∑
n=0

Ψ(n)χn e−jkl , (4.81)

where I(n)
∞ and Ψ(n) are unknown coefficients. Hence, the asymptotic behavior for each

iteration is

I(n)(l) ∼ I(n)
∞ χn e−jkθl + Ψ(n)χn e−jkl (4.82)

for n ≥ 0 .
Furthermore, it holds the asymptotic behavior in Eq.(3.52). Equating the two asymp-

totic approximations (Eqs. (3.52) and (4.81)) results in

Υ =

∞∑
n=0

Ψ(n)χn

∞∑
n=0

I
(n)
∞ χn

. (4.83)

The Scattering coefficient Υ shall be developed into a power series as well. Then it holds

Υ =
∞∑
n=0

Υ(n)χn (4.84)
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with

Υ(0) =
Ψ(0)

I
(0)
∞

(4.85)

Υ(1) =
Ψ(1)

I
(0)
∞
− Ψ(0)I

(1)
∞

[I
(0)
∞ ]2

(4.86)

=
Ψ(1)

I
(0)
∞
−Υ(0) I

(1)
∞

I
(0)
∞

. (4.87)

As for the reflection coefficient only a first order approximation with χ = 1 is sought at
this point, i.e.

Υ ≈ Υ(0) + Υ(1). (4.88)

Next, the zeroth and first order approximation of the coefficient I(n)
∞ and Ψ(n) are

sought

Zeroth iteration

The zeroth iteration is obtained by solving Eq. (4.80) with the boundary conditions
Eqs. (4.45) and (4.82). Since the tangential electric field has a piecewise definition, the
following ansatz is made for the zeroth iteration current

I(0)(l) =

{
I

(0)
p (l) for − lp < l < 0

I
(0)
∞ e−jkθl + Ψ(0) e−jkl for 0 ≤ l <∞ .

(4.89)

Inserting this ansatz into Eq. (4.80) results in

I(0)
∞ = −jk

1

ZC

Ex3
k2 − k2

θ

. (4.90)

The current I(0)
p (l) is composed of a particular solution F1(l) and a solution of the

corresponding homogeneous problem. The following ansatz is made

I(0)
p (l) = F1(l) + A

(0)
θ

(
ejkl + Γ(0) e−jkl

)
(4.91)

with

F1(l) = −jk
1

ZC

0∫
−lp

K(l, l′)Ep(l′) dl′ , (4.92)

where the Green’s function K is defined in Eq. (4.50). The Green’s function and homoge-
neous solution are chosen such that the boundary condition Eq. (4.45) is fulfilled.

The current and the charge per unit length, i.e. the first derivative of the current, are
continuous along the wire. These two conditions are used at l = 0 to determine the two
constants A(0) and Ψ(0) . Before dealing with these constants the function F1(0) and its
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derivative are analyzed. It holds

F1(0) = −jk
1

ZC

0∫
−lp

K(0, l′)Ep(l′) dl′ (4.93)

=
1

2ZC

0∫
−lp

(
ejkl′ + Γ(0) e−jkl′

)
Ep(l′) dl′ (4.94)

=
1

2ZC

0∫
−lp

P (0)(l′)Ep(l′) dl′ (4.95)

and

1

jk

∂

∂l
F1(l)

∣∣∣
l=0

= − 1

ZC

0∫
−lp

∂

∂l
K(l, l′)

∣∣∣∣
l=0

Ep(l′) dl′ (4.96)

= − 1

2ZC

0∫
−lp

P (0)(l′)Ep(l′) dl′ (4.97)

= −F1(0) . (4.98)

With these identities it is straight forward to determine the constants A(0) and Ψ(0) from
the two continuity conditions. The sought constants are

A
(0)
θ =

1

2
(1− cos(θ))I(0)

∞ (4.99)

Ψ(0) =

(
1

2
(1− cos(θ))Γ(0) − 1

2
(1 + cos(θ))

)
I(0)
∞ +

1

2ZC

0∫
−lp

P (0)(l′)Ep(l′) dl′ . (4.100)

Inserting the result into Eq. (4.85) yields

Υ(0) =
1

2
(1− cos(θ))Γ(0) − 1

2
(1 + cos(θ)) +

1

2ZCI
(0)
∞

0∫
−lp

P (0)(l′)Ep(l′) dl′ . (4.101)

Inserting the current I(0)
∞ from Eq. (4.90) finally results in

Υ(0) =
1

2
(1− cos(θ))Γ(0) − 1

2
(1 + cos(θ))− k2 − k2

θ

2jk

0∫
−lp

P (0)(l′)
Ep(l′)

Ex3
dl′ . (4.102)

This concludes the derivation of the zeroth iteration scattering coefficient. The Green’s
function K cannot be used for the whole domain −lp < l <∞ . Due to the oscillatory
behavior of the integrand, the integral would not converge. Therefore, the current is split
into two domains for the ansatz in Eq. (4.89).

65



First iteration

Next, Eq. (4.34) is solved with the boundary conditions Eqs. (4.46) and (4.82) to determine
the first iteration current. It holds

[D̂2 + k2]I(1)(l) = [D̂2 + k2]

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(0)(l)

− 1

2 ln
(

2h
a

)(D̂[ĜΦ − Ĝ0]D̂I(0)(l) + k2[ĜA − Ĝ0]I(0)(l)
)

+
I(0)(−lp)

2 ln
(

2h
a

) D̂g0(l + lp) . (4.103)

Again, the Green’s function K is used to find a particular solution. The particular
solution fulfills the homogeneous boundary condition at l = −lp . A solution to the
homogeneous problem, i.e. A(1)

θ e−jkl, is needed to enforce the inhomogeneous boundary
condition Eq. (4.46). Hence, the first iteration current has the form

I(1)(l) = A
(1)
θ e−jkl +

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(0)(l)

− 1

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)
(
D̂[ĜΦ − Ĝ0]D̂I(0)(l′) + k2[ĜA − Ĝ0]I(0)(l′)

)
dl′

+
I(0)(−lp)

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)D̂g0(l′ + lp) dl′ . (4.104)

The unknown amplitude A(1)
θ can be determined by enforcing the boundary condition

Eq. (4.46). It follows

jk
Z

ZC

I(0)(−lp) =
∂

∂l
I(0)(l)

∣∣∣
l=−lp

(4.105)

=

(
∂

∂l
− jk

Z

ZC

)
I(1)(l)

∣∣∣
l=−lp

(4.106)

= −jkA
(1)
θ

(
1 +

Z

ZC

)
ejklp +

jk

2 ln
(

2h
a

) Z
ZC

Ĝ0I
(0)(−lp)

− D̂Ĝ0I
(0)(−lp)

2 ln
(

2h
a

) (4.107)

= −jkA
(1)
θ

(
1 +

Z

ZC

)
ejklp +

jk

2 ln
(

2h
a

) Z
ZC

Ĝ0I
(0)(−lp)

− Ĝ0D̂I(0)(−lp)

2 ln
(

2h
a

) − g0(0)I(0)(−lp)

2 ln
(

2h
a

) . (4.108)

The derivative and the operator Ĝ0 are interchanged as in Eq. (4.30). Rearranging the
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terms yields

A
(1)
θ =

Z

ZC + Z
e−jklp

(
1

2 ln
(

2h
a

)Ĝ0I
(0)(−lp)− I(0)(−lp)

)
− 1

jk

ZC

ZC + Z

e−jklp

2 ln
(

2h
a

)(Ĝ0D̂I(0)(−lp) + g0(0)I(0)(−lp)
)
. (4.109)

To get the coefficients I(1)
∞ and Ψ(1) the current in Eq. (4.104) is evaluated asymptotically

for large l . Details are presented in App. B.4. It holds

I(1)(l) ∼ I(0)
∞

(
1− g̃0(kθ)

2 ln
(

2h
a

))e−jkθl +
Z e−jklp

ZC + Z

(
1

2 ln
(

2h
a

)Ĝ0I
(0)(−lp)− I(0)(−lp)

)
e−jkl

+
I(0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

D̂P (0)(l′)g0(l′ + lp) dl′
]

e−jkl

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

{
∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′)

− k2P (0)(l′)[gA(l′, l′′)− g0(l′ − l′′)]P (0)(l′′)

}
dl′′dl′ e−jkl . (4.110)

where g̃0 denotes the Fourier transform of the kernel g0 as in Eq. (2.59).
Comparing the asymptotic current to Eq. (4.82) yields

I(1)
∞ = I(0)

∞

(
1− g̃0(kθ)

2 ln
(

2h
a

)) (4.111)

and

Ψ(1) =
Z e−jklp

ZC + Z

(
Ĝ0I

(0)(−lp)

2 ln
(

2h
a

) − I(0)(−lp)

)
+

I(0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

D̂P (0)(l′)g0(l′ + lp) dl′

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

{
∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
I(0)(l′′)

− k2P (0)(l′)[gA(l′, l′′) − g0(l′ − l′′)]I(0)(l′′)

}
dl′′dl′ . (4.112)

The integrals Ĝ0I
(0)(−lp) and

∫∞
−lp D̂P (0)(l′)g0(l′ + lp) dl′ can be solved analytically using

the identities in App. B.1. It holds

I(0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

D̂P (0)(l′)g0(l′ + lp) dl′ = A
(0)
θ

ZCZ

(ZC + Z)2
e−2jklp

+ A
(0)
θ

Z2
C

(ZC + Z)2

E1(2jkh)− E1(jka) + ln
(

2h
a

)
ln
(

2h
a

) e−2jklp

+ F1(−lp)
1

2

(
ZC

ZC + Z

E1(2jkh)− E1(jka)

ln
(

2h
a

) + 1

)
e−jklp (4.113)
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and
Z e−jklp

ZC + Z

(
Ĝ0I

(0)(−lp)

2 ln
(

2h
a

) − I(0)(−lp)

)
= −A(0)

θ

ZCZ

(ZC + Z)2
e−2jklp

+ A
(0)
θ

Z2

(ZC + Z)2

E1(2jkh)− E1(jka) + ln
(

2h
a

)
ln
(

2h
a

) e−2jklp

+
(
A

(0)
θ Γ(0) −Ψ(0)

) Z

ZC + Z

1

2 ln
(

2h
a

)[E1(jk(
√
l2p + 4h2 + lp))

− E1(jk(
√
l2p + a2 + lp))

]
+

Z

ZC + Z

1

2 ln
(

2h
a

){I(0)
∞

∞∫
0

g0(lp + l′) e−jkθl
′
dl′ e−jklp

− A(0)
θ

[
E1(jk(

√
l2p + 4h2 − lp))− E1(jk(

√
l2p + a2 − lp)) + 2 ln

(
2h

a

)]
e−2jklp

}

+
Z

ZC + Z

1

2 ln
(

2h
a

) 0∫
−lp

g0(lp + l′)F1(l′) dl′ − Z

ZC + Z
F1(−lp) e−jklp , (4.114)

where the exponential integral E1 is defined in Eq. (4.63).
Inserting the results into Eq. (4.112) finally yields

Ψ(1) = A
(0)
θ

Z2
C + Z2

(ZC + Z)2

E1(2jkh)− E1(jka) + ln
(

2h
a

)
ln
(

2h
a

) e−2jklp

+
(
A

(0)
θ Γ(0) −Ψ(0)

) Z

ZC + Z

1

2 ln
(

2h
a

)[E1(jk(
√
l2p + 4h2 + lp))

− E1(jk(
√
l2p + a2 + lp))

]
+

Z

ZC + Z

1

2 ln
(

2h
a

){I(0)
∞

∞∫
0

g0(lp + l′) e−jkθl
′
dl′ e−jklp

− A(0)
θ

[
E1(jk(

√
l2p + 4h2 − lp))− E1(jk(

√
l2p + a2 − lp)) + 2 ln

(
2h

a

)]
e−2jklp

}

+
Z

ZC + Z

1

2 ln
(

2h
a

) 0∫
−lp

g0(lp + l′)F1(l′) dl′ − Z

ZC + Z
F1(−lp) e−jklp

+ F1(−lp)
1

2

(
ZC

ZC + Z

E1(2jkh)− E1(jka)

ln
(

2h
a

) + 1

)
e−jklp

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

{
∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
I(0)(l′′)

− k2P (0)(l′)[gA(l′, l′′) − g0(l′ − l′′)]I(0)(l′′)

}
dl′′dl′ . (4.115)

As for the first iteration reflection coefficient, the integrand in the double integral vanishes
for a large part of the domain due to the regularization with g0. Parts of the remaining
double integral can be partially solved as in App. B.3 to speed up the numerical integration.
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With Eq. (4.111) the approximation for the scattering coefficient (see Eq. (4.88))
simplifies to

Υ ≈ Ψ(0)

I
(0)
∞

g̃0(kθ)

2 ln
(

2h
a

) +
Ψ(1)

I
(0)
∞

. (4.116)

This analytic approximation is used for the following examples.

Examples

The scattering coefficient and the reflection coefficient are closely related. The difference
is that the reflected TEM mode is excited by another TEM mode instead of the general
plane wave. Furthermore, there is no field coupling at the port to obtain the reflected wave.
Hence, the scattering coefficient should simplify to the reflection coefficient if θ = 180◦

and if Ep(l) = 0. From these two assumptions follows

kθ = −k (4.117)
F1(l) = 0 (4.118)

A(0) = I(0)
∞ (4.119)

Ψ(0) = Γ(0)I(0)
∞ (4.120)

I(0)(l) = I(0)
∞ P (0)(l) (4.121)

for −lp < l <∞. From this follows

Ψ(1) = I(0)
∞

Z2
C + Z2

(ZC + Z)2

E1(2jkh)− E1(jka) + ln
(

2h
a

)
ln
(

2h
a

) e−2jklp

− I
(0)
∞

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

{
∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′)

− k2P (0)(l′)[gA(l′, l′′)− g0(l′ − l′′)]P (0)(l′′)

}
dl′′dl′ (4.122)

= Γ(1)I(0)
∞ (4.123)

and

g̃0(kθ = −k) = 2 ln

(
2h

a

)
. (4.124)

Finally, it holds[
Ψ(0)

I
(0)
∞

g̃0(kθ)

2 ln
(

2h
a

) +
Ψ(1)

I
(0)
∞

]
θ=180◦,Ep=0

= Γ(0) + Γ(1) . (4.125)

This confirms the connection between the scattering and reflection coefficient approxima-
tion.

Next, three numerical examples that show the accuracy of the analytic approximation of
the scattering coefficient are presented. The zeroth and first iteration scattering coefficient
are compared to a numerical solution obtained with the algorithm from Sec. 3.5. The
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same dimensions as for the reflection coefficient examples are used in the following, i.e.
a = 0.5 mm and h = 100 mm.

First, the wire is left open. It holds lp = 0 and Z =∞ . Hence, it follows

Υ(0) = −1 (4.126)

Υ(1) =
E1(2jkh)− E1(jka)

2 ln
(

2h
a

) +
1

2 ln
(

2h
a

) ∞∫
0

g0(l′) e−jkθl
′
dl′ (4.127)

and

Υ ≈ E1(2jkh)− E1(jka)

2 ln
(

2h
a

) +
1

2 ln
(

2h
a

) ∞∫
0

g0(l′) e−jkθl
′
dl′ − g̃0(kθ)

2 ln
(

2h
a

) . (4.128)

This coincides with the solution in [13]. Figure 4.5 shows the comparison of the analytic
approximation with a numerical one. Here θ = 80◦ is chosen for the exciting plane wave.
The two solutions are practically indistinguishable. Moreover, the zeroth iteration solution
is illustrated. It coincides with the other solutions only for small frequencies. However,
the zeroth iteration is already quite accurate.
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Figure 4.5: Normalized complex scattering coefficient for the open-circuited port with
θ = 80◦.

For the second example a port with a ramp as for the reflection coefficient is
considered (see Fig. 4.2). The angle α is 40◦. The angle of incidence is θ = 50◦. Figure 4.6
shows the results. The accuracy of the first oder approximation is again excellent. The
zeroth order approximation is again already quite accurate.

For the last example the port with a vertical riser and a lumped load is considered.
The load is Z = 10ZC . The plane wave has an angle of incidence with θ = 50◦. The
comparison of the analytic and numerical results is shown in Fig. 4.7. Similar findings as
for the other examples can be seen here as well.
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Figure 4.6: Normalized complex scattering coefficient for the port with a ramp and a
short-circuit with θ = 50◦.
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Figure 4.7: Normalized complex scattering coefficient for the port with a riser and
Z = 10ZC with θ = 50◦.

4.3 Validation of the analytic current approximation

After showing examples for the isolated scattering and reflection coefficients the complete
current shall be analyzed for an example wire. The wire trajectory is shown in Fig. 4.8.
The wire dimensions are
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Wire radius a 0.5 mm
Height above the ground h 100 mm
Wire length L 1000 mm
Ramp angle α 40◦.

The loads at the ports are Z1 = 0.1ZC and Z2 = 10ZC . The plane wave has an angle of
incidence of θ = 50◦ and an amplitude of E0 = 1 V m−1.

θ

k

Einc

H inc

α
x3

x1

x2

Z1
Z2

h

L

2a

Figure 4.8: Finite wire with a ramp and a riser excited by a plane wave.

The analytic current is compared to a numerical reference in Fig. 4.9. The current
is evaluated in the middle of the wire, i.e. at x3 = L/2. The analytic solution uses the
asymptotic approach Eq. (3.33). The coefficients are determined using the first order
iterative method as described above.

It can be seen that the analytic approximation coincides with the numerical reference
in Fig. 4.9. The resonances of the analytic solution have the correct location and even the
correct height and width. Figure 4.10 shows the current approximation with the classical
coefficients Υ(0) and Γ(0). The resonances are found at the correct location but have an
incorrect height. This is due to the absence of radiation effects at the ports in the classical
transmission line theory. The first iteration, however, approximates these effects and
corrects the current amplitude in the right way.
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Figure 4.9: Complex current in the center of the wire obtained by using the asymptotic
approach and the iterative method.
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Figure 4.10: Complex current in the center of the wire obtained with the classical
transmission line theory.
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4.4 Extension to multiconductor transmission lines
The iterative method can be generalized for multiconductor transmission lines as explained
in the following. First, a solution for two wires above a ground is presented. After that a
general solution for the reflection coefficient matrix for many wires is shown.

4.4.1 Reflection coefficient matrix for two wires

Let there be two parallel semi-infinite wires with a similar trajectory above a ground as
shown in Fig. 4.11. The corresponding multicoductor MPIE are

∂

∂l
Φ(l) + jk

Z0

4π

∞∫
−lp

gA(l, l′)I(l′) dl′ = 0 (4.129)

∞∫
−lp

gΦ(l, l′)
∂

∂l′
I(l′) dl′ + jk

4π

Z0

Φ(l) = 0 . (4.130)

where the vector I contains the current on each wire and Φ describes the scalar potential
on each wire.

The components of the kernel matrices are

gΦ,mn(l, l′) =
exp(−jk

√
‖xc,m(l)− xc,n(l′)‖2 + a2)√

‖xc,m(l)− xc,n(l′)‖2 + a2

−
exp(−jk

√
‖xc,m(l)−

ˇ
xc,n(l′)‖2 + a2)√

‖xc,m(l)−
ˇ
xc,n(l′)‖2 + a2

(4.131)

gA,mn(l, l′) =
exp(−jk

√
‖xc,m(l)− xc,n(l′)‖2 + a2)√

‖xc,m(l)− xc,n(l′)‖2 + a2
τ̂m(l) · τ̂ n(l′)

−
exp(−jk

√
‖xc,m(l)−

ˇ
xc,n(l′)‖2 + a2)√

‖xc,m(l)−
ˇ
xc,n(l′)‖2 + a2

τ̂m(l) ·
ˇ
τ̂ n(l′) (4.132)

where xc,n denotes the trajectory of wire n and τ̂ n is the tangential unitvector respectively.
The mirrored vectors are marked with

ˇ
. A formal derivation can be found in [60].

. . .
. . .

x3

x1

x2

Figure 4.11: Semi-infinite multiconductor transmission line above a ground.

The kernel matrices in Eqs. (4.129) and (4.130) can be diagonalized. Then two
decoupled sets of MPIE appear: one for the common mode current and one for the
differential mode current. For the common mode current two currents of equal value with
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equal direction flow on both wires. For the differential mode the two currents on the wires
are equal in value but are different in the sign.

The two current modes can then be treated like the current for the single wire above a
ground. However, the kernels for the modes are

gA,±(l, l′) = gA,11(l, l′)± gA,12(l, l′) (4.133)
gΦ,±(l, l′) = gΦ,11(l, l′)± gΦ,12(l, l′) . (4.134)

The plus stands for the common mode and the minus for the differential mode. The
iterative solution for arbitrary ports can then be derived as described above for the single
wire case. For the special case of two open circuited wires above the ground it follows

Γ
(0)
± = −1 (4.135)

Γ
(1)
± =

E1(2jkh)− E1(jka)± (E1(jk
√
d2 + 4h2)− E1(jkd))

ln
(

2h
a

)
± 1

2
ln
(
1 + 4h2

d2

) , (4.136)

where the horizontal distance between the two wires is denoted with d .
The common mode and differential mode reflection coefficient are the same for the

zeroth iteration. But they are different from each other starting with the first iteration.
As shown in [61] the iterative solution coincides very well with a numerical reference.
Unfortunately, the differential mode reflection coefficient for the open circuit case is slightly
larger than 1 for small frequencies. This is not a physical solution. This small problem
only appears if no ohmic losses or losses in the loads are present, i.e. for the open circuit
and the short circuit cases. A general solution for this problem is up to this point not
known. However, to reduce the problem the second order iteration can be found for the
open circuit case. After a lengthy but straight forward derivation it holds

Γ
(2)
± =

1

2
Γ

(1)
± (3− Γ

(1)
± )− 1[

2 ln
(

2h
a

)
± ln

(
1 + 4h2

d2

)]2
∞∫

0

g0,±(l′)

{
[
E1

(
jk
(√

l′2 + 4h2 + l′
))
− E1

(
jk
(√

l′2 + a2 + l′
))

+ 2 ln

(
2h

a

)]
ejkl′

+
[
E1

(
jk
(√

l′2 + 4h2 − l′
))
− E1

(
jk
(√

l′2 + a2 − l′
))]

e−jkl′

±
{[

E1

(
jk
(√

l′2 + d2 + 4h2 + l′
))
− E1

(
jk
(√

l′2 + d2 + l′
))

+ ln

(
1 +

4h2

d2

)]
ejkl′

+
[
E1

(
jk
(√

l′2 + d2 + 4h2 − l′
))
− E1

(
jk
(√

l′2 + d2 − l′
))]

e−jkl′
}}

(4.137)

where

g0,±(l) =
exp(−jk

√
l2 + a2)√

l2 + a2
− exp(−jk

√
l2 + 4h2)√

l2 + 4h2

± exp(−jk
√
l2 + d2)√

l2 + d2
− exp(−jk

√
l2 + d2 + 4h2)√

l2 + d2 + 4h2
. (4.138)

The second order iteration reduces the problem but for some small frequencies the
nonphysical solution persists. This effect is also seen in the last example of Ch. 5.
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4.4.2 Reflection coefficient matrix for multiple wires

The iterative method is extended for many multiconductor transmission lines in [61]. The
solution is restricted to parallel wires that have the same trajectory but shifted in x1

direction as depicted in Fig. 4.11. The solution procedure is the same as for the single wire
but with matrices. Details can be found in [61]. It holds for the zeroth order reflection
coefficient matrix, i.e. the classical solution,

Γ(0) =
(
ZC −Z

)−1(
ZC +Z

)
e−2jklp (4.139)

with

ZC =
Z0

2π
Λ (4.140)

and

Λmn =
1

2
ln

(
1 +

4h2

d2
mn

)
. (4.141)

The distance in the x1 direction between wire m and wire n is denoted with dmn with the
special case dmm = a . The matrix Z is a diagonal matrix with the loads of each port on
the diagonal.

The first order reflection coefficient matrix is

Γ(1) =
1

2

(
Λ−1E + Γ(0)Λ−1E Γ(0)

)
− 1

4jk

∞∫
−lp

∞∫
−lp

{
∂

∂l′
P (0)(l′)Λ−1

[
gΦ(l′, l′′)− g0(l′ − l′′)

] ∂
∂l′′
P (0)(l′′)

− k2P (0)(l′)Λ−1
[
gA(l′, l′′)− g0(l′ − l′′)

]
P (0)(l′′)

}
dl′′dl′ (4.142)

with

P (0)(l) = 1 ejkl + Γ(0)e−jkl (4.143)

Emn = E1

(
jk
√
d2
mn + 4h2

)
− E1(jkdmn) + Λmn (4.144)

g0,mn(l) =
exp(−jk

√
l2 + d2

mn)√
l2 + d2

mn

−
exp(−jk

√
l2 + d2

mn + 4h2)√
l2 + d2

mn + 4h2
. (4.145)

The reflection coefficient matrix is approximated as

Γ ≈ Γ(0) + Γ(1) . (4.146)

If only one wire is present the matrix solution reduces to the scalar single wire solution.
An approximation for the scattering coefficient matrix is not yet found. However, it

should be possible to use the solution procedure for the single wire case for the multicon-
ductor case as well.
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4.5 Convergence and comparison to the induced EMF
method

The iterative method is an accurate extension to the classical transmission line solution as
shown by the above examples. The questions that naturally arise are:

1. Does the iteration converge to the exact solution?

2. Is the iterative method a unique procedure or is it related to other known methods?

The first question is partially answered in [26]. There, the iterative method is applied
for the infinite wire and indeed the iteration converges to the exact analytic solution. For
the semi-infinite case there is no general study on the convergence yet. However, the
higher order approximations get more and more complicated, i.e. more unsolvable integrals
appear. This makes the extension of the iterative method to the second or third order
not practical. Hence, at this point the examples from above shall suffice to illustrate
the superior accuracy of the iterative method compared to the classical transmission line
theory.

The second question is analyzed in [62] in great detail. There it is shown that the
induced EMF method results in the exact same analytic approximation for the reflection
coefficient as the first order iterative method. The induced EMF method is usually only
applied for finite wires in free space [63]–[66]. However, as shown in the following the
method can be applied to the semi-infinite wire above a ground as well.

The input impedance of a wire antenna is approximated using the induced EMF method.
Let there be two EM fields (E1,H1) and (E2,H2) that are connected via Maxwell’s
equations with the current densities J1 and J2 respectively. Then the Lorentz reciprocity
theorem [18] holds for any volume V , i.e.∫

∂V

(E1 ×H2 −E2 ×H1) · n̂ dS =

∫
V

E2 · J1 −E1 · J2 dx (4.147)

where n̂ is the normal unit vector on ∂V , the surface of V . Equation (4.147) can be applied
for the problem of the semi-infinite wire above a ground that is excited by a lumped
voltage source as shown in Fig. 4.12. The volume V is a half sphere that is bounded by
the ground plane. If the sphere is infinitely large, all radiated EM fields on the surface are
plane waves. Furthermore, the guided waves near the surface of the half sphere are TEM
modes since they are far away from any sources. For these fields holds

H1 =
n̂×E1

Z0

(4.148)

H2 =
n̂×E2

Z0

(4.149)

on ∂V . Moreover, on the ground plane surface holds

n×E1 = 0 = n×E2 . (4.150)

The surface integral in Eq. (4.147) vanishes with these conditions and it holds∫
V

E2 · J1 dx =

∫
V

E1 · J2 dx . (4.151)
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Figure 4.12: Semi-infinite wire with a lumped voltage source.

The current densities or electric fields in Eq. (4.151) can be chosen arbitrarily as long
as they satisfy Maxwell’s equations. For the semi-infinite wire in Fig. 4.12 with the voltage
source the first electric field and the corresponding current density on the thin wire with
radius a are

E1(l, a, φ) = V1δ(l − l1)τ̂ (l1) (4.152)

J1(l, r, φ) = I1(l)τ̂ (l)
δ(r − a)

2πa
, (4.153)

where the voltage source is located at l = l1 . A second EM field is obtained by assuming
a current along the wire that emits an electric field. It holds

J2(l, r, φ) = I2(l)τ̂ (l)
δ(r − a)

2πa
(4.154)

τ̂ (l) ·E2(l, a, φ) = −E(I2)
tan (l) . (4.155)

Inserting the two EM fields and current densities into Eq. (4.151) results in

V1I2(l1) = −
∞∫
−lp

E
(I2)
tan (l′)I1(l′) dl′ (4.156)

The goal of the induced EMF method is to find a useful equation for the input impedance
Zin at the location of the lumped voltage source. In general it holds

Zin =
V1

I1(l1)
. (4.157)

Inserting Eq. (4.157) into the definition of the input impedance results in

Zin = − 1

I1(l1)I2(l1)

∞∫
−lp

E
(I2)
tan (l′)I1(l′) dl′ . (4.158)

The current I2 can be chosen arbitrarily. There are two convenient possibilities, i.e.
I2 = I1 and I2 = I∗1 where ∗ denotes the complex conjugate. With these currents holds

Zin = − 1

[I1(l1)]2

∞∫
−lp

E
(I1)
tan (l′)I1(l′) dl′ (4.159)
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and

Zin = − 1

|I1(l1)|2

∞∫
−lp

E
(I∗1 )
tan (l′)I1(l′) dl′ (4.160)

respectively.
After showing that the method of induced EMF is applicable for the semi-infinite wire

the input impedance of the lumped voltage must be linked to the reflection coefficient at
the port. If the voltage source in Fig. 4.12 is placed far away from the port, it ’sees’ an
infinite wire and a reflected TEM mode coming from the port. It holds for large l, due to
the linearity of the problem,

I1(l) = V1Y∞(l − l1) + Γ
V1

2ZC

e−jkl1e−jkl (4.161)

With the admittance function for the infinite wire (see Eq. (3.6)). Inserting the current
into Eq. (4.157) (with l = l1) results in

Z−1
in = Y∞(0) + Γ

1

2ZC

e−2jkl1 . (4.162)

Rearranging the terms yields

Γ = 2ZC[Z−1
in − Y∞(0)] e2jkl1 . (4.163)

The classical transmission line current, i.e.

I1(l) =
V1

2ZC

(
e−jk|l−l1| + Γ(0) e−jk(l+l1)

)
, (4.164)

is used as a current to approximate the input impedance with Eq. (4.159). The emitted
tangential electric field on the wire surface E(I1)

tan can be determined with an equation
similar to Eq. (2.47). However, the load at the port Z has to be taken into account as
well. It holds

E
(I1)
tan (l) = −ZI1(−lp)δ(l + lp)

+
Z0

4πjk

(
∂

∂l

∞∫
−lp

gΦ(l, l′)
∂

∂l′
I1(l′) dl′ + k2

∞∫
−lp

gA(l, l′)I1(l′) dl′
)
. (4.165)

The integrals can be regularized as shown in detail in [62]. Inserting the results into
Eq. (4.159) yields after some straight forward mathematical manipulations

Z−1
in ≈

1

2ZC

(
1 + Γ(0) e−2jkl1

)2

1 + (Γ(0) − Γ(1)) e−2jkl1
. (4.166)

The latter result only holds if l1 tends to infinity, i.e. if the source is placed very far away
from the port. Applying polynomial division on the last fraction results in

Z−1
in ≈

1

2ZC

(
1 + Γ(0) e−2jkl1 + Γ(1) e−2jkl1 +

(
Γ(1) e−2jkl1

)2

1 + (Γ(0) − Γ(1)) e−2jkl1

)
. (4.167)
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The input impedance can be inserted into Eq. (4.163) to yield

Γ ≈ Γ(0) + Γ(1) +

(
1− 1

2ZCY∞(0)

)
e2jkl1 +

[Γ(1)]2 e−2jkl1

1 + (Γ(0) − Γ(1)) e−2jkl1
. (4.168)

Since the classical transmission line solution is used for the current, the admittance
Y∞ should be approximated in a similar way. It holds

Y∞(0) ≈ YTEM(0) =
1

2ZC

. (4.169)

and it follows

Γ ≈ Γ(0) + Γ(1) +
[Γ(1)]2 e−2jkl1

1 + (Γ(0) − Γ(1)) e−2jkl1
. (4.170)

The reflection coefficient should be independent of the location of the source l1 . Unfortu-
nately, the solution in Eq. (4.170) depends on l1 and the limit l1 →∞ is not unique. In
[62] small losses in form of a complex propagation constant γ are introduced to deal with
the problem. The substitution jk → γ is performed with <(γ) > 0 . No matter how small
the real part of γ is chosen the last addend in Eq. (4.170) vanishes for l1 →∞. It results

Γ ≈ Γ(0) + Γ(1) . (4.171)

This concludes the analyses. The first order iterative method and the method of
induced EMF result in the same approximation for the reflection coefficient. However, the
iterative method is a more systematic approach and could be extended to higher orders.
A few tricks have to be applied for the induced EMF method to work.

4.6 Summary
The iterative method to approximate the scattering and reflection coefficients is presented
in this chapter. The considered ports have an arbitrary wire trajectory and can be
terminated by a lumped impedance. The iterative approximation is initialized by the
classical transmission line solution. The derivation of the governing equations for each
iteration is based on the general MPIE for thin wires. The examples show that the first
iteration is sufficient to gain a significant improvement to the classical approximation.
The improved approximation considers high frequency effects and is, therefore, frequency
dependent and incorporates the wire trajectory.

Moreover, the single wire reflection coefficient approximation is extended to multiple
wires above a ground plane. The solution is restricted to wires with a similar trajectory,
i.e. the wires are parallel and have the same port shape. However, if there are no ohmic
losses present, the iterative solution for multiple wires yields nonphysical results. The
absolute value of the reflection coefficient becomes slightly larger than one. But the error
is marginal and vanishes as soon as a lumped load is present at the port. This inaccuracy
needs to be investigated further.

Lastly, it is shown that the well known induced EMF method can be used to yield the
exact same approximation for the reflection coefficient as the iterative method. This is
an interesting result since it shows that the iterative method is not completely unique.
However, some assumptions and tricks need to be applied to the induced EMF method to
get a reasonable result. The iterative method is more systematic in its derivation.

The convergence of the iterative method for the single wire reflection coefficient cannot
be proven up to this point. This should be part of future research.
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Chapter 5

Experimental validation of the analytic
and numerical approximations

The natural frequencies are used here as a parameter to validate the analytic and numerical
models that are described in the above sections by measurements. The measurement setup
is described and a complex radar cross section is introduced. The calibration procedure of
the measurement setup and the data processing are described in detail. Lastly, the natural
frequencies for finite wires above a ground plane are extracted from the measured complex
radar cross section and are compared to the analytic and numerical approximations.

5.1 A complex radar cross section

It is difficult to measure the current along a thin wire without influencing the measurement
result. Therefore, a different physical quantity needs to be measured to validate the
theoretical models. The current radiates an EM field. This EM field is composed of
the same natural frequencies as the current in the asymptotic region (see Sec. 2.6 and
[37]). Hence, the natural frequencies that are contained in the far field of the wire are
determined and compared to the theoretical results to validate the theory. This is achieved
by measuring a complex mono-static radar cross section as explained in the following.

Let there be a reflective object that is excited by a plane wave. The classical radar
cross section σ0 (see [65], [66]) is then defined as

σ0 = lim
R→∞

4πR2 Erad(R) ·E∗rad(R)

Einc ·E∗inc

, (5.1)

where Erad is the radiated electric field at a distance R from the object and Einc denotes
the electric field of the incident plane wave. The limit ensures that only far fields are
considered. The star ∗ denotes the complex conjugate. Hence, σ0 is a real and positive
number.

The concept of the classical radar cross section is generalized in [67], [68] to a complex
radar cross section σ. It holds

σ = lim
R→∞

4πR2 e2jkR Erad(R) ·Erad(R)

Einc ·E∗inc

. (5.2)

The scalar product in the numerator does not involve the complex conjugate field anymore.
Hence, a complex radar cross section arises that characterizes the object. Additionally,
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the phase has to be normalized as well to get rid of the R-dependence of the radiated field.
The classical radar cross section can be obtained from the complex one as

σ0 = |σ| . (5.3)

In general the radar cross section depends on the direction of the incident plane wave
and the direction in which the radiated field is measured. Furthermore, the polarization
of the excitation and response need to be taken into account. However, the natural
frequencies are constant properties of the object that are independent of the excitation
and polarization [37]. Hence, in the following only a single polarization and a mono-static
setup are considered. Mono-static setup means that the radiated field is evaluated in the
direction of the incident wave. The polarization and angle of incidents are chosen in such
way that as many natural frequencies as possible are excited. A more general treatment
can be found in [69], [70].

Since the radiated field is squared to obtain σ, the natural frequencies appear in the
second order. Hence, the square root has to be taken to get the original first order natural
frequencies, i.e.

√
σ = lim

R→∞

√
4πR ejkR

√
Erad(R) ·Erad(R)√

Einc ·E∗inc

(5.4)

is considered from now on.
The vector fitting algorithm from Sec. 2.6 can be used to extract the natural frequencies

from
√
σ. Next the measurement setup and calibration procedure are described.

5.2 Measurement setup and calibration procedure
The following measurement setup and calibration procedure was developed in collaboration
with Max Rosenthal (see [68]).

A vector network analyzer (VNA) is used to measure the complex radar cross section.
Figure 5.1 shows the complete setup. The VNA is connected via a coaxial cable with a
horn antenna. The antenna points in the direction of the target. The measurement is
conducted in an absorber-lined semi-anechoic chamber to reduce reflections from the walls
or the floor. The s11-parameter is measured. A photo of the setup is shown in Fig. 5.2.
The target is placed on a Rohacell table. The material has similar EM properties as air
and should not significantly interact with the target. The distance between the antenna
and the target is approximately 2 m.

The system needs to be calibrated to minimize systematic errors. A schematic error
model is shown in Fig. 5.3. The cable and VNA circuitry form one unit in the error model,
the antenna an additional one. The VNA measures the outgoing and incoming power
waves a′1,m and b′1,m and determines the input reflection coefficient

s′11,m =
b′1,m
a′1,m

. (5.5)

However, the desired result is the input reflection coefficient at the target, i.e. s11 with

s11 =
b1

a1

=

√
Erad(R) ·Erad(R)√

Einc ·E∗inc

. (5.6)
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VNA

Target

Figure 5.1: Mono-static setup to measure the complex radar cross section inside an
absorber-lined semi-anechoic chamber (top view).

Figure 5.2: Photo of the measurement setup with a Rohacell table for the target.

The cable and VNA can be calibrated using the standard procedure with an open,
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a′1,m a1,m a1

b′1,m b1,m b1

s′11,m VNA & cable antenna s11

Figure 5.3: Error model for the mono-static setup.

matched, and short circuited port. The VNA comes with a corresponding calibration kit
and automatically determines the error coefficients for the VNA and cable. As a result
the VNA automatically converts s′11,m to the input reflection coefficient at the antenna
port, i.e.

s11,m =
b1,m

a1,m

. (5.7)

Next, the antenna needs to be calibrated to convert s11,m to the desired s11 at the
target. The antenna can be treated as a two port that transforms the input voltage to a
far field and vice versa. Hence, it can be described with a scattering matrix Santenna with

Santenna =

(
e11 e12

e21 e22

)
. (5.8)

The error terms emn have the following physical interpretation:

1. e11 describes the input reflection coefficient of the antenna. It depends on the
measurement environment and the mismatch between the cable and the antenna.

2. e12 characterizes the transformation of an electric field at the location of the antenna
opening to a voltage at the antenna connector, i.e. b1 is transformed to b1,m if the
antenna was matched with the cable . It includes all antenna characteristics, e.g. the
directivity.

3. e21 is some kind of inverse of e12. It transforms the voltage at the antenna port to a
far field at the location of the target. Hence, it depends on the distance R between
the target and the antenna, i.e.

e21 = e21(R) ∝ R−1 exp(−jkR) . (5.9)

Furthermore, it includes all antenna characteristics as well.

4. e22 is the output reflection coefficient. It is assumed that the antenna does not reflect
a significant EM field in the direction of the target. Hence, it holds

e22 = 0 . (5.10)

In summary it follows(
b1,m

a1

)
=

(
e11 e12

e21(R) 0

)(
a1,m

b1

)
, (5.11)
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where R is the shortest distance from the antenna opening to the target. Expanding the
first row from Eq. (5.11) results in

b1,m = e11a1,m + e12b1 (5.12)
= e11a1,m + e12s11a1 . (5.13)

Inserting the second row from Eq. (5.11) into the latter equation finally yields

s11,m = e11 + s11e12e21(R) (5.14)

and

s11 =
s11,m − e11

e12e21(R)
. (5.15)

Two calibration measurements are needed to determine e11 and the R-dependent
product e12e21(R). After that Eq. (5.15) is used to determine the sought s11-parameter
from the measured s11,m. To determine e11 no target is placed in front of the antenna.
Then the expected sempty

11 is zero. It follows from Eq. (5.14)

sempty
11,m = e11 . (5.16)

This measurement has to be done before or right after the measurement with a target to
account for any small changes in the environment.

To determine the product e12e21(R) two identical antennas are placed in front of
each other as shown in Fig. 5.4. Both antennas are connected with the VNA and the
s21-parameter is measured. The distance between the two antenna openings is denoted
with Rcal . The corresponding error model is shown in Fig. 5.5. The two coaxial cables
and the VNA-ports are again calibrated using the standard method (open, match, short,
and thru) such that the VNA automatically converts s′21,m to

s21,m =
b2,m

a1,m

. (5.17)

The two antennas have the same two port scattering matrix Santenna as in Eqs. (5.8)
and (5.11) since they are identical. With this it holds

a1 = a1,me21(Rcal) (5.18)
b2,m = a1e12 (5.19)

and finally

s21,m(Rcal) = e12e21(Rcal) . (5.20)

Hence, the two antenna calibration method is used to determine the product e12e21(Rcal) .
However, the product depends on the distance Rcal. A range independent parameter scal

21,m

is obtained by normalizing the parameter with Rcal (see Eq. (5.9)). It holds

scal
21,m = s21,m(Rcal)

√
4πRcal ejkRcal (5.21)

= e12e21(Rcal)
√

4πRcal ejkRcal . (5.22)
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Figure 5.4: Photo of the two antenna calibration setup.

a′1,m a1,m

a1

b′2,m b2,m

s′21,m

VNA & cable 1 antenna 1

antenna 2VNA & cable 2

Figure 5.5: Error model for the two antenna calibration setup.

This calibration step has to be done only once since it can be assumed that the antenna
properties do not change over time.

The calibration measurements Eqs. (5.16) and (5.22) are inserted into Eq. (5.15). It
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holds

s11 =
s11,m − sempty

11,m

scal
21,m

√
4πR ejkR , (5.23)

where the product e12e21(R) is normalized in the same manner as in Eq. (5.22) to eliminate
the R-dependency.

Inserting Eqs. (5.6) and (5.23) into Eq. (5.4) finally results in

√
σ ≈

s11,m − sempty
11,m

scal
21,m

4πR2 e2jkR . (5.24)

The latter equation is only an approximation since a finite R is chosen.

Summary of the measurement procedure

The square root of the complex mono-static radar cross section can be measured as follows:

1. Two antenna measurement to determine scal
21,m (normalized)

1.1. Two port calibration of the cables and VNA (open, match, short, thru)

1.2. Measure s21,m and normalize with Rcal

2. Single antenna measurement to determine sempty
11,m and s11,m

2.1. One port calibration of the cable and VNA (open, match, short)

2.2. Measure sempty
11,m without the target

2.3. Place the target on the table at a distance R without changing the environment
to measure s11,m

3. Insert the three measurement results into Eq. (5.24) to obtain
√
σ

5.3 Validation of the measurement procedure and time
gating

In the following the described measurement procedure is tested with a metallic sphere as
a target. The measured complex radar cross section is compared to the exact analytic
solution. Time gating, a method to remove targets in the background, is described and
applied to eliminate additional random errors. But first an antenna calibration example is
presented.

5.3.1 Antenna calibration example

Two Rhode & Schwartz HF906 horn antennas are placed in front of each other as shown
in Fig. 5.4 . The distance between the two antennas is about 2 m or 3 m. The two
measurements are normalized and compared in Fig. 5.6 to show that the resulting scal

21,m

is independent of Rcal. The antenna does not radiate at lower frequencies. Hence, the
frequency range is 700 MHz to 8 GHz. The step size is 10 MHz and the used bandwidth is
100 Hz.
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The normalized results are very similar and the R-dependence of e21 (see Eq. (5.9))
can be confirmed. There is a difference between the two measurements in the interval
1 GHz to 2 GHz. This is most likely, due to a slightly different antenna alignment between
the two setups. In the following the 2 m calibration is used since the antenna placement is
the easiest at this distance.
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Figure 5.6: Normalized two antenna calibration measurement results for two different
distances.

Two alternative calibration methods are discussed in [68]. A ground plane or a metallic
sphere can be used to determine e12e21(R) . The ground plane acts as a mirror but is
difficult to position since the antenna has to point exactly perpendicularly onto the plane.
For the sphere there is an exact analytic reference that can be used for the calibration
procedure. Details are found in [68].

5.3.2 Complex radar cross section of a metallic sphere

There is an exact analytic solution for the complex radar cross section of the metallic
sphere in free space [41], [71]. Hence, a metallic sphere is used to validate the measurement
procedure.

A steel sphere is placed on the table in Fig. 5.2 at about 2 m distance from the antenna.
The sphere diameter is 0.2 m. Its conductivity is assumed to be perfect (infinite). The
calibrated measurement result and the analytic reference are depicted in Fig. 5.7. The
measured data is in the same order of magnitude as the analytic reference. The approximate
shape is similar as well. However, there seems to be a random disturbance.

One way to deal with the additional noise is to use the time gating technique. The
measured frequency signal, i.e.

ŝ11,m = s11,m − sempty
11,m , (5.25)

is transformed in the time domain using the inverse fast Fourier transform (iFFT) algorithm.
The reflected signal is clearly visible in Fig. 5.8 between 13 ns and 20 ns. This corresponds
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Figure 5.7: Calibrated measurement results of the metallic sphere compared to an
analytic reference.

to the time that the light needs to travel from the antenna to the object and back to the
antenna (13 ns correspond to about 4 m). Furthermore, there are disturbances that should
not be there. They are so called ghost objects that should be eliminated. This is done by
applying a window function. For simplicity a rectangular window is used here. But other
windows are possible.

The time gated signal is shown in Fig. 5.8 as well. The adjusted time signal is then
transformed to the frequency domain using the FFT. The result is shown in Fig. 5.9.
The calibrated and time gated measurement is much smoother and coincides very well
with the analytic response. The described time gating technique is used for all following
measurements.
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Figure 5.8: Inverse Fourier transform (absolute value) of the measured response of the
metallic sphere.
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Figure 5.9: Measurement results of the metallic sphere after calibration and time gating
compared to an analytic reference.

5.4 Natural frequencies
Finally, the natural frequencies sn of wires above a ground are extracted from the measured
complex radar cross section using the vector fitting algorithm from Sec. 2.6. The results
are used to verify the analytic and numerical methods. The numerical solution is obtained
with the contour integration method that is described in Sec. 2.6.

For the analytic solution a fixed point iteration is used to solve Eq. (3.36) with the
iterative solution for the reflection coefficient (see Eqs. (4.48) and (4.65)). The fixed point
iteration is initialized with the zeros iteration reflection coefficient, i.e.

s
(0)
n

c
=

ln
(∣∣Γ(0)

1

(
s

(0)
n

)
Γ

(0)
2

(
s

(0)
n

)∣∣)
2L

+ j
arg
(
Γ

(0)
1

(
s

(0)
n

)
Γ

(0)
2

(
s

(0)
n

))
2L

+ j
πn

L
. (5.26)

Inserting the zeroth iteration reflection coefficient Eq. (4.48) with jk → s
(0)
n /c into the

latter equation and rearranging the terms results in

s
(0)
n

c
=

ln
(∣∣ZC−Z1

ZC+Z1

ZC−Z2

ZC+Z2

∣∣)
2(L+ lp1 + lp2)

+ j
arg
(
ZC−Z1

ZC+Z1

ZC−Z2

ZC+Z2

)
2(L+ lp1 + lp2)

+ j
πn

L+ lp1 + lp2

, (5.27)

where L is the length of the horizontal part of the wire and lp1 and lp2 denote the arc
length of each port respectively. Hence, the total wire length is

Ltot = L+ lp1 + lp2 . (5.28)

Each following iteration m > 0 is obtained by using the previous natural frequency as
the frequency for the reflection coefficient, i.e.

s
(m)
n

c
=

ln
(∣∣Γ1

(
s

(m−1)
n

)
Γ2

(
s

(m−1)
n

)∣∣)
2L

+ j
arg
(
Γ1

(
s

(m−1)
n

)
Γ2

(
s

(m−1)
n

))
2L

+ j
πn

L
. (5.29)
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where Γ is approximated with Eq. (4.66). Usually three iterations are sufficient. Hence, in
the following the analytic approximation is

sn ≈ s(3)
n . (5.30)

Examples

Four examples are presented in the following. Thin wires are placed above a ground plane
that is sufficiently large and the square root of the complex radar cross section is measured
as described above. An example wire with an open and short circuit is shown in Fig. 5.10.
The wire is supported by a small piece of Rhoacell to ensure a constant height above the
ground. The width of the square copper ground plane amounts to 260 mm.

First, s11,m is measured with the wire above the ground. Next the wire is disconnected
from the ground plane without moving the ground plane. Then the reference measurement
sempty

11,m is conducted without the wire but with the ground plane. It is important that the
ground plane is located at the exact same location as before.

L

h

Figure 5.10: Photo of a wire with an open and a short-circuited port above a finite
ground.

The first example is a horizontal wire that is open at both terminals. A schematic of
the wire is shown in Fig. 5.11. The wire dimensions are a = 0.125 mm, h = 10 mm and
L = 151.5 mm. The calibrated and time gated frequency response is depicted in Fig. 5.12.
Furthermore, the fit, that is obtained by using the vector fitting algorithm, is plotted as
well. The fit agrees very well with the measured response. The vector fitting algorithm
only works if the correct R is used for Eq. (5.24). One way to deal with this is a trial and
error method as described in [72].

Finally, the extracted natural frequencies are shown in Fig. 5.13. The measured,
numerical and analytic natural frequencies are close to each other. The analytic results
(asymptotic approach combined with the iterative method) agree very well with the
measured natural frequencies and the numerical results. Additionally, the classical natural
frequencies are plotted to illustrate the improvement of the analytic method. They are
obtained by combining the asymptotic approach with the classical transmission line theory
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Figure 5.11: Horizontal wire with two open ports above a finite ground.
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Figure 5.12: Calibrated and time gated measurement results of the wire with two open
ports with the corresponding vector fitting fit.

for the reflection coefficient, i.e. they are determined with Eq. (5.27). For the considered
example it holds

Γ
(0)
1 = Γ

(0)
2 = −1 . (5.31)

Hence, it follows for the classical natural frequencies

s
(0)
n L
πc

= jn . (5.32)

The classical natural frequencies are purely imaginary. This is due to the lack of losses
in the classical transmission line theory. This is yet another example to illustrate the
advantage of the iterative method compared to the classical transmission line theory (see
also Sec. 4.1).
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Figure 5.13: Natural frequencies of the wire with two open ports.

The second example is a horizontal wire which is open at one end and short circuited
with a vertical riser at the other end. The wire is depicted in Fig. 5.10 and has the
dimensions a = 0.125 mm, h = 10 mm and L = 101 mm. Figure 5.14 shows the measured
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Figure 5.14: Calibrated and time gated measurement results of the wire with an open
and a short-circuited port with the corresponding vector fitting fit.

frequency response and the corresponding fit. The natural frequencies are illustrated in
Fig. 5.15. The same observations as for the first example can be made here as well. The
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classical solution is obtained with

Γ
(0)
1 = −1 (5.33)

Γ
(0)
2 = 1 . (5.34)

It follows

s
(0)
n (L+ h)

πc
= j

(
n− 1

2

)
. (5.35)
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Figure 5.15: Natural frequencies of the wire with an open and a short-circuited port.

For the third example the wire is short circuited with vertical risers at both ends. The
wire dimensions are a = 0.125 mm, h = 10 mm and L = 152 mm. The frequency response
and natural frequencies are shown in Figs. 5.16 and 5.17 respectively. The theoretical and
measured results coincide very well. However, the natural frequency at =

(
sLtot
πc

)
≈ 7 is

not detected by the measurement. This is due to the fact that not all natural frequencies
are excited by the specific plane wave and not all modes radiate in the direction of the
antenna. This is also visible in Fig. 5.16. The resonance at about 6 GHz is too small to be
relevant for the vector fitting algorithm.

The last example is a multiconductor transmission line. Two parallel wires are
placed above the ground as depicted in Fig. 5.18. The two wires have the same radius
a = 0.125 mm, height above the ground h = 10 mm and wire length L = 150 mm. The
constant distance between the two wires is d = 10 mm. Both wires are left open at
the ends. The measured complex radar cross section is shown in Fig. 5.19 alongside
the fit. The natural frequencies are plotted in Fig. 5.20. The agreement between the
measurement, numerical simulation and analytic results is again very good. However, there
is an additional measured natural frequency with =

(
sLtot
πc

)
≈ 1 that does not seem to be

right. This is most likely due to the noise at low frequencies. The vector fitting algorithm
finds an additional resonance to compensate for the rapid changes of the amplitude.

The analytic natural frequencies are obtained using the second order iterative method
as described in Sec. 4.4.1. The analytic results for the two wire line are compared to the
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Figure 5.16: Calibrated and time gated measurement results of the wire with two
short-circuited ports with the corresponding vector fitting fit.
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Figure 5.17: Natural frequencies of the wire with two short-circuited ports.

analytic results of a single wire line with the same dimensions in Fig. 5.21. Each single
natural frequency of the single wire is split into two natural frequencies with a similar
imaginary part. This splitting is characteristic for coupled resonant systems as further
explained in [61], [73]. The behavior is also visible in the frequency response in Fig. 5.19.
For the higher order resonances there is a sharp peak right next to a relatively wide one.

The two branches correspond to the differential and common mode current respectively.
For the common mode the currents on both wires are equal and have the same sign. Hence,
from a far distance the two wire line acts as a thick single wire line above a ground and
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can radiate very well. Hence, the damping of the current over time is relatively large. On
the other hand, the differential mode current is equal on both wires but with an opposite
sign. The result is that the two radiated fields cancel each other out in many directions.
Consequently not much power is radiated from the differential mode current. Hence, the
damping of the current over time is not as large as for the common mode. This explains
the different real parts of the differential and common mode natural frequencies [61].

The iterative solution for two wires fails to produce valid differential mode natural
frequencies with a small imaginary part (see Fig. 5.21). This is due to the nonphysical
behavior of the differential mode reflection coefficient as described in Sec. 4.4.1. This
problem remains unsolved.

In conclusion, the measurement results validate the analytic and numerical models.
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Figure 5.18: Two horizontal wires with two open ports above a finite ground.

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

f in GHz

|√
σ
|i
n
m

calibrated and time gated
Vector fitting with N = 28

0 1 2 3 4 5 6 7 8
−180

−90

0

90

180

f in GHz

a
rg

(√
σ

)
+
π
in
◦

Figure 5.19: Calibrated and time gated measurement results of the two wires with two
open ports with the corresponding vector fitting fit.
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Figure 5.20: Natural frequencies of the two wires with two open ports.
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Figure 5.21: Comparison of the analytic natural frequencies for two wires and a single
wire with the same dimensions.

5.5 Summary
The analytic and numerical models are compared to measurement results. A method
to measure the natural frequencies of passive targets in frequency domain is described.
This includes the measurement setup and a calibration procedure. A VNA and a horn
antenna are used to measure the reflected field of a target that is excited by an EM field
of the antenna. Time gating is applied to increase the accuracy of the measurement. The
calibrated and time gated frequency response is fitted using the vector fitting algorithm
to extract the natural frequencies. The analytic and numerical results coincide very well
with the measurements.
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Chapter 6

Summary and outlook

In the following the results and methods are summarized. Furthermore, an outlook and
possible extensions are described.

6.1 Summary

Transmission lines play an important part for many applications. A widely used class of
transmission lines are thin wires. The aim of this work is to increase the understanding
of the propagation of waves on thin wires above a perfect electric ground plane. Hence,
analytic and semi-analytic methods are used to describe the field coupling to thin wires. The
asymptotic approach and the iterative method are extended for arbitrary port geometries
and lumped loads.

First, the asymptotic approach for thin wires is derived to analytically describe the
current on a wire that arises due to a plane wave excitation. The infinite wire above
a ground plane acts as a starting point for the derivation. An exact analytic solution
is available and the TEM mode, which appears due to the scattering at discontinuities,
is identified as the dominant mode in a large distance from any discontinuity. Using
general scattering and reflection coefficients for each port, a TEM mode approximation for
the current in the middle of a finite wire is generalized. To get the analytic expression,
the method of infinite reflections is applied. This derivation is an alternative to the one
presented in [12], [13], where the asymptotic approach is introduced for thin wires. The
solution is only valid far away from the ports and other discontinuities, i.e. on a straight
part of the wire. The general scattering and reflection coefficients may include high
frequency effects, e.g. radiation effects at the ports. This is a big advantage compared to
the classical transmission line theory.

A novel method to extract the scattering and reflection coefficients from a MoM solution
is derived. The validity of the asymptotic approach is confirmed with numerical examples.
Furthermore, the examples show that the scattering and especially the reflection coefficients
are in general complex. This shows again the advantage of this general approach to the
classical transmission line theory.

The iterative method is an analytic alternative to determine the scattering and reflection
coefficients. The idea is to separately look at each isolated port. The other port is
substituted by a uniform semi-infinite wire. This removes the effect of multiple reflections
due to the other port. The scattering and reflection coefficients can be determined by
solving the mixed potential integral equations for the current on the semi-infinite wire and
by then comparing its solution to the proposed asymptotic behavior of the current. The
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iterative method is an approximate analytic method to solve the mixed potential integral
equations. The iteration is initialized by the classical transmission line solution. Each next
iteration uses the previous one as an excitation. The iterative method is introduced in [13],
[15]. However, in this thesis it is generalized to arbitrary wire trajectories at the port and
lumped loads. In [13], [15] only the simplest special case of the straight, open-circuited
wire is considered. Furthermore, the solution in this thesis is regularized to allow for a
fast numerical evaluation of the remaining integrals. The iteration is terminated after the
first iteration. Higher order iterations become quite complicated and cannot be quickly
evaluated. Numerical examples show that the analytic approximation and a numerical
reference coincide very well. Moreover, the examples show the improvement compared
to the classical transmission line theory. For small frequencies, i.e. large wavelengths
compared to the wire height above the ground, the iterative solution and the classical one
coincide. But with increasing frequency the advantage of the iterative method becomes
clearly visible. The difference between the classical solution and numerical reference
becomes large.

Furthermore, the iterative method is extended to multiconductor transmission lines.
For two wires parallel above a ground the kernel matrices can be diagonalized. As a
result two decoupled currents, i.e. the common and differential mode current, appear. The
problem is reduced to the single wire solution for each current mode with modified kernels.
Applying the diagonalization procedure for more than two wires above a ground proves to
be challenging or even impossible. However, the iterative method can also be extended to
matrices. The solution is presented in this thesis as well.

The solution of the iterative method is, moreover, compared to the induced EMF
method. First, it is shown that the induced EMF method is applicable for the semi-infinite
wire. Then the reflection coefficient is approximated by using the induced EMF method.
The classical transmission line current is assumed for the approximation. It is shown that
the result coincides with the first order iterative approximation.

Lastly, the analytic and numerical results are compared to experimental data. Since a
direct current measurement would distort the result, the complex radar cross section of
wires above a ground is measured. The measured complex radar cross section is then used
to determine the natural frequencies by fitting the data with the well known vector fitting
algorithm. The natural frequencies play an important part in the context of the singularity
expansion method (SEM). They characterize each system and they are independent of the
excitation, i.e. they only depend on the geometry and material properties of each object.
The asymptotic approach yields a fixed point equation for the natural frequencies of the
wires. The natural frequencies depend only on the wire dimensions and the reflection
coefficients. There is a very good agreement between the measured, analytic and numerical
natural frequencies. The analytic and numerical models are validated by the measurements.

6.2 Outlook
A problem arises for the reflection coefficient matrix for two wires if there are no ohmic
losses present as shown by the examples. Then the reflection coefficient for the differential
mode becomes slightly larger than 1 for small frequencies. This is a nonphysical result for
the passive port. It is not clear why the iterative method yields a nonphysical solution.
This problem remains open and needs to be investigated in more detail.

Furthermore, the iterative method is extended for the reflection coefficient matrix. It
could be used for the scattering coefficient matrix as well to complete the analysis of the
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plane wave coupling to multiconductor transmission lines in the future.
The iterative method converges to the exact solution if the infinite wire is considered.

Unfortunately, a complete analysis of the convergence for the semi-infinite problem is not
yet give and is part of future work.

The measurement setup might be improved. Some information of the signal is lost due
to the time gating procedure. This problem could be reduced by using a bi-static setup,
i.e. by separating the sending and receiving antenna instead of using one single antenna
and VNA port. First experiments suggest that the noise that is seen in Fig. 5.7 becomes
much smaller by decoupling the sending and receiving port and antenna. Then the time
gating procedure could be omitted and the original measured signal could be used for the
fit to extract the natural frequencies.

The natural frequencies play an important role in validating the analytic and numerical
models. However, only the first layer of the natural frequencies is considered. The example
in Fig. 2.11 shows that there are multiple layers of natural frequencies. Similarly, the
perfect electric sphere has multiple layers of natural frequencies as well [37]. The layers are
almost parallel to each other. But the asymptotic approach does not give any information
about the higher order layers. It is not clear why this is the case. How can one find an
analytic approximation of the natural frequencies that make up the higher order layers?
The numerous analytic approximations in [46] approximate only the first layer as well.

There is an exact analytic solution for the current on the straight infinite wire that is
excited by a plane wave or a lumped voltage source. This solution gives a formal derivation
of the dominant mode that is used for the asymptotic approach for partially straight wires
above a ground plane. The integral kernels for the straight infinite wire above the ground
depend on the difference l − l′ where l and l′ denote the arc length of the wire and its
mirror. Hence, a convolution is present and the spacial Fourier transform can be applied
on the mixed potential integral equations to find an algebraic equation. The current is
then found with the inverse Fourier transform after simple mathematical manipulations.
This exact approach can be generalized to other infinite or periodic wire structures. The
only requirement is that the corresponding integral kernels depend on the difference l − l′
as well. Two novel theorems that make sure which wire structures fulfill the requirement
are presented in App. A.2, e.g. the twisted pair, a helix with a straight wire on its axis.
As a next step the corresponding Fourier transform of the kernels needs to be found and
the current can be obtained as for the straight infinite wire. Hopefully, a dominant mode
can be extracted and the asymptotic approach could be extended for more complex wire
structures as well.
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Appendix A

Wires

A.1 Local coordinate system along smooth wires
The local coordinate system that is introduced at the beginning of Sec. 2.2 is analyzed
in more detail in this appendix. The differential operators and the infinitesimal volume
element are derived for the new coordinate system using the general method described in
[20]. The starting point are Eq. (2.28) and the Frenet formula (see [21] for a derivation),
namely

∂

∂l

τ̂ (l)
η̂(l)

β̂(l)

 = ξ(l)

 0 κ(l) 0
−κ(l) 0 τ(l)

0 −τ(l) 0

τ̂ (l)
η̂(l)

β̂(l)

 , (A.1)

where κ is the curvature of the trajectory and τ is the so called torsion.
First, the covariant basis vectors u1,u2,u3 are derived for the new coordinate system.

It holds

u1(l, r, φ) =
∂

∂l
x(l, r, φ) = ξ[1− rκ cos(φ)]τ̂ + ξrτ φ̂ (A.2)

u2(l, r, φ) =
∂

∂r
x(l, r, φ) = r̂ (A.3)

u3(l, r, φ) =
∂

∂φ
x(l, r, φ) = rφ̂ (A.4)

where the auxiliary unit vectors are defined as

r̂ = cos(φ)η̂ + sin(φ)β̂ (A.5)

φ̂ = − sin(φ)η̂ + cos(φ)β̂ . (A.6)

The vectors τ̂ , η̂ and β̂ are orthonormal.
Now the components of the symmetric covariant metric tensor can be determined, i.e.

u11 = u1 · u1 = ξ2[(1− rκ cos(φ))2 + r2τ 2] (A.7)
u12 = u1 · u2 = 0 (A.8)
u13 = u1 · u3 = ξr2τ (A.9)
u22 = u2 · u2 = 1 (A.10)
u23 = u2 · u3 = 0 (A.11)
u33 = u3 · u3 = r3 . (A.12)
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The resulting covariant metric tensor in matrix notation is

U jk =

ξ2[(1− rκ cos(φ))2 + r2τ 2] 0 ξr2τ
0 1 0

ξr2τ 0 r2

 . (A.13)

The contravariant metric tensor U jk is the inverse of the covariant metric tensor. It
holds

Gjk =
1

u

 r2 0 −ξr2τ
0 1 0

−ξr2τ 0 ξ2[(1− rκ cos(φ))2 + r2τ 2]

 , (A.14)

where u is the determinant of U jk, i.e.

u = ξ2r2[1− rκ cos(φ)]2 . (A.15)

The contravariant metric tensor can be used to determine the contravariant basis vectors
u1,u2,u3 . It holds

u1 = u11u1 + u12u2 + u13u3 =
τ̂

ξ[1− rκ cos(φ)]
(A.16)

u2 = u21u1 + u22u2 + u23u3 = r̂ (A.17)

u3 = u31u1 + u32u2 + u33u3 = − τ τ̂

1− rκ cos(φ)
+
φ̂

r
, (A.18)

where ujk are the components of the contravariant metric tensor respectively.
The differential operators grad and div and the infinitesimal volume element dx can

be determined using the just derived basis vectors and metric tensors. It holds (see [20]
for more details on the general derivations)

dx =
√
u = ξ(l)r[1− rκ(l) cos(φ)] dl dr dφ . (A.19)

Let Φ be a scalar field. Then it holds

grad Φ(l, r, φ) =
∂Φ

∂l
g1 +

∂Φ

∂r
g2 +

∂Φ

∂φ
g3 (A.20)

=
τ̂ (l)

ξ(l)[1− rκ(l) cos(φ)]

∂Φ

∂l

+ r̂(l, φ)
∂Φ

∂r
+
[φ̂(l, φ)

r
− τ(l)τ̂ (l)

1− rκ(l) cos(φ)

]∂Φ

∂φ
. (A.21)

Let J be a general vector field. Then it holds

divJ =
1√
u

∂

∂l

[√
uJ · u1

]
+

1√
u

∂

∂r

[√
uJ · u2

]
+

1√
u

∂

∂φ

[√
uJ · u3

]
. (A.22)

Inserting the specific current density from Eq. (2.30) into Eq. (A.22) results in

div JS(l)δ(r − a)τ̂ (l) =
1

ξ(l)[1− rκ(l) cos(φ)]

∂

∂l
JS(l)rδ(r − a) . (A.23)
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A.2 The symmetry theorems
The general kernels for the mixed potential integral equations are given as

gΦ(l, l′) =
exp
(
−jk

√
‖xc(l)− xc(l′)‖2 + a2√

‖xc(l)− xc(l′)‖2 + a2
(A.24)

gA(l, l′) =
exp
(
−jk

√
‖xc(l)− xc(l′)‖2 + a2√

‖xc(l)− xc(l′)‖2 + a2
τ̂ (l) · τ̂ (l′) (A.25)

for a single wire in free space and

gΦ,mn(l, l′) =
exp
(
−jk

√
‖xcm(l)− xcn(l′)‖2 + a2√

‖xcm(l)− xcn(l′)‖2 + a2
(A.26)

gA,mn(l, l′) =
exp
(
−jk

√
‖xcm(l)− xcn(l′)‖2 + a2√

‖xcm(l)− xcn(l′)‖2 + a2
τ̂m(l) · τ̂ n(l′) (A.27)

for two wires in free space. When solving the mixed potential integral equations it is
advantageous when the kernels depend on the difference l − l′ . In the following two
theorems, that give requirements for the wire trajectories to fulfill this condition, are
presented and proofed. The Theorem 1 holds for a single wire and Theorem 2 for two or
more wires.

Let the trajectory of the single wire be denoted by xc(l) with the natural parameter l .
Then the following Theorem holds.

Theorem 1. The following assertions are equivalent for a sufficiently smooth trajectory

(i) ‖xc(l)− xc(l
′)‖2 = f1(l − l′) and τ̂ (l) · τ̂ (l′) = f2(l − l′), where f1 and f2 are some

arbitrary functions, i.e. the norm and the scalar product are functions of l − l′.

(ii) The curvature κ and torsion τ of xc are constant along the curve.

Proof. The proof is split into two parts
“(i)⇒ (ii)” Assuming (i) holds. The wire is characterized by its Frenet basis τ̂ , η̂ and

β̂. A Taylor series can be developed at an arbitrary location l′ (since the trajectory is
sufficiently smooth)

xc(l) = xc(l
′) +

∞∑
n=1

1

n!

dn

dln
xc(l)

∣∣∣∣
l=l′

(l − l′)n . (A.28)

Using (A.1) yields
d

dl
xc(l) = τ̂ (l) (A.29)

d2

dl2
xc(l) = κ(l)η̂(l) (A.30)

d3

dl3
xc(l) = −κ2(l)τ̂ (l) +

d

dl
κ(l)η̂(l) + κ(l)τ(l)β̂(l) (A.31)

d4

dl4
xc(l) = −3κ(l)

d

dl
κ(l)τ̂ (l)

+ [
d2

dl2
κ(l)− κ3(l)− κ(l)τ 2(l)]η̂(l) + [2τ(l)

d

dl
κ(l) + κ(l)

d

dl
τ(l)]β̂(l) (A.32)

d5

dl5
xc(l) = F2(l)τ̂ (l) + . . . (A.33)
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with

F2(l) = −3κ(l)
d2

dl2
κ(l)− 3κ′(l)

d

dl
κ(l)− κ(l)

d2

dl2
κ(l) + κ4(l) + κ2(l)τ 2(l) . (A.34)

From this follows

xc(l)− xc(l
′) =

[
(l − l′)− κ2(l′)

6
(l − l′)3 − κ(l′)

8

d

dl′
κ(l′)(l − l′)4

+
F2(l′)

120
(l − l′)5 + . . .

]
τ̂ (l′)

+

[
κ(l′)

2
(l − l′)2 +

1

6

d

dl′
κ(l′)(l − l′)3

+
1

24

d2

dl′2
κ(l′) − κ3(l′) + κ(l′)τ 2(l′)

24
(l − l′)4 + . . .

]
η̂(l′)

+

[
κ(l′)τ(l′)

6
(l − l′)3

+

(
1

12
τ(l′)

d

dl′
κ(l′) +

1

24
κ(l′)

d

dl′
τ(l′)

)
(l − l′)4 + . . .

]
β̂(l′) . (A.35)

The higher order terms are left out since they are not needed for the rest of the proof.
After finding an expression for the difference of the two vectors it is straight forward

to get an expression for the norm of this difference. It holds

‖xc(l)− xc(l
′)‖2 = (l − l′)2 +

κ2(l′)

12
(l − l′)4 − 1

24
κ(l′)

d

dl′
κ(l′)(l − l′)5

+

[
F2(l′)

120
+

1

36

(
d

dl′
κ(l′)

)2

+
κ(l′)

48

d2

dl′2
κ(l′)− κ4(l′) + κ2(l′)τ 2(l′)

48
+
κ2(l′)τ 2(l′)

36

]
(l − l′)6

+ . . . (A.36)

since τ̂ , η̂ and β̂ form an orthonormal basis. Again, the higher order terms are left out.
Furthermore, it follows from the assumption (i)

‖xc(l)− xc(l
′)‖2 = f1(l − l′) (A.37)

= f1(l + l0 − l′ − l0) (A.38)
= ‖xc(l + l0)− xc(l

′ + l0)‖2 (A.39)

for an arbitrary l0. By comparing the coefficients of the polynomial series it follows for
(l − l′)4

κ2(l′)

12
=
κ2(l′ + l0)

12
(A.40)

and, hence,

κ = const. (A.41)

since (A.40) holds for any l0.
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Comparing the coefficients for (l − l′)6 and using κ = const. results in (after some
straight forward mathematical manipulations)

τ 2(l′) = τ 2(l′ + l0) . (A.42)

Using the argument from above yields

τ = const. (A.43)

This concludes the first part of the proof.
“(ii) ⇒ (i)” Assuming that (ii) holds. The only curve with constant curvature and

torsion is the helix [74]. The cirle and straight wire can be seen as special cases of the
helix with τ = 0 or κ = 0 and τ = 0 respectively.

The natural parameterization of the helix and its special cases is

xc(l) = Rh

[
cos

(
l√

R2
h + S2

h

)
x̂1 + sin

(
l√

R2
h + S2

h

)
x̂2

]
+

Sh l√
R2

h + S2
h

x̂3 . (A.44)

The radius Rh and lay length Sh characterize the helix. For the circle holds S = 0 and for
the straight wire holds Rh = 0 or Sh →∞.

The distance between two points on the wire is

‖xc(l)− xc(l
′)‖2 = R2

h

[
cos

(
l√

R2
h + S2

h

)
− cos

(
l′√

R2
h + S2

h

)]2

+R2
h

[
sin

(
l√

R2
h + S2

h

)
− sin

(
l′√

R2
h + S2

h

)]2

+
S2

h(l − l′)2

R2
h + S2

h

(A.45)

= R2
h

[
2− cos

(
l√

R2
h + S2

h

)
cos

(
l′√

R2
h + S2

h

)
− sin

(
l√

R2
h + S2

h

)
sin

(
l′√

R2
h + S2

h

)]
+
S2

h(l − l′)2

R2
h + S2

h

(A.46)

= R2
h

[
2− cos

(
l − l′√
R2

h + S2
h

)]
+
S2

h(l − l′)2

R2
h + S2

h

(A.47)

= f1(l − l′) (A.48)

with

f1(l) = R2
h

[
2− cos

(
l√

R2
h + S2

h

)]
+

S2
hl

2

R2
h + S2

h

. (A.49)

Furthermore, the tangential unit vector can be determined using (2.25). It follows

τ̂ (l) =
Rh√
R2

h + S2
h

[
− sin

(
l√

R2
h + S2

h

)
ex+cos

(
l√

R2
h + S2

h

)
ey

]
+

Sh√
R2

h + S2
h

ez (A.50)

and, therefore,

τ̂ (l) · τ̂ (l′) =
R2

h

R2
h + S2

h

[
sin

(
l√

R2
h + S2

h

)
sin

(
l′√

R2
h + S2

h

)
+ cos

(
l√

R2
h + S2

h

)
cos

(
l′√

R2
h + S2

h

)]
+

S2
h

R2
h + S2

h

(A.51)

=
R2

h

R2
h + S2

h

cos

(
l − l′√
R2

h + S2
h

)
+

S2
h

R2
h + S2

h

(A.52)

= f2(l − l′) (A.53)
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with

f2(l) =
R2

h

R2
h + S2

h

cos

(
l√

R2
h + S2

h

)
+

S2
h

R2
h + S2

h

. (A.54)

This concludes the proof.

Now a similar result shall be proofed for multiconductor transmission lines, specifically
the two wire line. The results can be generalized for N wires inductively. The question is
under what conditions two different trajectories xc1 and xc2 fulfill the symmetry condition.

Theorem 2. Let xc1(l) and xc2(l) be two curves. Then the following assertions are
equivalent

(i) ‖xcm(l) − xcn(l′)‖2 = fmn(l − l′) for m,n ∈ {1, 2}, where fmn are some arbitrary
functions, i.e. the norm is a function of l − l′ for all m,n.

(ii) xc1 and xc2 are helices (including its special cases) and one curve is just a transfor-
mation of the other, i.e. xc2(l) = Θxc1(l) with

Θxc1(l) =

C1 cos(C2) −C1 sin(C2) 0
C1 sin(C2) C1 cos(C2) 0

0 0 1

xc1(l) +

 0
0
C3

 (A.55)

with the constant real parameters C1, C2, C3.

Proof. “(i) ⇒ (ii)” Assuming that (i) holds. It follows from Theorem 1 that xc1 and
xc2 are helices. A helix can be transformed via rotation, scaling and translation to
yield an arbitrary different helix. Let such a transformation be denoted by Θ. Then
xc2(l) = Θxc1(l). The transformation acts on each coordinate yielding

‖xc1(l)− xc2(l′)‖2 = ‖xc1(l)−Θxc1(l′)‖2 (A.56)
= [(xc1)1(l)− (Θxc1)1(l′)]2 + [(xc1)2(l)− (Θxc1)2(l′)]2

+ [(xc1)3(l)− (Θxc1)3(l′)]2 (A.57)

=

[
Rh cos

(
l√

R2
h + S2

h

)
− (Θxc1)1(l′)

]2

+

[
Rh sin

(
l√

R2
h + S2

h

)
− (Θxc1)2(l′)

]2

+

[
Sh l√
R2

h + S2
h

− (Θxc1)3(l′)

]2

(A.58)

= R2
h + (Θxc1)2

1(l′) + (Θxc1)2
2(l′)

− 2Rh

[
(Θxc1)1(l′) cos

(
l√

R2
h + S2

h

)
+ (Θxc1)2(l′) sin

(
l√

R2
h + S2

h

)]
+

[
Sh l√
R2

h + S2
h

− (Θxc1)3(l′)

]2

. (A.59)
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Since (i) holds, three conditions on Θ follow

(Θxc1)2
1(l′) + (Θxc1)2

2(l′) = const. (A.60)

(Θxc1)1(l′) cos

(
l√

R2
h + S2

h

)
+ (Θxc1)2(l′) sin

(
l√

R2
h + S2

h

)
= g1(l − l′) (A.61)

Sh l√
R2

h + S2
h

− (Θxc1)3(l′) = g2(l − l′) (A.62)

for all l′, where g1 and g2 are arbitrary functions.
The first condition (A.60) is fulfilled if and only if

(Θxc1)1(l′) = C1 cos(α(l′)) (A.63)
(Θxc1)2(l′) = C1 sin(α(l′)) (A.64)

where α is a yet unknown function. Inserting the latter results into (A.61) yields

g1(l − l′) = C1 cos

(
l√

R2
h + S2

h

− α(l′)

)
(A.65)

after some simple mathematical manipulations. It follows

α(l′) =
l′√

R2
h + S2

h

+ C2 . (A.66)

Similarly, from (A.62) follows immediately

(Θx1)3(l′) =
Sh l

′√
R2

h + S2
h

+ C3 . (A.67)

In summary, the transformation depends on three parameters C1, C2 and C3 with

(Θxc1)1(l′) = C1 cos

(
l′√

R2
h + S2

h

+ C2

)
(A.68)

(Θxc1)2(l′) = C1 sin

(
l′√

R2
h + S2

h

+ C2

)
(A.69)

(Θxc1)3(l′) =
Sh l

′√
R2

h + S2
h

+ C3 . (A.70)

The latter results describe a scaling in the x1-x2-plane with C1, a rotation in the x1-x2-plane
by C2 and a translation in x3-direction by C3. This coincides with the transformation
given in (ii).

The proof of the implication (ii)⇒ (i) is straight forward by inserting the helix equation
for xc1 into (A.55) and seeing that xc2 is a helix as well and that (i) is fulfilled.
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Appendix B

Mathematical identities and
simplifications

B.1 Integral identities
Important integral identities are presented in this appendix. It holds with the definition of
E1 in Eq. (4.63))

∞∫
0

(
exp(−jk

√
(l − l′)2 + a2)√

(l − l′)2 + a2
−

exp(−jk
√

(l − l′)2 + b2)√
(l − l′)2 + b2

)
e−jkl′ dl′

=
[
E1(jk(

√
l2 + a2 − l)) − E1(jk(

√
l2 + b2 − l))

]
e−jkl (B.1)

∞∫
0

(
exp(−jk

√
(l − l′)2 + a2)√

(l − l′)2 + a2
−

exp(−jk
√

(l − l′)2 + b2)√
(l − l′)2 + b2

)
ejkl′ dl′

=

[
E1(jk(

√
l2 + b2 + l))− E1(jk(

√
l2 + a2 + l)) + 2 ln

(
b

a

)]
ejkl (B.2)

ζ∫
0

(
exp(−jk

√
(l − l′)2 + a2)√

(l − l′)2 + a2
−

exp(−jk
√

(l − l′)2 + b2)√
(l − l′)2 + b2

)
e±jkl′ dl′

= ±
[
E1(jk(

√
l2 + b2 ± l)) + E1(jk(

√
(l − ζ)2 + b2 ± (l − ζ)))

− E1(jk(
√
l2 + a2 ± l))− E1(jk(

√
(l − ζ)2 + a2 ± (l − ζ)))

]
e±jkl (B.3)

B.2 Simplification of the first iteration reflection coeffi-
cient

In the following the Eq. (4.61) is simplified. The integrals are analyzed separately. The
first integral can be solved with the identities from App. B.1. It holds

D̂P (0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)g0(l′ + lp) dl′ (B.4)
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=
D̂P (0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

(
ejkl′ + Γ(0)e−jkl′

)
g0(l′ + lp) dl′ (B.5)

=
Z

ZC + Z

e−jklp

2 ln
(

2h
a

) ∞∫
−lp

(
ejkl′ + Γ(0)e−jkl′

)
g0(l′ + lp) dl′ (B.6)

=
Z

ZC + Z

e−2jklp

2 ln
(

2h
a

) ∞∫
0

(
ejkξ +

ZC − Z
ZC + Z

e−jkξ

)
g0(ξ) dξ (B.7)

=
Z

ZC + Z

e−2jklp

2 ln
(

2h
a

)[[E1(2jkh)− E1(jka)]
2Z

ZC + Z
+ 2 ln

(
2h

a

)]
. (B.8)

The next integral is simplified using integration by parts, i.e.

1

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)D̂[ĜΦ − Ĝ0]D̂P (0)(l′) dl′ (B.9)

=
1

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)
∂

∂l′
[ĜΦ − Ĝ0]D̂P (0)(l′) dl′ (B.10)

=
1

4jk ln
(

2h
a

)[P (0)(l′)[ĜΦ − Ĝ0]D̂P (0)(l′)

]∞
l′=−lp

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∂

∂l′
P (0)(l′)[ĜΦ − Ĝ0]D̂P (0)(l′) dl′ (B.11)

= − P
(0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

[gΦ(−lp, l′′)− g0(lp + l′′)]
∂

∂l′′
P (0)(l′′) dl′′

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′) dl′′dl′. (B.12)

If the wire is connected to the ground, the function gΦ(−lp, l′′) is 0 for all l′′ . If the wire is
not connected to the ground the function P (0)(−lp) becomes 0. Hence, the term including
P (0)(−lp)gΦ(−lp, l′′) always vanishes. It holds

1

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)D̂[ĜΦ − Ĝ0]D̂P (0)(l′) dl′

=
P (0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

g0(lp + l′′)
∂

∂l′′
P (0)(l′′) dl′′

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′) dl′′dl′. (B.13)
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The single integral is solved using the results from App. B.1 to yield

1

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)D̂[ĜΦ − Ĝ0]D̂P (0)(l′) dl′

=
1

4 ln
(

2h
a

)(e−jklp + Γ(0)ejklp
) ∞∫
−lp

g0(lp + l′′)
(
ejkl′′ − Γ(0)e−jkl′′

)
dl′′

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′) dl′′dl′ (B.14)

=
e−2jklp

4 ln
(

2h
a

)(1 +
ZC − Z
ZC + Z

) ∞∫
0

g0(ξ)

(
ejkξ − ZC − Z

ZC + Z
e−jkξ

)
dξ

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′) dl′′dl′ (B.15)

=
e−2jklp

4 ln
(

2h
a

) 2ZC

ZC + Z

[
[E1(2jkh)− E1(jka)]

2ZC

ZC + Z
+ 2 ln

(
2h

a

)]

− 1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′) dl′′dl′. (B.16)

Inserting Eqs. (B.8) and (B.16) into Eq. (4.61) and expanding the operators results in

Γ(1) = − 2ZZC

(ZC + Z)2
e−2jklp +

Z2
C + Z2

(ZC + Z)2

E1(2jkh)− E1(jka)

ln
(

2h
a

) e−2jklp + e−2jklp

+
1

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

{
k2P (0)(l′)[gA(l′, l′′)− g0(l′ − l′′)]P (0)(l′′)

− ∂

∂l′
P (0)(l′)[gΦ(l′, l′′) − g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′)

}
dl′′dl′. (B.17)

Simplifying the result and rearranging the terms yields Eq. (4.62).

B.3 Simplification of the double integral for the first
iteration reflection and scattering coefficient

Equation (4.65), the reflection coefficient for the first iteration, is modified in this appendix.
The integration with the infinite interval is solved analytically, leaving only the finite
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integration intervals. Thus, the double integral

I =

0∫
−lp

∞∫
0

{
∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
P (0)(l′′)

− k2P (0)(l′)[gA(l′, l′′) − g0(l′ − l′′)]P (0)(l′′)

}
dl′′dl′ (B.18)

is analyzed in this section.
The wire is parametrized as

xc(l) =

{
χ1(l)x̂1 + χ2(l)x̂2 + χ3(l)x̂3 for − lp ≤ l < 0

h x̂2 + l x̂3 for 0 ≤ l <∞ .
(B.19)

The functions χ1(l), χ2(l), χ3(l) characterize the specific port and are arbitrary continuous
functions at this point. The tangential unit vector is

τ̂ (l) =

{
τ̂ p(l) for − lp ≤ l < 0

x̂3 for 0 ≤ l <∞ ,
(B.20)

where τ̂ p depends on the trajectory of the port. With this parametrization it holds for
−lp ≤ l′ < 0 and 0 ≤ l′′ <∞

‖xc(l
′)− xc(l

′′)‖2 = χ2
1(l′) + [χ2(l′)− h]2 + [χ3(l′)− l′′]2 (B.21)

‖xc(l
′)−

ˇ
xc(l

′′)‖2 = χ2
1(l′) + [χ2(l′) + h]2 + [χ3(l′)− l′′]2 (B.22)

τ̂ (l′) · τ̂ (l′′) = τ̂ (l′) · x̂3 (B.23)
τ̂ (l′) ·

ˇ
τ̂ (l′′) = τ̂ (l′) · x̂3 . (B.24)

With this it follows from Eqs. (2.36) and (2.41)

gA(l′, l′′) = gΦ(l′, l′′) τ̂ (l′) · x̂3 (B.25)

and

gΦ(l′, l′′) =
exp
(
−jk

√
χ2

1(l′) + [χ2(l′)− h]2 + [χ3(l′)− l′′]2 + a2
)√

χ2
1(l′) + [χ2(l′)− h]2 + [χ3(l′)− l′′]2 + a2

−
exp
(
−jk

√
χ2

1(l′) + [χ2(l′) + h]2 + [χ3(l′)− l′′]2 + a2
)√

χ2
1(l′) + [χ2(l′) + h]2 + [χ3(l′)− l′′]2 + a2

(B.26)

for −lp ≤ l′ < 0 and 0 ≤ l′′ < ∞ . Inserting the latter equation into Eq. (B.18) and
inserting P (0)(l′′) results in

I =

0∫
−lp

∞∫
0

{
gΦ(l′, l′′)

(
jk
∂

∂l′
P (0)(l′)− k2P (0)(l′)τ̂ (l′) · x̂3

)
ejkl′′

− gΦ(l′, l′′)

(
jk
∂

∂l′
P (0)(l′) + k2P (0)(l′)τ̂ (l′) · x̂3

)
Γ(0) e−jkl′′

− g0(l′ − l′′)
(

jk
∂

∂l′
P (0)(l′)− k2P (0)(l′)

)
ejkl′′

+ g0(l′ − l′′)
(

jk
∂

∂l′
P (0)(l′) + k2P (0)(l′)

)
Γ(0) e−jkl′′

}
dl′′dl′ . (B.27)
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Using the integral identities from App. B.1 yields

I =

0∫
−lp

{(
jk
∂

∂l′
P (0)(l′)− k2P (0)(l′)τ̂ (l′) · x̂3

)[
ln

(
χ2

1(l′) + [χ2(l′) + h]2 + a2

χ2
1(l′) + [χ2(l′)− h]2 + a2

)

+ E1

(
jk
(√

χ2
1(l′) + [χ2(l′) + h]2 + χ2

3(l′) + a2 + χ3(l′)
))

− E1

(
jk
(√

χ2
1(l′) + [χ2(l′)− h]2 + χ2

3(l′) + a2 + χ3(l′)
))]

ejkχ3(l′)

+

(
jk
∂

∂l′
P (0)(l′) + k2P (0)(l′)τ̂ (l′) · x̂3

)
Γ(0)
[

E1

(
jk
(√

χ2
1(l′) + [χ2(l′) + h]2 + χ2

3(l′) + a2 − χ3(l′)
))

− E1

(
jk
(√

χ2
1(l′) + [χ2(l′)− h]2 + χ2

3(l′) + a2 − χ3(l′)
))]

e−jkχ3(l′)

−
(

jk
∂

∂l′
P (0)(l′)− k2P (0)(l′)

)[
2 ln

(
2h

a

)
+ E1

(
jk
(√

l′2 + 4h2 + l′
))

− E1

(
jk
(√

l′2 + a2 + l′
))]

ejkl′

−
(

jk
∂

∂l′
P (0)(l′) + k2P (0)(l′)

)
Γ(0)
[
E1

(
jk
(√

l′2 + 4h2 − l′
))

− E1

(
jk
(√

l′2 + a2 − l′
))]

e−jkl′
}

dl′ (B.28)

This concludes the derivation. The numerical integration of the single integral with
finite limits is much faster than the double integration in Eq. (B.18).

B.4 Asymptotic approximation of the first iteration
scattered current

In the following Eq. (4.104) is approximated asymptotically. First, the second addend in
Eq. (4.104) is analyzed. It holds

[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(0)(l) = I(0)(l)− 1

2 ln
(

2h
a

) ∞∫
−lp

g0(l − l′)I(0)(l′) dl′ (B.29)

= I(0)(l)− 1

2 ln
(

2h
a

) 0∫
−lp

g0(l − l′)I(0)
p (l′) dl′

− 1

2 ln
(

2h
a

) ∞∫
0

g0(l − l′)
(
I(0)
∞ e−jkθl

′
+ Ψ(0) e−jkl′

)
dl′ (B.30)

= I(0)(l)− 1

2 ln
(

2h
a

) 0∫
−lp

g0(l − l′)I(0)
p (l′) dl′
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− 1

2 ln
(

2h
a

) ∞∫
−l

g0(ξ)
(
I(0)
∞ e−jkθ(ξ+l) + Ψ(0) e−jk(ξ+l)

)
dξ . (B.31)

When l becomes greater the function g0(l − l′) tends to 0 when l′ is bounded. Hence,
it holds asymptotically for large l[

Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(0)(l) ∼ I(0)

∞

(
1− 1

2 ln
(

2h
a

) ∞∫
−∞

g0(ξ) e−jkθξ dξ

)
e−jkθl

+ Ψ(0)

(
1 − 1

2 ln
(

2h
a

) ∞∫
−∞

g0(ξ) e−jkξ dξ

)
e−jkl . (B.32)

The remaining integrals are the Fourier transform of g0 (see Eq. (2.59)). It follows[
Îd− 1

2 ln
(

2h
a

)Ĝ0

]
I(0)(l) ∼ I(0)

∞

(
1− g̃0(kθ)

2 ln
(

2h
a

))e−jkθl . (B.33)

Next, the integral involving ĜΦ in Eq. (4.104) is analyzed for large l using Eqs. (4.52) and
(4.57). Using integration by parts results, similarly as in Eq. (B.13), in

− 1

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)D̂[ĜΦ − Ĝ0]D̂I(0)(l′) dl′

∼ P (0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

g0(lp + l′′)
∂

∂l′′
I(0)(l′′) dl′′e−jkl

− e−jkl

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
I(0)(l′′) dl′′dl′. (B.34)

Evaluating P (0)(−lp) and rewriting the first integral in operator form yields

− 1

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)D̂[ĜΦ − Ĝ0]D̂I(0)(l′) dl′

∼ 1

jk

ZC

ZC + Z

e−jklp

2 ln
(

2h
a

)Ĝ0D̂I(0)(−lp) e−jkl

− e−jkl

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

∂

∂l′
P (0)(l′)[gΦ(l′, l′′)− g0(l′ − l′′)] ∂

∂l′′
I(0)(l′′) dl′′dl′. (B.35)

Moreover, the integral involving ĜA in Eq. (4.104) is asymptotically evaluated with

− 1

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)k2[ĜA − Ĝ0]I(0)(l′) dl′

∼ e−jkl

4jk ln
(

2h
a

) ∞∫
−lp

∞∫
−lp

k2P (0)(l′)[gA(l′, l′′)− g0(l′ − l′′)]I(0)(l′′) dl′′dl′. (B.36)
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The last integral in Eq. (4.104) can be asymptotically evaluated using integration by
parts as well. It holds

I(0)(−lp)

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)D̂g0(l′ + lp) dl′ (B.37)

∼ − I(0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

P (0)(l′)D̂g0(l′ + lp) dl′ e−jkl (B.38)

= − I(0)(−lp)

4jk ln
(

2h
a

)[[P (0)(l′)g0(l′ + lp)
]∞
l′=−lp

−
∞∫
−lp

D̂P (0)(l′)g0(l′ + lp) dl′
]

e−jkl (B.39)

=
I(0)(−lp)

4jk ln
(

2h
a

)[P (0)(−lp)g0(0) +

∞∫
−lp

D̂P (0)(l′)g0(l′ + lp) dl′
]

e−jkl (B.40)

Evaluating P (0)(−lp) yields

I(0)(−lp)

2 ln
(

2h
a

) ∞∫
−lp

K(l, l′)D̂g0(l′ + lp) dl′ ∼ 1

jk

ZC

ZC + Z

e−jklp

2 ln
(

2h
a

)g0(0)I(0)(−lp) e−jkl

+
I(0)(−lp)

4jk ln
(

2h
a

) ∞∫
−lp

D̂P (0)(l′)g0(l′ + lp) dl′
]

e−jkl . (B.41)

Inserting Eqs. (4.109), (B.33), (B.35), (B.36) and (B.41) into Eq. (4.104) results in the
asymptotic approximation for the first iteration current, i.e. Eq. (4.110).
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