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“Just because something doesn’t do what you planned it to do doesn’t mean it’s
useless.”

Thomas A. Edison (1847 - 1931)
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A transmission line is the material medium or structure that forms all or part of a
path from one place to another for directing the transmission of energy, such as elec-
tromagnetic waves or acoustic waves. Examples of transmission lines include wires,
coaxial cables, dielectric slabs, optical fibers, and circular or rectangular closed waveg-
uides.

Wikipedia – The Free Encyclopedia (wikipedia.org)
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Abstract

This thesis presents a new method to derive a generalized transmission-line theory, the
Transmission-Line Supertheory (TLST). Besides a new kind of telegrapher equations,
one also gets equations for the determination of the per-unit-length parameters and
the source terms. The theory is directly based on Maxwell’s theory. There are no
restrictions (like the exclusive TEM mode) or simplifications, although a transition from
the current and charge densities to the conductor currents and charges is performed.

The new theory is applicable to nonuniform transmission lines consisting of one or
more wire-like conductors. It describes the propagation of electromagnetic waves along
those lines as well as the coupling of external electromagnetic fields to the lines. It
automatically includes all field modes and thus, covers all physical effects, including
radiation losses, that can occur on a nonuniform transmission line. The principal
structure of the telegrapher equations, which is known from the classical transmission-
line theory, is preserved. The generalized telegrapher equations are still a system of
first-order differential equations.

The per-unit-length parameters not only depend on the cross-sectional shape of the
line but also depend on the whole geometry of the conductors and are determined
by the solution of an integral equation. Due to frequency-dependent field modes and
radiation losses the parameters become complex valued and frequency dependent, even
for a perfectly conducting line.

The theoretical derivations are supported by several examples demonstrating the ca-
pabilities of the new theory.
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Zusammenfassung

Diese Arbeit widmet sich der Aufstellung einer verallgemeinerten Leitungstheorie, der
Transmission-Line Supertheory (Leitungssupertheorie). Neben einer neuen Art von Te-
legraphengleichungen erhält man Bestimmungsgleichungen für die verallgemeinerten
Leitungsbeläge und Quellterme. Die Theorie basiert direkt auf den Maxwellschen Glei-
chungen. Es werden keine Einschränkungen und Vereinfachungen (z.B. ein exklusiver
TEM Mode) vorgenommen. Es wird jedoch ein Übergang von Strom- und Ladungs-
dichten zu den Leiterströmen und -ladungen vollzogen.

Die neue Theorie ist auf beliebig ungleichförmige, aus einem oder mehreren draht-
ähnlichen Leitern bestehende Leitungen anwendbar. Es wird sowohl die Ausbreitung
elektromagnetischer Wellen auf den Leitern als auch die Einkopplung externer Felder
in die Leiter beschrieben. Alle relevanten Feldmoden sind automatisch berücksichtigt,
d.h. alle wichtigen physikalischen Effekte, inklusive Abstrahlungsverluste werden kor-
rekt modelliert. Dabei bleibt die von der klassischen Leitungstheorie her bekannte
Struktur der Telegraphengleichungen erhalten, es handelt sich immer noch um ein
System von Differentialgleichungen erster Ordnung.

Die Leitungsbeläge hängen nicht nur von dem jeweiligen Querschnitt ab, sondern
von den geometrischen Charakteristika der gesamten Leitung. Sie werden durch die
Lösung einer Integralgleichung berechnet. Wegen der frequenzabhängen Feldmoden
und der Strahlungsverluste sind die entsprechenden Leitungsbeläge komplexwertig und
frequenzabhängig.

Die theoretischen Ausführungen werden durch Beispiele untermauert, die die neuen
Möglichkeiten der Theorie aufzeigen.
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List of Symbols

Here we list all symbols that are used throughout the thesis. Some symbols are used
twice with different meaning. This is only in parts of single sections. The meaning of
the symbols is also explained in the text.

A vector potential
B, B magnetic field strength
Bu binormal unit vector
C ′, C′ per-unit-length capacitance, per-unit-length capacitance matrix
C integration path
C spatial vector to conductor “center”
D, D electric excitation
D damping coefficient
D diagonal matrix of eigenvalues
E , E electric field strength
F Lorentz force
G′, G′ per-unit-length conductance, per-unit-length conductance matrix
G1, G2, G3 integrals of the Green’s function

H
(2)
0 Hankel function of second kind

H, H magnetic excitation
I matrix or vector, result of an integration
I supermatrix, result of an integration
J0 Bessel function of first kind
J , J current density
K0 modified Bessel function of second kind
L′, L′ per-unit-length inductance, per-unit-length inductance matrix
N number of conductors in transmission lines
Nu normal unit vector
P, P? per-unit-length parameter matrix, blocks of a supermatrix

P, P
?

per-unit-length parameter supermatrix
Q charge
R distance between two points
R′, R′ per-unit-length resistance, per-unit-length resistance matrix
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S, ∂S open surface and its boundary
T tangential vector
Tu tangential unit vector
V , ∂V volume and its closed surface
W dyadic product of eigenvectors
Y0 Bessel function of second kind
a wire radius, distance
b spatial distance
d eigenvalues of parameter matrix
dJ, d% current density distribution, charge density distribution
da, da vectorial surface element, scalar surface element
ds line element
dv volume element
ex, ey, ez unit vectors in Cartesian coordinates
f frequency
fci

geometric correction factor
h wire height
i index variable
i, i current and current vector
j imaginary unit, j2 = −1
j index variable
k wave number
K supermatrix of integral kernel matrices
kc, kl, kc, kl integral kernels and corresponding matrices
l segment length
m index variable
n index variable
p index variable
p power
q, q per-unit-length charge and per-unit-length charge vector
r radius, distance
t time
u length of tangential vector
v, v voltage and voltage vector
w eigenvector of parameter matrix
x̂ spatial vector to the surface of a conductor
x,x′ spatial vectors to observation and source points
z, z surface impedance and corresponding matrix
Γ propagation matrix
α angle
ε, ε0, εr permittivity (absolute, vacuum, relative)
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κ curvature
λ wavelength
µ, µ0, µr permeability (absolute, vacuum, relative)
ω angular frequency
ϕ scalar potential
ϕ, ϕ quasivoltage
% charge density
σ electric conductivity
ζ coordinate, curve parameter
()(i) incident
()(k), ()(k+1) quantity after the k-th or (k + 1)-th iteration
()scat scattered
()u unit vector
()s source term
()t coefficient of trial function
()rad radiated
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Chapter 1

Introduction

Since at least the 18th century electrical transmission lines are a fascinating as well
as challenging object of scientists and engineers. In that period Sir William Watson
tried to determine the speed of electricity. For this he conducted experiments involving
a 6.4 km (12276 feet) long wire line, as shown in his sketch in Figure 1.1. Within
the accuracy of the measuring equipment of that time, he found that the “velocity of
electricity was instantaneous”. However, he noticed the electric resistance. His results
were published in [Wat46, Wat48].

Figure 1.1: Illustration of Watsons experiments to determine the velocity of electricity.

Driven by the development of telegraphs and the desire for overseas communication, a
mathematical description of the signal propagation along transmission lines was indis-
pensable. A cornerstone was the contribution from Sir William Thomson a.k.a. Lord
Kelvin. He established the “Law of retardation” in 1854. However, he only took into
account the capacity and the resistance of the cable [Kel55].

In 1857 Gustav Kirchhoff published two papers [Kir57b, Kir57c] (see also [Kir57a,
GA94] for an English translation) where he set up equations describing the motion
of electricity in wires and conductors. In the first paper he formulated equations for
the current and the charge based on an electric and a magnetic potential, which are

21



22 1 Introduction

comparable to todays telegrapher equations. He also found that in a wire with negligible
resistance, electricity propagates at the speed of light.

Later on, in 1874 Oliver Heaviside developed the well known transmission-line theory
and the telegrapher equations [Hea51]. These equations are valid for a broad range of
transmission lines. After these pioneering achievements numerous scientists contributed
to the transmission-line theory and it was published in numerous excellent text books
and reviews, e.g., [Mie00, Som64, KS64, Sch55, Kin55, DSH87, Col91, Pau94, Ung96,
Fra97, TIK97, Rei02]. The theory was successfully applied to several fields in electrical
engineering.

Although, the transmission-line theory is around for more than 130 years, it did not
loose its relevance to current situations. High operating frequencies of modern elec-
tronic equipment turn even the smallest piece of wire into a transmission line with
signal retardation, dispersion, attenuation, and distortion. Moreover, in todays elec-
tromagnetic environment transmission lines can pick up external electromagnetic fields
which generate noise currents which are superimposed on the useful signals. The lines
act not only as receiving antennas but can also radiate parts of the signal energy into
the environment. Some of these effects are covered by the “classical transmission-line
theory” (cTLT), some are not.

Heaviside showed that the transmission-line theory is a special case of Maxwell’s theory.
The key is the transverse electromagnetic mode (TEM mode), where the electric and
magnetic fields are perpendicular to each other and perpendicular to the direction of
propagation. With the assumption of an exclusive TEM mode propagating along a
transmission line, one can, without any further approximations, find the telegrapher
equations.

The exclusive TEM mode is only possible on an ideal transmission line. This line would
be infinitely long, lossless, with parallel conductors, and would be excited at infinity.
Already an excitation at a finite position produces other modes in the vicinity of the
excitation and thus invalidates the cTLT. The same is true for finite lines, where usually
other modes occur close to the terminations. Also losses in the conductors destroy the
exclusive TEM mode, because longitudinal components of the electric field are present.

Nonetheless, for many applications, at least when the wavelength is much larger than
the cross-sectional size of the line, the other modes decay exponentially, do not prop-
agate and hence are negligible compared to the dominant TEM mode. In this case
one speaks of a quasi-TEM mode. The cTLT gives excellent results that are in very
good agreement with experiments as well as with analytical calculations which take
into account all modes.

The TEM mode allows us to split the solution procedure into two separate steps.
First, the so-called per-unit-length parameters of the transmission line are determined.
For a uniform line these parameters only depend on the cross-sectional geometry of
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the line. They describe the coupling between individual conductors as well as the
propagation properties and thus fully characterize the transmission line. The second
step is the solution of the governing equations, the telegrapher equations which are
coupled partial first-order differential equations. The procedure for the computation of
the results for these kinds of equations are very well known. For some important cases
analytical solutions exist, for other cases usually numerical methods are used.

Things become much more complicated, if the transmission lines become nonuniform,
i.e., if the conductors are not in parallel anymore and the cross section changes along
the line. One can imagine that the field distributions become much more involved than
for uniform lines. In the literature there is a host of publications concerning nonuniform
transmission lines. Already Heaviside made some contributions [Hea25].

The majority of these papers discusses the solution procedure for the telegrapher equa-
tions with position-dependent parameters. Often the dependence is described by some
simple mathematical function, e.g. linearly or exponentially varying parameters. Most
papers do not clearly specify where these parameters come from, usually a TEM mode
on the nonuniform transmission line is assumed. Recent publications on this topic
include [BNS96, BNS97, Nit98, NG99] where the product integral [Gan84, DF79] is
applied to formulate analytical solutions of the telegrapher equations for nonuniform
multiconductor transmission lines.

There are several approaches to broaden the scope of the classical transmission-line
theory, see [HNS03] and references therein, however, most of them work only in a cer-
tain low-frequency range. Many works [Kin55, Lam76, Lam77, GCT78, GC86, Get93,
DZ88, TB94, LK99] are dedicated to the correction of the telegrapher equations when
transmission lines with nonuniformities or discontinuities are under investigation. The
models encompass abrupt bends, round bends, vertical risers, or the cross coupling
between two skewed lines. For low frequencies (quasi-static case) the additional effects
are modeled with the aid of lumped elements (L,C) or additional transmission lines
that are connected to the actual line. Sometimes nonuniform lines are treated as if
they were built of uniform segments, i.e., within each section the line is regarded to be
uniform [OKH97].

There have been attempts to solve nonuniform transmission-line problems with higher
mode effects using the cTLT. This is done by modeling a physical effect, e.g. radia-
tion, which was beforehand excluded from the theory, by some additional term in the
telegrapher equation [WtH97].

In the past few years considerable effort was put into the development of an extended
transmission-line theory, which is not restricted to the TEM mode nor any other mode.
Instead of extending the existing theory, the preferred way to go is to derive generalized
equations directly from Maxwell’s theory. Some of the approaches deal with special
geometric characteristics of the conductors like sharp bends, vertical termination wires,
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or field excitations that generate non-TEM modes [NHFY95, TRI99, TRI01, TN02,
TRNS03, NT02, NT04c, NT04b]. Although these works show great improvements
compared to the cTLT, they do not provide a general procedure to handle arbitrary
nonuniform transmission lines; they concentrate on one specific problem.

In [Stu98] and [Stu99] two different approaches for the development of a generalized
transmission-line theory, with interesting ideas are shown. Unfortunately, only the
theoretical derivation is considered and no practical examples are presented.

A different approach is shown in [Mei03]. There a proof is given that the current
distribution of a nonuniform transmission line is governed by a second-order differential
equation. Then from known linearly independent solutions for the currents for different
terminations it is possible to construct the coefficients of the differential equations which
then become the per-unit-length parameters. The required solutions can be obtained
numerically, e.g. with the method of moments (MoM).

The most recent contribution to this topic is [NT04a], where a modal decomposition
based on a spatial Fourier series is used to formulate modal telegrapher equations, i.e.
one for every current component. After solving these equations one needs to sum up
the infinite Fourier series to get the real current. In [NT05] these results are compared
with the results obtained with the procedures introduced in this thesis and a very good
agreement can be observed.

This thesis presents a new method to derive a generalized transmission-line theory, the
Transmission-Line SuperTheory (TLST) [Bau02]. Besides new telegrapher equations,
one also gets equations for the determination of the per-unit-length parameters and
the source terms. The theory is directly based on Maxwell’s theory. There are no
restrictions (like an exclusive TEM mode) or simplifications, although a transition from
the current and charge densities to the conductor currents and charges is performed.

The new theory is applicable to nonuniform transmission lines consisting of one or more
wire-like conductors. It describes the propagation of electromagnetic waves along those
lines as well as the coupling of external electromagnetic fields to the lines. It automat-
ically includes all field modes and thus, covers all physical effects, including radiation
losses, that can occur on a nonuniform transmission line. The principal structure of
the telegrapher equations is preserved; the generalized telegrapher equations are still
a system of first-order differential equations. However, because, in the general case,
the voltage is not the difference of two values of the scalar potential anymore, it is
the path-dependent integral of the electric field strength, this quantity is replaced by
the charge per unit length. The telegrapher equations are formulated in terms of the
current and the charge per unit length. The parameters not only depend on the cross-
sectional shape of the line but also depend on the whole geometry of the conductors and
are determined by the solution of an integral equation. Due to frequency-dependent
field modes and radiation losses the parameters become complex valued and frequency
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dependent, even for a simple superconducting line.

The chapter following this introduction is dedicated to a short review of Maxwell’s
theory and the classical transmission-line equations with emphasis on the expressions
related to the transmission-line supertheory. This theory is covered in Chapter 3 where
an in-depth derivation is shown. Moreover, this chapter includes details on the compu-
tation of the parameters and the source terms. Possible numerical implementations of
the algorithms are the subject of Chapter 4. The next chapter shows some interesting
applications of the theory. Eventually in Chapter 6 the achievements of this work are
summarized and conclusions are drawn.
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Chapter 2

Review of Maxwell’s Theory and the Classical

Transmission-Line Theory

Abstract — In this chapter we will shortly review Maxwell’s theory. Furthermore,
we will provide equations for the electromagnetic potentials and derive an integral
equation for the calculation of the current and charge density. These are prerequi-
sites for the later development of the transmission-line supertheory. This chapter
also covers a variant of the derivation of the classical transmission-line theory
for a two-conductor line. It is based on the formulation of the fields of a TEM mode.

2.1 Maxwell’s Theory

2.1.1 Formulation of Maxwell’s Equations

Electromagnetic phenomena are governed by a set of partial differential equations,
named after James Clerk Maxwell. He refined the ideas of Michael Faraday, André
Marie Ampère and others about electromagnetism. The first publication related to
these equations dates back to 1864/65 [Max65], however, the most cited reference is
his treatise [Max73] from 1873. Other scientists, such as Oliver Heaviside, purified the
equations and formulated the theory in an axiomatic way. Heinrich Hertz experimen-
tally verified the theoretical results.

The source of all electromagnetic fields clearly are charged particles. Some components
of the fields arise already from static charges, others only exist if the charged particles
are in motion, i.e. a current is flowing.

From a modern point of view there are only a few experimental observations like the
conservation of charge, the conservation of the magnetic flux, the absence of magnetic
monopoles, the Lorentz covariance of electromagnetics, and the existence of a force on
fixed or moving charged particles, that are sufficient to formulate Maxwell’s equations.

27



28 2 Review of Maxwell’s Theory and the Classical Transmission-Line Theory

The former is usually expressed by the continuity equation

div J +
∂%

∂t
= 0. (2.1)

Here J is the current density and % is the charge density.

A direct consequence of this are the inhomogeneous Maxwell equations involving the
electric and magnetic excitations D and H [HOR99]:

div D = % (2.2)

and

curl H− ∂D
∂t

= J . (2.3)

Historically these quantities are called dielectric displacement and magnetic field, re-
spectively.

The existence of a force F on charged particles with charge Q and velocity v leads to
the introduction of the electric and magnetic field strength E and B. The so-called
Lorentz force is expressed by

F = Q (E + v ×B) . (2.4)

With the aid of the above mentioned physical observations one can find relations for
these field strengths. The equations establish the homogeneous part of Maxwell’s equa-
tions:

div B = 0 (2.5)

and

curl E +
∂B
∂t

= 0. (2.6)

Finally, the materials where the fields reside determine the relation between the excita-
tions and the corresponding field strengths. In general these can be rather complicated
functions. We will restrict ourself to isotropic media, where the following holds:

D = εE = εrε0E (2.7)

B = µH = µrµ0H, (2.8)

where ε is the electric permittivity and µ the magnetic permeability.
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There is also a relation between the current density and the electric field strength,
which usually is a complicated and nonlinear function. The first term of a Taylor series
of this function is a good approximation inside good conducting materials. This is also
known as Ohm’s Law and is written as

J = σE . (2.9)

Besides these equations, which all have a physical background, there are two important
expressions originating in vector analysis. The first is the divergence theorem or Gauss’
theorem. It connects the divergence of a vector field X inside a volume V with this
vector field X on the closed surface (∂V ) of that volume:∮

∂V

X · da =

∫
V

(div X) dv. (2.10)

In this equations da is pointing outward. The second expression is the curl theorem
or Stokes’ theorem. Here the vector field at the boundary ∂S of an open surface S is
connected to the curl of that field on that surface:∮

∂S

X · ds =

∫
S

(curlX) · da. (2.11)

If the divergence theorem is applied to the continuity equation one can derive an integral
representation of this expression:∮

∂V

J · da +

∫
V

∂%

∂t
dv = 0. (2.12)

In the same manner integral expressions of Maxwell’s equations can be found. By
applying either the divergence or the curl theorem one gets∮

∂V

D · da =

∫
V

% dv (2.13)∮
∂S

H · ds−
∫

S

∂D
∂t

· da =

∫
S

J · da (2.14)∮
∂V

B · da = 0 (2.15)∮
∂S

E · ds +

∫
S

∂B
∂t

· da = 0. (2.16)

These equations must be satisfied for every well behaved volume and surface.

For many applications it is convenient to transform the above equations and quantities
from the time domain into the frequency domain using the Fourier transformation
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[MF53, Arf85, Kra99]. The transformation from time to frequency domain and back is
done by applying the following integrals:

F (jω, ...) =

∫ ∞

−∞
F (t, ...) e−jωtdt (2.17)

F (t, ...) =
1

2π

∫ ∞

−∞
F (jω, ...) e+jωtdω. (2.18)

This, however, is only possible for linear systems. We assume this linearity. Many
equations become considerably simpler and solutions can be computed easier. For the
transformation of Maxwell’s equations the following rules may be used:

F (t, ...) ◦−• F (jω, ...) (2.19)

F (t, ...) ◦−• F (jω, ...) (2.20)

∂

∂t
. . . ◦−• jω · . . . . (2.21)

Then we get:

div D = %

∮
∂V

D · da =

∫
V

% dv (2.22)

div B = 0

∮
∂V

B · da = 0 (2.23)

curlH− jωD = J

∮
∂S

H · ds− jω

∫
S

D · da =

∫
S

J · da (2.24)

curlE + jωB = 0

∮
∂S

E · ds + jω

∫
S

B · da = 0. (2.25)

Furthermore, the continuity equation becomes

div J + jω% = 0

∮
∂V

J · da + jω

∫
V

% dv = 0. (2.26)

Throughout the whole document we will stay in the frequency domain. The represen-
tation of the jω dependence of the respective quantities will be omitted.

2.1.2 Retarded Electromagnetic Potentials

A common way to find solutions to Maxwell’s equations is to express the field with
the aid of potentials. The Helmholtz theorem [MF53] states that every, at infinity
vanishing vector field can be expressed as the sum of the gradient of a scalar field and
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the curl of a vector field. In the special case of the magnetic field B the scalar field
must be zero to satisfy (2.23). Thus we can write

B = curlA, (2.27)

where A is the vector potential. Inserting this into (2.25) gives the expression

curl (E + jωA) = 0, (2.28)

which means that the term inside the parenthesis is a curl-free field. According to the
Helmholtz theorem those fields can be represented by the gradient of a scalar potential
or

E = − grad ϕ− jωA. (2.29)

The homogeneous equations (2.23) and (2.25) are automatically fulfilled by the fields
(2.27) and (2.29). If we insert these fields into the inhomogeneous equations (2.22) and
(2.24) we get

4ϕ + jω div A = −%

ε
(2.30)

4A− (jω)2 µεA− grad (div A + jωµεϕ) = −µJ. (2.31)

Due to the gauge invariance of the fields [GN99] we are free to choose a condition for
div A. Usually the Coulomb gauge div A = 0 or the Lorenz1 gauge div A + jωµεϕ = 0
is used. For our purposes the latter is more suitable. This condition decouples (2.30)
and (2.31) and yields inhomogeneous wave equations for the potentials:(

4+ k2
)
ϕ = −%

ε
(2.32)(

4+ k2
)
A = −µJ. (2.33)

The quantity k = ω
√

µε is called the wave number. A solution of the above equations,
which are elliptical partial differential equations, is, in general, obtained by finding
appropriate Green’s functions [Lin95, Dud94, Bal89]. The solutions can then be written
as

ϕ (x) =
1

ε

∫
V

G (x,x′) % (x′) dv′ (2.34)

and

A (x) = µ

∫
V

G (x,x′)J (x′) dv′. (2.35)

1Ludvig Lorenz published these equations in [Lor67b, Lor67a] first; some authors erroneously give
credit to Hendrik A. Lorentz for this, see [vB91, NS01]
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For the rather simple case of free space the Green’s function can be found to be (see
e.g. [Jac98])

G (x,x′) =
e−jkR

4πR
(2.36)

with the distance R = |x− x′|. Because the Green’s function contains the phase
factor e−jkR, which in time domain is a time delay, the potentials are called retarded
potentials.

More complicated boundaries than free space with corresponding boundary conditions
can be taken into account with the appropriate Green’s function. Often this function
is very complicated. For some cases, e.g., for an ideal ground plane with or without a
dielectric layer or a corner, closed-form formulae of this function can be given. Mostly,
these are linear combinations of terms of the type of the free-space Green’s function. We
will concentrate on those, however, whenever necessary also more complicated Green’s
functions can be used.

In (2.34) and (2.35) the integration must be carried out over the whole volume. The
vector x′ points to the elementary volume element, where the integration is currently
performed. The observation point, where the electromagnetic potentials and fields are
computed is denoted by x.

With the above equations the fields can be calculated when the field sources, i.e. the
current and the charge densities, are known. However, the sources and the fields
interact with each other, which usually makes the determination of the sources and
fields a difficult problem [RW44].

2.1.3 Calculating the Current and Charge Distributions

In order to solve Maxwell’s equations for real world problems often an integral equation
is formulated. For this the total electric field strength E is divided into two parts:

E = Escat + E(i). (2.37)

The first is the scattered field Escat, generated by the currents and charges in the
conductors of the structure under investigation. The second part is an external incident
field E(i) that is known. According to (2.29), the scattered field can be expressed with
the aid of the scalar potential ϕ and the vector potential A:

E = − grad ϕ− jωA + E(i). (2.38)

The terms for the potentials may now be replaced into this equation yielding an equa-
tion involving the total electric field, the current density and the charge density. The
observation point x, where the electric field strength is computed, is moved inside a



2.2 Classical Transmission-Line Theory 33

conductor, where a current is flowing. Then Ohm’s law can be applied to eliminate the
electric field strength. In combination with the continuity relation we get two equations
with two unknowns:

grad
1

ε

∫
V

G (x,x′) % (x′) dv′ + jωµ

∫
V

G (x,x′)J (x′) dv′ +
J (x)

σ
= E(i) (x) (2.39)

jω% (x) + div J (x) = 0. (2.40)

These can be solved for J and % either analytically for special cases or in the general
case numerically.

2.2 Classical Transmission-Line Theory

Contrary to the previously shown solution method for Maxwell’s equations, a certain
class of problems is solved by decomposing the fields into so-called modes. In particular
this is done for cavities and closed waveguides. Every mode exhibits a certain pattern
while the sum of all modes gives the actual field distribution. One of these modes is
the Transverse ElectroMagnetic (TEM) mode. There the field vectors are orthogonal
to each other and to the propagation direction. This mode is very important because
it occurs in many configurations, either alone or as the dominant mode.

Transmission lines are such configurations. In the ideal case they only support TEM
modes. Those lines consist of two or more infinitely long and lossless conductors, with
a constant cross section. Simple examples are, e.g., the two-wire line or a coaxial cable.

In this section we will derive equations for those lines, consisting of two conductors. In
principle it is possible to perform the derivation for N conductors. However, this will
complicate matters and not give any more information on fundamental principles of the
transmission-line theory. The new equations are the so-called telegrapher equations,
which describe the field propagation along the conductors with the aid of the voltage
and the current.

For realistic conductors with losses and terminations other field modes are excited as
well and usually exist on the transmission line. For low frequencies these modes are
small, such that one can assume an “almost” TEM mode or quasi-TEM mode.

There are many different ways to derive these equations from Maxwell’s theory, e.g.,
[Kin55, Pau94, Rei02]. Our approach requires a pure TEM mode on the line. With this
assumption Maxwell’s equations can be cast into the telegrapher equations. A com-
pletely different approach, based on the retarded potentials is shown by King [Kin55].
This derivation is a special case of our new theory presented in detail in Chapter 3.
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2.2.1 Properties of the TEM Mode

Before we start, we will discuss some properties of the TEM mode. As mentioned al-
ready, the primary characteristic of this mode is the mutual orthogonality of the electric
and magnetic fields and the propagation direction. We will give only a short overview
over this field mode; reference [Col91] is an excellent source for more information on
this subject.

Without loss of generality, let us assume that the propagation direction is along the
z axis of a Cartesian coordinate system. Then the z components of the electric field
strength and of the magnetic excitation vanish. For source free regions (i.e. J = 0,
% = 0) Maxwell’s equations become

div D = 0 (2.41)

div B = 0 (2.42)

curlE + jωµH = 0 (2.43)

curlH− jωεE = 0. (2.44)

Taking into account the vanishing z components of the fields, the equations (2.43) and
(2.44) reduce to

(curlE) · ez = 0 (2.45)

(curlH) · ez = 0 (2.46)

when dot multiplied with ez. This means both fields are curl free in a plane z = const
and thus can be represented by the product of scalar z-dependent functions ge and gh

and transverse gradient fields:

E = −ge (z) grad ϕe (x, y) (2.47)

H = −gh (z) grad ϕh (x, y) . (2.48)

One could say that the scalar, real valued functions determine the intensity of transverse
field pattern which is given by the gradient expression. Furthermore, if (2.43) and (2.44)
are cross multiplied with ez one gets

∂E

∂z
+ jωµH× ez = 0 (2.49)

∂H

∂z
− jωεE× ez = 0 (2.50)

which are the equations describing the propagation of the fields along the z axis. Note
that (2.45) and (2.49) as well as (2.46) and (2.50) are identical to (2.43) and (2.44),
respectively. They are decompositions into the transverse and longitudinal components.
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With (2.49) the magnetic excitation can also be represented with the aid of the electric
potential

H =
1

jωµ
(ez × grad ϕe)

∂ge

∂z
. (2.51)

Thus both fields are given by the function ge and the scalar potential ϕe.

It is quite simple to eliminate either H or E in (2.49) and (2.50). In both cases on gets
a homogeneous wave equation, that can be solved with standard techniques. However,
instead of doing this we will convert the equations into telegrapher equations, which
represent the physical problem with the aid of the voltage and the current and then
solve for these quantities.

2.2.2 Telegrapher Equations

Figure 2.1 shows an exemplary transmission line with two conductors. The cross-
sectional shape of the conductors is arbitrary. If there is a pure TEM mode outside

z

x

y

C

z

S

Figure 2.1: A uniform transmission line with integration paths.

of the conductors, the longitudinal component of the curl of the fields vanishes. The
current in the conductors must be z directed. The conductor surface at z = const. is
an equipotential line. We can define a path independent electric voltage v as

v :=

∫
C
E · ds. (2.52)

The path C is arbitrary and runs from the surface of one conductor to the other in the
plane z = const. We can also define an electric current as the closed path integral of



36 2 Review of Maxwell’s Theory and the Classical Transmission-Line Theory

the magnetic excitation on the boundary of the open surface S

i :=

∮
∂S

H · ds. (2.53)

Equation (2.49) is now integrated over the path C, which yields

∂v

∂z
+ jωµ

∫
C
(H× ez) · ds = 0. (2.54)

In this expression H is replaced by (2.51) and we get

∂v

∂z
+

∂ge

∂z

∫
C
grad ϕe · ds = 0. (2.55)

In order to derive an formula for ∂ge

∂z
we insert (2.51) into (2.53). After some simple

rearrangements this gives

∂ge

∂z
= jωµ

i (z)∮
∂S

(ez × grad ϕe) · ds
, (2.56)

which can be inserted into (2.55). This yields the first of the two telegrapher equations:

∂v

∂z
+ jωL′i (z) = 0 (2.57)

where L′ is the z-independent per-unit-length inductance defined by:

L′ := µ

∫
C grad ϕe · ds∮

∂S
(ez × grad ϕe) · ds

. (2.58)

In order to get the second equation we integrate (2.50) over the boundary of the open
surface S, which results in

∂i

∂z
− jωε

∮
∂S

(E× ez) · ds = 0. (2.59)

Here E is replaced by (2.47) giving

∂i

∂z
− jωεge

∮
∂S

(ez × grad ϕe) · ds = 0. (2.60)

An formula for ge is obtained by either integrating (2.56) or by inserting (2.47) into
(2.52):

ge (z) =
v (z)∫

C grad ϕe · ds
. (2.61)
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If this is used to replace ge in (2.60) we eventually get the second telegrapher equation

∂i

∂z
+ jωC ′v (z) = 0, (2.62)

where C ′ is the z-independent per-unit-length capacitance. This quantity is given by

C ′ := ε

∮
∂S

(ez × grad ϕe) · ds∫
C grad ϕe · ds

. (2.63)

The two telegrapher equations (2.57) and (2.62) are a system of coupled ordinary
first-order differential equations which can be solved with standard algorithms. For
the solution the per-unit-length parameters must be known. These coefficients can be
determined with the aid of (2.58) and (2.63), which requires the knowledge of the two-
dimensional potential field ϕe. To get an equation for the calculation of this function
we take the divergence of (2.47), which must vanish in source free regions:

div E = div (ge grad ϕe) = 0 (2.64)

4ϕe = 0 (2.65)

This means, at an arbitrary position z we have to solve the above Laplace equation.
We have to take into account appropriate boundary conditions. At surfaces of the
conductors the potential is the same everywhere, thus we may assign a potential of 1 V
to the surface of one conductor and a potential of 0 V to the other. For the solution
there are many different ways to go. Often the potential is regarded as the real or
imaginary part of an analytic function f(w) with w = u+jv, where the Laplace equation
is automatically fulfilled. Then one needs to find a suitable function f(w), where
the equipotential lines coincide with the conductor boundaries. Often the conformal
mapping approach is used.

One remarkable result of the derivation is that the above equations are valid for all
frequencies, there are no restrictions.

2.2.3 Field Coupling

The prescribed approach does not include field coupling to the transmission lines.
In general, external fields disturb the propagating TEM modes and excite additional
modes. However, when the distance between the conductors is much smaller than
the wavelength, one can assume a quasi-TEM mode which leads to coupling models
for the transmission lines. There are three different models known in the literature
[APG79, TSH65, Rac93] that all describe the same physics with different quantities.
At least for a uniform surrounding medium they all give the same results. A good sum-
mary and discussion of all three models is published in [NR95], [Tes95], and [TIK97].
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The telegrapher equations are extended by inhomogeneous terms v′s and i′s, which rep-
resent distributed current and voltage sources along the line and directly depend on
the exciting fields. The telegrapher equations then become

∂v

∂z
+ jωL′i = v′s (2.66)

∂i

∂z
+ jωC ′v = i′s. (2.67)

Depending on the used coupling model v and i represent either the total or the scattered
voltage or current and the source terms depend on different components of the electric
and magnetic fields. Figure 2.2 shows a uniform transmission line with field coupling.
Details for the computation are shown in Table 2.1.

x

h

−h

E
(i)

H
(i)

z

Figure 2.2: A uniform transmission line with field coupling.

Table 2.1: The field to transmission line coupling models.
Model v i v′s i′s

Agrawal [APG79] scat. tot. E
(i)
z (h, z)− E

(i)
z (−h, z) 0

Taylor [TSH65] tot. tot. jω

∫ h

−h

B(i)
y dx −jωC ′

∫ h

−h

E(i)
x dx

Rachidi [Rac93] tot. scat. 0 − 1
L′

∫ h

−h

∂B
(i)
z

∂y
dx

In the following we will restrict us to the Agrawal model, because it is closely related
to the source terms in the integral equation for the electric field (2.39). Also it will
occur in the generalized telegrapher equations in a generalized variant.
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2.2.4 Losses and Dielectrics

The derivation for the telegrapher equations is done for a rather ideal case with lossless,
infinitely long conductors embedded into a homogeneous, lossless medium. But almost
all practical transmission lines have losses. If these losses are small one can speak of a
quasi-TEM mode and introduce new quantities in the telegrapher equations:

∂v

∂z
+ (jωL′ + R′) i = v′s (2.68)

∂i

∂z
+ (jωC ′ + G′) v = 0. (2.69)

The quantities R′ and G′ are the per-unit-length resistance and the per-unit-length
conductance and represent the losses in the conductor and in the surrounding media,
respectively. In a very simple case the per-unit-length resistance is the DC resistance
per unit length of the conductor. In general the determination of the loss terms is
complicated and goes beyond the scope of this work. The reader is referred to the
various, earlier mentioned publications on the transmission-line theory.

2.2.5 Nonuniformity and Multiconductor Lines

Already Heaviside [Hea25] recognized the possibility to make the parameters z depen-
dent. This broadens the scope of the transmission-line theory and allows to apply
it to nonuniform transmission lines. Many authors refined these ideas up to recent
publications, e.g., [NBS92, BNS96, BS03, Ste05].

Note that these nonuniform transmission lines are different from those that are subject
of this work. In the prescribed approach only a quasi-TEM mode is allowed whereas in
this work a full-wave description is derived and thus all modes are allowed. Care must
be taken because the term nonuniform transmission lines is used in both contexts. It
refers to the geometrical nonuniformity, which is present in both cases.

The classical telegrapher equations can also be established for (nonuniform) multi-
conductor transmission lines (see e.g. [BLT78, KS64, Rei02]). We will, without any
derivation, just give the results. The equations can be written in supermatrix notation:

∂

∂z

[
v
i

]
+ jω

[
0 L′ (z) + 1

jω
R′ (z)

C′ (z) + 1
jω

G′ (z) 0

]
︸ ︷︷ ︸

Pc

[
v
i

]
=

[
v′s
0

]
. (2.70)

Here, for an N -conductor line, v and i are N -element column vectors of the conductor
voltages and currents, respectively and v′s is the column vector of the distributed source
terms. The N × N (z-dependent) matrices L′, C′, R′, and G′ contain the per-unit-
length inductances, capacitances, resistances, and conductances, respectively. Thus, for
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an N -conductor transmission line we have 2N coupled ordinary differential equations
of first order.

2.2.6 Different Representations

The telegrapher equations for (nonuniform) multiconductor transmission lines can be
represented in many different forms [HNS03]. In addition to the one already shown,
two more are of interest here. Instead of using the voltage and the current we might
as well use the charge per unit length and the current. The first is connected to the
latter by the continuity equation (see also (3.24)):

∂

∂z
i (z) + jωq (z) = 0, (2.71)

where q is the column vector of the per-unit-length charges of the conductors. This
relation can be inserted into (2.70) giving

∂

∂z

[
q
i

]
+ jω

[
P11 P12

1 0

] [
q
i

]
=

[
q′s
0

]
(2.72)

with

P11 =

(
∂

∂z

(
C′ +

1

jω
G′
))(

C′ +
1

jω
G′
)−1

(2.73)

= Dz

(
C′ +

1

jω
G′
)

(see Appendix B.3) (2.74)

P12 =

(
C′ +

1

jω
G′
)(

L′ +
1

jω
R′
)

(2.75)

and

q′s =

(
C′ +

1

jω
G′
)

v′s. (2.76)

If the line is uniform and the parameters do not depend on z the matrix P11 vanishes.

Instead with 2N differential equations of first order, the telegrapher equations can also
be represented as N differential equations of second order. If we eliminate q in (2.72)
we get the wave equation for the current:(

∂2

∂z2
−D

∂

∂z
− Γ2

)
i = −jωqs (2.77)

with

Γ2 = −ω2P12 and D = −jωP11. (2.78)
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The matrix Γ is called the propagation matrix. For uniform lines it is independent
of z; for nonuniform lines it is a function of z. D is a damping factor. The waves
are damped when they propagate along the line because a part of the wave energy is
reflected back to the beginning due to the nonuniformity. This coefficient vanishes for
uniform lines because there are no reflections. Note that this damping is not caused
by losses.

2.2.7 Solution

The solution of the telegrapher equations can be easily obtained by using standard
methods for solving differential equations (e.g. [Pau94]). One common method in the
frequency domain is to construct the solution with the aid of the matrix exponential.
This is a special case of the product integral (Appendix B). See also Section 3.7 for
more details on the solution of the telegrapher equations.
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Chapter 3

Equations for Nonuniform Transmission Lines

Abstract — This chapter deals with the development of the transmission-line
supertheory. This theory describes the wave propagation along as well as the field
coupling to nonuniform transmission lines. Starting from a geometrical description
of the transmission-line conductors, in the course of the derivation, Maxwell’s
equations are cast into telegrapher equations with position-dependent per-unit-length
parameters. The wave propagation is described with the aid of the current and the
per-unit-length charge or the quasivoltage. There is no restriction to the (quasi-)
TEM mode. Even radiation is accounted for.

Preliminary Remarks Concerning Voltage, Potential, and Charge

The classical transmission-line theory connects the voltage and the current on a trans-
mission line by a system of first-order differential equations. Although the voltage is
a physical, measurable quantity it is not very well suited for generalized telegrapher
equations. In the general case, the voltage does not only depend on the two points
where it is measured or calculated, but also on the path taken to get from one point
to the other. Only in special cases, e.g. in a plane perpendicular to a TEM-mode
transmission line, the voltage is independent from that path. For a nonuniform line
which supports arbitrary modes there is no such plane. Thus a replacement for the
voltage is needed. There are at least two possibilities.

One of these possibilities is to choose the scalar potential. This quantity can be calcu-
lated at every point and depends only on the point itself. However, the scalar potential
is a purely mathematical aid to calculate electromagnetic fields, has no physical mean-
ing, and can not be measured. Moreover, it is a gauge-dependent value. The advantage
is that the unit of the voltage remains in the telegrapher equations and the generalized
telegrapher equations “feel” like the classical equations. Furthermore, the potential
can be used to easily calculate the voltage on sections of the transmission line where
only a TEM mode is supported.

43
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The second possibility is to choose the charge. This is a physical quantity and the natu-
ral supplement to the current. One of the telegrapher equations would then become the
adapted continuity equation, which is one of the fundamental laws of electrodynamics.

Because only physical quantities are used the latter is the better choice. However, we
will show how to convert the resulting equations to a form using the current and the
scalar potential.

3.1 Conductor Geometry

Before we actually start deriving the theory we need a way to precisely specify the
geometry of the nonuniform transmission lines. For that we borrow some techniques
from differential geometry (see e.g. [O’N66]).

The position of a conductor i is given by a general space curve. The vector Ci(ζ)
points to that curve, which must be well behaved and two-times differentiable. For all
conductors we choose the curve parameter to be the same. One side of the conductors,
e.g. the beginning of the line, corresponds to the curve parameter ζ0 and the other side
coincides with the ζl. The conductors can have different lengths, can be bent or can
have loops. There is no restriction on the shape of the conductor, as long as it can be
described by a space curve.

One may raise the question, how to determine the space curve for a given conductor.
There is no unique way, in fact, there are infinite possibilities. The most favorable way
is to find a circular tube that tightly surrounds the conductor and choose the center
line of this tube.

3.1.1 Local Coordinate System

A local coordinate system (see Figure 3.1) can be constructed using the so-called Frenet
frame. This frame is composed of three vectors, the tangential unit vector Tu

i (ζ), the
normal unit vector Nu

i (ζ) and the binormal unit vector Bu
i (ζ). The tangential vector

can be calculated by differentiating Ci(ζ) with respect to ζ:

Ti =
∂Ci

∂ζ
. (3.1)

This vector is not a unit vector because the curve parameter is not the arc length,
instead the unit vector Tu

i is

Tu
i (ζ) =

Ti (ζ)

uii (ζ)
, (3.2)
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where uii is the length of the tangential vector at the location ζ.

uii (ζ) = |Ti (ζ)| (3.3)

Ci (ζ)

ζl

ζ0

N
u

i
(ζ)

B
u

i
(ζ)

T
u

i
(ζ)

x
z

y

Si (ζ)

Figure 3.1: A conductor with the central space curve and the tangential, normal, and
binormal vectors.

The normal and binormal unit vectors are given by

Nu
i =

1

κiuii

∂Tu
i

∂ζ
(3.4)

and

Bu
i = Tu

i ×Nu
i , (3.5)

with the quantity κi being the curvature

κi =

∣∣∣∣∂Tu
i

∂ζ

∣∣∣∣ 1

uii

. (3.6)

We might note here that for straight conductors the derivative of the tangential vector
vanishes and one can not uniquely define a normal vector. Under this circumstances
we choose a direction which is most convenient for us.

Now a polar coordinate system in the plane spanned by Nu
i and Bu

i is introduced.
Every point xi inside the conductor volume Vi can then be addressed by the coordinates
(ζ, r, α) (see Figure 3.2):

xi (ζ, r, α) = Ci (ζ) + Nu
i (ζ) r cos α + Bu

i (ζ) r sin α. (3.7)

For all conductors the coordinate ζ is in the interval [ζ0, ζl]. The upper and lower
bounds coincide with the two ends of the conductors. The angle α can have values
between 0 and 2π. The radius r is bounded by r̂i (ζ, α), which describes the surface of
the conductor. This way of specifying the conductor volume does not allow all surface
shapes, however, the most interesting shapes are covered.
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Figure 3.2: The conductor cross section with the polar coordinate system.

3.1.2 Tangential Surface Vector

In order to apply a boundary condition for the electric field the tangential vector on
the surface of a conductor must be known. With the above coordinates the surface of
the conductor is given by

x̂i (ζ, α) = Ci (ζ) + Nu
i (ζ) r̂ (ζ, α) cos α + Bu

i (ζ) r̂ (ζ, α) sin α. (3.8)

The tangential vector on the surface in the direction of the conductor is then

∂x̂i (ζ, α)

∂ζ
= Ti (ζ) +

∂ (Nu
i (ζ) r̂ (ζ, α))

∂ζ
cos α +

∂ (Bu
i (ζ) r̂ (ζ, α))

∂ζ
sin α. (3.9)

To simplify matters, we require that the length of the last two vectors in this sum is
small compared to the first one. Thus if

|Ti (ζ)| �
∣∣∣∣∂ (Nu

i (ζ) r̂ (ζ, α))

∂ζ
cos α +

∂ (Bu
i (ζ) r̂ (ζ, α))

∂ζ
sin α

∣∣∣∣ (3.10)

we can write

∂x̂i (ζ, α)

∂ζ
≈ Ti (ζ) . (3.11)

This restricts the theory to conductors where the cross-sectional shape is varying very
slowly along ζ, which is true for many configurations. For a constant cross section the
last two terms even vanish. If the above condition is not fulfilled the correct tangential
vector must be taken into account. This does not influence our derivation, however, it
would make the equations more complicated.
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3.1.3 Volume and Surface Integrals

It will be necessary to integrate a function F (...,x′) over the conductor volume Vi, e.g.∫
Vi

F (...,x′) dv′ (3.12)

With the just established coordinate system the volume element dv′ becomes

dv′ =

∣∣∣∣∂ (x, y, z)

∂ (ζ, r, α)

∣∣∣∣ drdαdζ (3.13)

= (1− rκi (ζ) cos α) r dr dα uii (ζ) dζ (3.14)

= fci
(ζ, r, α) r dr dα uii (ζ) dζ, (3.15)

where

fci
(ζ, r, α) = (1− r κi (ζ) cos α) (3.16)

and the integral can be written as∫
Vi

F (...,x′) dv′ =

∫ ζl

ζ0

∫ 2π

0

∫ r̂i(ζ,α)

0

F (...,x′i) fci
r′ dr′ dα′ uii dζ ′. (3.17)

The two inner integrals correspond to an integration over the cross section of the
conductor. This will be abbreviated as∫ 2π

0

∫ r̂i(ζ
′,α′)

0

F (...,x′i) fci
r′ dr′ dα′ =

∫
Si(ζ′)

F (...,x′i) fci
da′. (3.18)

3.2 Equations from Electrodynamics

Based on the continuity equation we will derive the first of the two telegrapher equa-
tions. This step is rather simple because it only involves the adaption of the continuity
equation to the conductor geometry.

The second telegrapher equation is then derived from an integral equation for the
electric field. This step requires some more advanced techniques. The basic idea is to
formulate a trial function for the current which corresponds to a solution of a second-
order differential equation. If this trial function is inserted into the integral equation
it becomes the second telegrapher equation.
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3.2.1 Continuity Equation

The continuity equation connects the charge density with the current density. To
adapt this equation to the conductor geometry, one can define a conductor current and
a per-unit-length charge.

We start with the application of the integral form of (2.26) to a volume enclosing a
part of conductor i. The two cross-sectional surfaces Si(ζ0) at the beginning of the
conductor and Si(ζ) at position ζ somewhere on the conductor, must belong to this
volume surface. Then we can write∮

∂Viζ0...ζ

J da + jω

∫
Viζ0...ζ

% dv = 0. (3.19)

Because there is no current through the surface of the conductor, except at the cross
sections, we may also write∫

Si(ζ)

J ·Tu
i (ζ) da−

∫
Si(ζ0)

J ·Tu
i (ζ0) da + jω

∫ ζ

ζ0

uii

∫
Si(ζ′)

% fci
da dζ ′ = 0. (3.20)

This expression is differentiated with respect to ζ resulting in

∂

∂ζ

∫
Si(ζ)

J ·Tu
i (ζ) da + jωuii

∫
Si(ζ′)

% fci
da = 0. (3.21)

The first term is the derivative of the conductor current and the second term is a
per-unit-length charge multiplied with jω. With the definitions

ii (ζ) :=

∫
Si(ζ)

J
(
xi

)
·Tu

i (ζ) da (3.22)

and

qi (ζ) :=

∫
Si(ζ)

%
(
xi

)
fci

da uii (ζ) (3.23)

(3.21) becomes

∂ii
∂ζ

+ jωqi = 0, (3.24)

which is the continuity equation tailored for the current and the per-unit-length charge
in a conductor and is named the first extended telegrapher equation.
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Reconstruction of the Densities

For the calculation of electromagnetic fields the current density and the charge den-
sity are required. With a given current and per-unit-length charge, respectively, the
densities can be reconstructed with the aid of distribution functions as follows:

J (xi) = Tu
i (ζ) ii (ζ) dJi

(xi) (3.25)

% (xi) = qi (ζ)
d%i

(xi)

uii (ζ)
· (3.26)

The distribution functions are defined as

dJi
(xi) :=

J (xi) ·Tu
i (ζ)

ii (ζ)
(3.27)

and

d%i
(xi) :=

% (xi)

qi (ζ)
uii (ζ) . (3.28)

Our theory is not able to predict these functions, rather it is necessary to specify them
before any calculations are made. In many cases it is sufficient to either select some
simple function or by “guessing” the current and charge distribution. For thin wires,
for instance, the thin-wire approximation can be used (see below).

In general, this approach allows us to take into account current and charge displacement
effects, such as the skin effect, however, most of the time the solutions for the current
and charge distribution inside the conductors are unknown.

There are also several publications dealing with the solution for the fields and source
distributions inside straight wires, e.g. [Mie00, Som64, KS64]. Unfortunately, it is not
possible to directly transfer the results to our nonuniform lines. In [NT04a] a Fourier
series approach was used to calculate the azimuthal current distribution in a straight
thick wire above ground.

This seems to be one possible solution to this problem. One could expand the distri-
bution functions in a combination of a Fourier (for α) and a Taylor series (for r). Then
one would get a system of telegrapher equations for every coefficient of these series
expansions.

3.2.2 Integral Equation

The second equation arises from the integral equation (2.39). If this equation is applied
to the geometry of a multiconductor transmission line the volume integrals can be split
into a sum of volume integrals over the conductor volumina. The observation point x
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is on the surface of the conductor j and thus becomes x̂j. Furthermore, we substitute
(3.25) and (3.26) for J and %. Now the equation is multiplied with the tangential vector
Tu

j , to extract the tangential component of the current and fields along the conductors.
Eventually, the average on the surface is computed by performing the operation

1

2π

∫ 2π

0

f (. . . , α) dα. (3.29)

After this we get an adapted version of the integral equation (2.39) for a nonuniform
multiconductor transmission line. A detailed derivation is shown in Appendix A, which
yields the equation

∂

∂ζ

N∑
i=1

∫ ζl

ζ0

kcji
(ζ, ζ ′) qi (ζ

′) dζ ′ + jω
N∑

i=1

∫ ζl

ζ0

klji
(ζ, ζ ′) ii (ζ

′) dζ ′ + zjj (ζ) ij (ζ) = v
(i)′

j (ζ) ,

(3.30)

where the source term

v
(i)′

j (ζ) :=
1

2π

∫ 2π

0

Tj (ζ) · E(i) (x̂j) dα (3.31)

is the averaged incident electric field. The variable zjj represents the per-unit-length
surface impedance of conductor j and is calculated from

zjj (ζ) :=
ujj

2π

∫ 2π

0

dJi
(x̂i)

σ
dα. (3.32)

The integral kernels are composed of Green’s functions, current or charge distribution
functions, and geometrical factors and read

klji
(ζ, ζ ′) =

µ

2π
Tj (ζ) ·Ti (ζ

′)

∫ 2π

0

∫
Si(ζ′)

G (x̂j,x
′
i) dJi

(xi) fci
da′ dα (3.33)

and

kcji
(ζ, ζ ′) =

1

2πε

∫ 2π

0

∫
Si(ζ′)

G (x̂j,x
′
i) d%i

(xi) fci
da′ dα . (3.34)

Thin-Wire Approximation

Very often it is sufficient to think of the conductors as thin wires with a circular cross
section. The thin-wire approximation then assumes that the currents and charges are
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concentrated at the center of the wires. In this situation the integral kernels can be
significantly simplified:

klji
(ζ, ζ ′) := µTj (ζ) ·Ti (ζ

′) G (Cj (ζ) ,Ci (ζ
′)) , (3.35)

kcji
(ζ, ζ ′) :=

1

ε
G (Cj (ζ) ,Ci (ζ

′)) . (3.36)

If Cj and Ci point to the center of the same conductor, Ci must be moved from the
center to the surface.

With this approximation many problems can be solved. However, the current and
charge distributions inside the conductors are fixed and effects such as the skin effect
or the proximity effect can not be taken into account.

3.3 Representation as Matrix Equations

For a transmission line with N conductors we now have 2N equations (N equations
of type (3.24) and N equations of type (3.30)). We also have 2N unknowns (q1 . . . qN ,
i1 . . . iN). We may now combine this system of equations into two matrix equations.
The first set of telegrapher equations (3.24) may then be written as

∂

∂ζ
i + jωq = 0. (3.37)

The column vectors i = [i1 . . . iN ]T and q = [q1 . . . qN ]T contain the conductor currents
and the per-unit-length charges, respectively. The second equation (3.30) becomes

∂

∂ζ

∫ ζl

ζ0

kc (ζ, ζ ′)q (ζ ′) dζ ′ + jω

∫ ζl

ζ0

kl (ζ, ζ ′) i (ζ ′) dζ ′ + z (ζ) i (ζ) = v(i)′ (ζ) . (3.38)

The elements of the matrix functions kc and kl are the integral kernels (3.33) and
(3.34), while the column vector v(i)′ contains the distributed sources. The diagonal
matrix z accommodates the per-unit-length surface impedances.

3.4 Current and Charge Trial Function

Equation (3.38) already shows some similarities to the telegrapher equation. However,
the unknown quantities i and q are inside integrals. We need to find a way to pull the
current and the per-unit-length charge out of the integrals. This can be achieved by
introducing trial functions for the current and the per-unit-length charge.

King presented similar equations for uniform lines in [Kin55]. His trial function is a
Taylor series expansion of the current, truncated after the linear term. He shows that
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only these terms are important, which is due to the TEM mode. Since we do not have
an exclusive TEM mode anymore, our trial function is more complicated.

On an excited transmission line there are usually forward and backward traveling waves.
These waves are governed by wave equations. Also the currents in the conductors obey
wave equations. Thus it is obvious to use the solution of a wave equation as a trial
function for the current. In frequency domain a wave equation usually is a second-
order ordinary differential equation (ODE), with, in the most general case, nonconstant
coefficients. For our N -conductor system we get N coupled ODEs, which are most
conveniently written as a matrix equation:(

∂2

∂ζ2
+ jωPt11 (ζ)

∂

∂ζ
+ ω2Pt12 (ζ)

)
i (ζ) = −jωq′t (ζ) . (3.39)

The matrices Pt11 and Pt12 are the coefficient matrices, and the column vector q′t is
the excitation. With the aid of (3.37) we may convert this equation into a system of
coupled first-order differential equations. In supermatrix notation this becomes

∂

∂ζ

[
q (ζ)
i (ζ)

]
+ jω

[
Pt11 Pt12

1 0

]
︸ ︷︷ ︸

Pt

[
q (ζ)
i (ζ)

]
=

[
q′t (ζ)

0

]
. (3.40)

The general solution of (3.40) can be written in a very compact form:[
q (ζ ′)
i (ζ ′)

]
= Mζ′

ζ

{
−jωPt

} [q (ζ)
i (ζ)

]
+

∫ ζ′

ζ

Mζ′

ξ

{
−jωPt

} [q′t (ξ)
0

]
dξ, (3.41)

where Mζ′

ζ

{
−jωPt

}
is the product integral [Gan84, DF79] (see also Appendix B).

This expression is the desired trial function. Although, the supermatrix Pt and the
excitation vector q′t are unknown, this expression gives us a very general relation for the
currents and per-unit-length charges at two different positions along the transmission
lines.

3.5 Generalized Telegrapher Equations

In the next step to the generalized telegrapher equations, this trial function (3.41) is
substituted into (3.38). For this (3.38) may be rearranged to[

1jω 1
∂

∂ζ

]
(N,2N)

∫ ζl

ζ0

K (ζ, ζ ′)

[
q (ζ ′)
i (ζ ′)

]
dζ ′ + z (ζ) i (ζ) = v(i)′ (ζ) , (3.42)
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where the supermatrix K is given by

K :=

[
0 kl

kc 0

]
. (3.43)

Now (3.41) can be directly inserted and after some minor rearrangements the result
becomes

I21
∂q

∂ζ
+ I22

∂i

∂ζ
+

(
jωI11 +

∂I21

∂ζ

)
q +

(
jωI12 +

∂I22

∂ζ
+ z

)
i + jωI01 +

∂I02

∂ζ
= v(i)′ .

(3.44)

The new matrices and vectors Iij are the blocks of the supermatrix

I (ζ) =

∫ ζl

ζ0

K (ζ, ζ ′)Mζ′

ζ

{
−jωPt

}
dζ ′ (3.45)

and of the supervector[
I10 (ζ)
I20 (ζ)

]
=

∫ ζl

ζ0

K (ζ, ζ ′)

∫ ζ′

ζ

Mζ′

ξ

{
−jωPt

} [q′t (ξ)
0

]
dξdζ ′. (3.46)

We now can combine (3.37) and (3.44) into a supermatrix equation

∂

∂ζ

[
q (ζ)
i (ζ)

]
+ jωP (ζ)

[
q (ζ)
i (ζ)

]
=

[
q′s (ζ)

0

]
(3.47)

where

P =

[
I21 I22

0 1

]−1
[
I11 + 1

jω
∂I21
∂ζ

I12 + 1
jω

(
∂I22
∂ζ

+ z
)

1 0

]
(3.48)

and

q′s = I21
−1

(
v(i)′ − jωI10 −

∂I20

∂ζ

)
. (3.49)

This is a remarkable result! With the introduction of the trial function we were able
to cast the integral equation together with the continuity relation into a system of
first-order ODEs. These equations are identical with the ODEs, the solution of which
is the trial function. Thus the current is indeed governed by a second-order ODE.

The equation (3.47) has the same structure as the telegrapher equations, although it
encompasses the full integral equations which come directly from Maxwell’s theory.
No restricting assumptions are made, apart from assumptions about the current and
charge distribution inside the conductors.

The equations are valid for a nonuniform multiconductor transmission line and take
into account all field modes and physical effects that might occur, including radiation
losses. It surpasses the classical transmission-line theory, which is a special case. Thus
we call our new theory the Transmission-Line Supertheory (TLST).
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3.6 Parameters and Source Term Determination

Before we can solve the above generalized telegrapher equations, the parameters and
source terms must be determined. This is the most complicated part because it involves
the solution of integral equations.

3.6.1 Parameters

During the derivation of the generalized telegrapher equations we also got a formula
for the determination of the parameters (see (3.48)). In order to evaluate this we must
compute I which depends on the parameters of the trial function Pt. Unfortunately
these parameters are unknown. However, (3.40) and (3.47) contain the same physical
quantities, and thus the coefficients as well as the source terms must be identical.
Therefore we can set

Pt = P =

[
I−1
21

(
I11 − I22 + 1

jω
∂I21
∂ξ

)
I−1
21

(
I12 + 1

jω

(
z + ∂I22

∂ξ

))
1 0

]
. (3.50)

If we now insert (3.50) into (3.45) we get an integral equation for I:

I (ζ) =

∫ ζl

ζ0

K (ζ, ζ ′)Mζ′

ζ

{
−jωP

}
dζ ′. (3.51)

There is no known way to us, to explicitly solve for I in the general case. Therefore,
we will use an iterative procedure to determine I:

I
(k+1)

= Lp

{
I
(k)
}

. (3.52)

The operation Lp is given by (3.50) and (3.51). I
(k)

is the approximation for I after the
k-th iteration. The final result of this operation is then used to calculate the parameters
with the aid of (3.48) or (3.50).

Concerning convergence of the procedure, for several examples we have shown that one
can get very good results with only one iteration. Additionally, for line setups, where
analytical solutions are possible, the iterative approach gives the same results as other
methods (see Section 5). However, currently we can not provide a proof for the general
convergence of the iteration procedure.

To start the iteration, we need an I
(0)

to begin with. For this, we will try to get as
much information from (3.51) as possible. One can expand I into a series:

I = I0 + jωI1 + . . . (3.53)
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As we already know, for a pure TEM mode the parameters are frequency independent.
Consequently all but the constant term of this series will vanish. If there are additional
modes on the line the higher order terms occur. However, for many cases the constant
term will still be dominant. Thus this term should be a quite good starting value for
the iteration:

I
(0)

= I0. (3.54)

To calculate I
(0)

we have to evaluate (3.51) for ω = 0. With some additional approxi-
mations this can be done explicitly.

I
(0)

(ζ) =

∫ ζl

ζ0

K (ζ, ζ ′)
∣∣
ω=0

Mζ′

ζ

{
−

[
I−1
21

∂I21
∂ξ

I−1
21

(
z + ∂I22

∂ξ

)
1 0

]}
dζ ′, (3.55)

The product integral can be replaced by its series representation

I
(0)

(ζ) =

∫ ζl

ζ0

K (ζ, ζ ′)
∣∣
ω=0

(
1−

∫ ζ′

ζ

[
I−1
21

∂I21
∂ξ

I−1
21

(
z + ∂I22

∂ξ

)
1 0

]
dξ + . . .

)
dζ ′. (3.56)

We may now argue that the major contribution to the integral arises if ζ ≈ ζ ′. Physi-
cally this means, that the interaction of regions of the transmission line that are very
close to each other is much stronger than the interaction of more distant regions. In
this case, the second term of the series representation of the product integral is smaller
than the constant term and can be neglected. This argumentation is not necessarily
true for a general nonuniform transmission line, but it is a reasonable way to get good
starting values. Thus the starting values for the iteration are set to

I
(0)

(ζ) =

∫ ζl

ζ0

K (ζ, ζ ′)
∣∣
ω=0

dζ ′. (3.57)

Note that this expression is frequency independent because it is the constant term of
the Taylor expansion of the actual frequency-dependent function. Nonetheless, this
result is used as the starting values for the iteration at all frequencies.

3.6.2 Source Terms

Once the parameters are determined we can calculate the source terms q′s, which are
given by (3.49). For the evaluation we need I10 and I20. Both depend on the already
known Pt and on q′t. This second quantity is equal to our unknown source term because
(3.40) and (3.47) are identical:

q′t = q′s. (3.58)
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With this relation we get an implicit expression for the determination of q′s. Because
an explicit expression is not known, an iterative approach is used to calculate the q′s:

q(k+1)′

s = Lq

{
q(k)′

s

}
, (3.59)

where Lq consists of (3.49) and (3.46). The iteration is started with vanishing sources,

i.e. q
(0)′
s = 0. Then we get with (3.46)

I
(0)
10 = 0 (3.60)

I
(0)
20 = 0 (3.61)

and with (3.49)

q(1)′

s = I−1
21 v(i)′ . (3.62)

The result should then be used to calculate I
(1)
10 and I

(1)
20 , which again is used to calculate

q(2)′ and so on. For practical applications often the first iteration already delivers very
good results.

3.7 Solution of the Extended Telegrapher Equations

The extended telegrapher equations in frequency domain are a system of first-order
ordinary differential equations with nonconstant (i.e. position-dependent) coefficients.
The solution method to this kind of equations is very well known and is the subject of
many books and publications, e.g., from the mathematical point of view [Gan84, DF79],
from the transmission-line-theory point of view [BNS96, NG99], or from the numerical
point of view [Zur84]. As was anticipated in the previous section the general solution
is [

q (ζ)
i (ζ)

]
= Mζ

ζ0
{−jωP}

[
q (ζ0)
i (ζ0)

]
+

∫ ζ

ζ0

Mζ
ξ {−jωP}

[
q′s (ξ)

0

]
dξ. (3.63)

Here Mζ
ζ0
{−jωP} is the product integral, which often is written as

Mζ
ζ0
{X} =

∏ζ

ζ0
eX(η)dη. (3.64)

In Appendix B more details on the product integral are provided. The column vec-
tors q (ζ0) and i (ζ0) are integration constants and are determined by the boundary
conditions at the terminals of the transmission lines.
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3.8 Going Back to Voltages ?

In many cases it is much more convenient to deal with a voltage instead of a charge
per unit length. For instance if the transmission line is embedded into a circuit and
other elements are connected to the line we must know the voltages at the terminals
to perform our calculations.

The voltage v12 between the two points x1 and x2 is defined as the integral of the
electric field strength E along a path C which connects the two points:

v12 := −
∫
Cx1→x2

E · ds. (3.65)

If E is represented with the aid of potentials one can also write

v12 =

∫
Cx1→x2

(grad ϕ + jωA) · ds (3.66)

=ϕ (x2)− ϕ (x1) + jω

∫
Cx1→x2

A · ds. (3.67)

In general, the remaining integral depends on the path that is chosen and thus the
voltage is different for different paths. For a TEM-mode line, in a plane perpendicular
to the conductors, the second integral becomes zero because A ⊥ ds and the voltage
can be uniquely defined as v12 := ϕ (x2) − ϕ (x1). For a general nonuniform line this
is not the case. Thus in order to compute the voltage we need to know the vector
potential along that path. This can be computed, however, it is rather cumbersome to
do this calculation along the transmission line.

If the distance between the conductors at the terminals, i.e. the lengths of the integra-
tion paths for the voltage computation, is much smaller than the smallest wavelength
λ, this region of the transmission line can be regarded to be in the “static” regime.
Fortunately, this is quite often the case and the voltage is given by the difference of po-
tentials at the corresponding conductor terminals. For the potential we use the average
potential at the surface of the conductors, which is calculated by

ϕi (ζ) =
1

2π

∫ 2π

0

ϕ (x̂i (ζ, α)) dα. (3.68)

[Bau04] suggested to call this potential the quasivoltage. Now (2.34) is inserted into this
equation. Then, with some more manipulations (in fact the same as in the derivation
of (3.38), which contains the same expression) we arrive at

ϕ (ζ) =

∫ ζl

ζ0

kc (ζ, ζ ′)q (ζ ′) dζ ′. (3.69)
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Here ϕ is the column vector of the average conductor potentials. With the aid of
(3.41), (3.22), and (3.46) this expression becomes

ϕ = I21q + I22i + I20, (3.70)

which allows us to formulate the following transformation:[
ϕ
i

]
=

[
I21 I22

0 1

] [
q
i

]
+

[
I20

0

]
. (3.71)

Because this relation is valid everywhere on the line, not only at the beginning or
the end, we can easily convert the telegrapher equation into the quasivoltage-current
representation

∂

∂ζ

[
ϕ (ζ)
i (ζ)

]
+ jωP

?
(ζ)

[
ϕ (ζ)
i (ζ)

]
=

[
ϕ′

s (ζ)
i′s (ζ)

]
, (3.72)

where

P
?

=

[
I11I

−1
21 I12 − I11I

−1
21 I22 + z

jω

I−1
21 −I−1

21 I22

]
(3.73)

and [
ϕ′

s

i′s

]
=

[
v(i)′ + jω

(
I11I

−1
21 I20 − I10

)
jωI−1

21 I20

]
. (3.74)

Remember, the quasivoltage along the line is still a gauge-dependent quantity with
no physical meaning. Only when the prescribed conditions are met, the quasivoltage
becomes a real, physical voltage.

In the above equations we can identify jωP?
12 as the parameter matrix, which is equiv-

alent to the per-unit-length impedance matrix of the classical transmission-line theory.
Moreover, the matrix jωP?

21 is equivalent to the per-unit-length admittance matrix.
The two other block matrices jωP?

11 and jωP?
22 vanish in the classical theory and are

only nonzero for nonuniform lines. However, when interpreting these parameters, one
should keep in mind that they connect the current, which is a physical quantity, and
the quasivoltage, which, in general, has no physical meaning.

Also note that unlike the parameters in (3.47) these parameters do not contain any
derivatives. This makes the numerical evaluation of the product integral much simpler
than for (3.47).
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3.9 Discussion of the New Parameters

3.9.1 Wave Equation

In the previous sections we derived a new set of differential equations for nonuniform
transmission lines. The equations have new coefficients, the per-unit-length parame-
ters. In order to give some meaning to these parameters we will investigate a different
representation. First, let us convert the system of 2N first-order differential equations
in q-i representation into a system of N second-order differential equations, involving
the conductor currents and its first and second derivatives.(

∂2

∂ζ2
−D

∂

∂ζ
− Γ2

)
i = is (3.75)

where

Γ2 = −ω2P12 (3.76)

= −ω2I−1
21 I12 + jωI−1

21

(
∂

∂ζ
I22 + z

)
(3.77)

D = −jωP11 (3.78)

= −I−1
21

∂

∂ζ
I21 − jωI−1

21 (I11 − I22) (3.79)

is = −jωqs (3.80)

We can clearly identify Γ as the propagation function, equivalent to the propagation
function in the classical theory (cf. Section 2.2.6). In general this is a complex valued
matrix, incorporating losses, not only caused by conductor losses but also caused by
radiation. The matrix D describes the damping along the line due to the reflections
caused by the nonuniformity.

3.9.2 Radiation Losses

To further investigate the radiation losses [NT05] suggested the establishment of a
power balance for the transmission line. Here we will use a simple model, consisting
only of a one-conductor transmission line above a ground plane. Equation (3.72) is used
to describe this transmission line and we assume that all conditions for the validity of
this equation are met. At position ζ0 the line is fed with a source and there is a load
at ζl. The real power generated by the source is then given by

p (ζ0) =
1

2

(
ϕ (ζ0) i (ζ0) + ϕ (ζ0)i (ζ0)

)
(3.81)
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where the line above the variables indicates the complex conjugate. Likewise, the power
dissipated in the load is given by

p (ζl) =
1

2

(
ϕ (ζl) i (ζl) + ϕ (ζl)i (ζl)

)
. (3.82)

Then the power balance is p(ζ0) = pTL + p(ζl) or rearranged

pTL = − (p (ζl)− p (ζ0)) , (3.83)

where pTL is the power dissipated in the transmission line. The expression inside the
parenthesis can be regarded as an integral of the form

pTL = −
∫ ζl

ζ0

dp (ζ)

dζ
dζ. (3.84)

where

p (ζ) =
1

2

(
ϕ (ζ) i (ζ) + ϕ (ζ)i (ζ)

)
. (3.85)

After some longer manipulations [NT05] one gets the relation

pTL = −
∫ ζl

ζ0

ω
(
= (P ?

12) |i|
2 + = (P ?

21) |ϕ|
2 + =

((
P ?

11 − P ?
22

)
ϕi
))

dζ (3.86)

which describes the real power dissipated by the transmission line. This includes the
power which is converted to heat in the conductors as well as the radiated power. As
we can see, the imaginary parts of the per-unit-length parameters P?

12 and P?
21 are

the important coefficients here. Multiplied with jω these imaginary parts become real
and hence, act as a series resistances and a shunt conductance. The above expression
can also be obtained for other representations of the generalized telegrapher equations.
However, the imaginary parts of the P

?
parameters, which are responsible for losses and

radiation, are “hidden” in the real and imaginary parts of the corresponding parameters
of the other representations and can not be isolated as in (3.86).

3.9.3 Asymmetric Parameter Matrices

In the classical transmission-line theory, reciprocity implies symmetric parameter ma-
trices. Unlike these matrices, the parameter matrices of the supertheory are not nec-
essarily symmetric.

For instance imagine a transmission line, like the one shown in Figure 3.3. In every
one of the parameter matrices there will be one coefficient describing the coupling from
conductor 1 to conductor 2 and one for the coupling from conductor 2 to conductor 1.
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In the classical theory, because of reciprocity, these two coefficients are identical and
thus the corresponding matrix is symmetric.

In the supertheory the first coefficient describes the coupling from all parts of conductor
1 to the point ζ on conductor 2 (it is a nonlocal interaction), the other parameter vice
versa. It is very reasonable that only in rare cases, these couplings and thus the
coefficients are the same. Hence the coefficient matrix is not symmetric.

ζ

1

2

Figure 3.3: Nonuniform transmission lines and asymmetric parameter matrices.
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Chapter 4

Numerical Evaluation of the Parameters

Abstract — In this chapter we develop methods for the numerical determination of
the parameters. This involves the iterative solution of the parameter integral equa-
tions. Two methods are discussed. Both require the expansion of the product integral
and of the Green’s function into series expressions. The first uses the Taylor se-
ries, while the second is based on an eigenvalue decomposition of the product integral.

We will now discuss methods to calculate the parameters of the generalized telegrapher
equations. This mainly involves the evaluation of (3.50) and (3.51). For an efficient
processing some assumptions must be made, which require a careful preparation of
problems to be calculated. The setup should be in free space, an ideal ground plane or
a corner can be taken into account with the aid of the method of images [Jac98, Bal89,
Lin95]. Also all conductors should be thin wires. This is not strictly necessary for the
following derivations, however, some integrals can only be solved in closed form if the
thin-wire approximation is used.

The transmission line is divided into M segments. Within each segment, the conductors
should be straight, but not necessarily in parallel to the reference conductor. Thus their
position can be approximated by a linear function. The parameters are determined at
the centers of the segments and are interpolated for positions in between. Therefore,
segment length should reflect the nonuniformity of the line, for strongly nonuniform
lines a finer segmentation is required.

4.1 Starting Values for the Iteration

The first step is the calculation of I
(0)

using (3.57). For the segmented transmission
line this equation becomes

I
(0)

(ζ) =
M∑

m=0

∫ ζm+1

ζm

K (ζ, ζ ′)
∣∣
ω=0

dζ ′. (4.1)
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The integration of the matrix function is performed by the integration of the single
elements resulting in

I
(0)

(ζ) =
M∑

m=0

 0 µ
[
Tj (ζ) ·Ti (ζcm) I

(0)
mij

]
1
ε

[
I

(0)
mij

]
0

 (4.2)

where

I(0)
mij

(ζ) =

∫ ζm+1

ζm

G (Cj (ζ) ,Ci (ζ
′))|ω=0 dζ ′. (4.3)

Here the new quantity

ζcm =
ζm+1 + ζm

2
. (4.4)

was introduced to indicate the center of the segments. The above integral can be
evaluated in closed from. For a line in free space one can write (see also Figure 4.1)

a

Ci (ζ
′)

Cj (ζ)

b
Rji (ζ, ζ ′)

ζm

ζcm

ζm+1

l

0

Figure 4.1: One segment of a conductor of a nonuniform transmission line.

I(0)
mij

=

∫ ζm+1

ζm

1

4π |Cj (ζ)−Ci (ζ ′)|
dζ ′ (4.5)

=

∫ ζm+1

ζm

1

4πRji (ζ, ζ ′)
dζ ′ (4.6)
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with x = a + l
ζ − ζm

ζm+1 − ζm

I(0)
mij

=
ζm+1 − ζm

4πl

∫ a+l

a

1√
x2 + b2

dx (4.7)

=
ζm+1 − ζm

4πl

{
arcsinha+l

b
− arcsinha

b
b > 0

ln a+l
a

b = 0.
(4.8)

If there is a ground plane or a corner the additional images have to be taken into
account. The integrals can be solved similarly to the one for free space. These results

are inserted in (3.50) to get the starting parameters P
(0)

(ζ) for the first iteration.
Note that the parameters are only evaluated at the centers ζ = ζcm , m = 1 . . . M of the
segments.

4.2 First Iteration

In the next step (3.51) has to be calculated with the previously determined zeroth-order
parameters. Again, the line is divided into segments giving:

I
(1)

(ζ) =
M∑

m=1

I
(1)

m (ζ) (4.9)

and

I
(1)

m (ζ) =

∫ ζm+1

ζm

K (ζ, ζ ′)Mζ′

ζ

{
−jωP

(0)
}

dζ ′. (4.10)

The product integral is split into two factors (see (B.15)). One of these factors is
independent of the integration variable and can be pulled out of the integral:

I
(1)

m (ζ) =

∫ ζm+1

ζm

K (ζ, ζ ′)Mζ′

ζcm

{
−jωP

(0)
}

dζ ′ Mζcm
ζ

{
−jωP

(0)
}

. (4.11)

We now express the remaining product integral inside the integral as a sum

Mζ′

ζcm

{
−jωP

(0)
}

=
∞∑

n=0

λmn (ζ ′)Mmn , (4.12)

where λmn(ζ ′) is a scalar function and Mmn a possibly frequency-dependent super-
matrix, which, however, is independent of ζ ′. There are several possibilities for the
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expansion of the product integral. Below we will discuss two of these, one is a Tay-
lor series and the second is based on an eigenvalue/eigenvector decomposition of the
product integral. Equation (4.11) may now be written as

I
(1)

m (ζ) =

(
∞∑

n=0

∫ ζm+1

ζm

K (ζ, ζ ′) λmn (ζ ′) dζ ′ Mmn

)
Mζcm

ζ

{
−jωP

(0)
}

. (4.13)

With the previous manipulations we reduced the problem of integrating the product
of two matrix functions in (4.10) to the problem of integrating the product of a matrix
function and a scalar function in (4.13). This integration can be carried out element
wise, yielding

I
(1)

m (ζ) =

 ∞∑
n=0

 0
[
µTj (ζ) ·Ti (ζmc) I

(1)
mnji

][
1
ε
I

(1)
mnji

]
0

 Mmn

Mζcm
ζ

{
−jωP

(0)
}

,

(4.14)

with

I(1)
mnji

=

∫ ζm+1

ζm

G (Cj (ζ) ,Ci (ζ
′)) λmn (ζ ′) dζ ′. (4.15)

Depending on the decomposition of the product integral in (4.12) there are several
ways to evaluate the last expression. Because of the singularity of the Green’s function
a numerical integration is rather complicated. In a few cases analytical closed-form
formulae can be obtained. However, for the majority of the possible cases a series
expansion of the Green’s function and λmn or of the product of these two is suggested.
Some techniques can be adapted from other numerical methods like the MoM. For
instance, in [Har67] some techniques for the evaluation of terms involving this Green’s
function are shown.

4.2.1 Taylor Series Expansion of the Product Integral

The Taylor series expansion of the product integral is given in Appendix B.2. The

parameters P
(0)

(ζ) are linearly interpolated between the segment centers, and hence
are given in segment m by

P
(0)

(ζ) = Pm0 + (ζ − ζcm)Pm1 , for ζm ≤ ζ ≤ ζm+1, (4.16)

where

Pm0 = P
(0)

(ζcm) (4.17)

Pm1 =


P

(0)
(ζcm )−P

(0)(ζcm−1)
ζcm−ζcm−1

ζ < ζcm

P
(0)(ζcm+1)−P

(0)
(ζcm )

ζcm+1−ζcm
ζ > ζcm

. (4.18)
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Because we use a linear interpolation, the second and all higher order derivatives vanish.
That makes the evaluation of the coefficients of the Taylor series (cf. (B.11)) rather
simple and we get

λmn = (ζ ′ − ζcm)
n

(4.19)

and

Mmn = − jω

n!

(
(n− 1)Pm1Mmn−2 + Pm0Mmn−1

)
(4.20)

where

Mm0 = 1 and Mm1 = −jωPm0Mm0 . (4.21)

Now, for a line in free space (4.15) becomes

I(1)
mnji

=

∫ ζm+1

ζm

e−jkRji(ζ,ζ′) (ζ ′ − ζcm)n

4πRji (ζ, ζ ′)
dζ ′, (4.22)

which has no closed-form solution. Similar to the product integral above, the exponen-
tial can be split into two factors, where one is independent of the integration:

I(1)
mnji

=
e−jkRji(ζ,ζcm )

4π

∫ ζm+1

ζm

e−jk(Rji(ζ,ζ′)−Rji(ζ,ζcm )) (ζ ′ − ζcm)n

Rji (ζ, ζ ′)
dζ ′. (4.23)

The argument of the remaining exponential function is small if the conductor length
within a segment is small compared to the wavelength.

|Rji (ζ, ζ ′)−Rji (ζ, ζcm)| ≤ |Ci (ζm+1)−Ci (ζm)| � λ. (4.24)

Thus this function can be expanded into a Taylor series

I(1)
mnji

=
e−jkRji(ζ,ζcm )

4π

∞∑
p=0

(−jk)p

p!

∫ ζm+1

ζm

(Rji (ζ, ζ ′)−Rji (ζ, ζcm))p (ζ ′ − ζcm)n

Rji (ζ, ζ ′)
dζ ′

(4.25)

and truncated after a few terms. The integral can then be modified, similar to (4.7),
and becomes∫ ζm+1

ζm

(Rji (ζ, ζ ′)−Rji (ζ, ζcm))p (ζ ′ − ζcm)n

Rji (ζ, ζ ′)
dζ ′ =

(
ζm+1 − ζm

l

)n+1 ∫ a+l

a

(√
x2 + b2 −

√
x2

c + b2
)p

√
x2 + b2

(x− xc)
n dx (4.26)

which has a closed-form solution. For small numbers p and n the solutions are given
in Appendix C.1. We can now calculate the parameters after the first iteration.
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4.2.2 Eigenvalue Decomposition

Instead of representing the product integral as a Taylor expansion one could also use an
eigenvalue decomposition. This method is especially useful for slowly varying param-
eters. We must choose a segment size such that one can assume constant parameters
within a segment, i.e.

P
(0)

(ζ) = P
(0)

(ζcm) for ζm ≤ ζ < ζm+1. (4.27)

Then the product integral in (4.11) becomes the matrix exponential:

Mζ′

ζcm

{
−jωP

(0)
}

= e−jω(ζ′−ζcm )P
(0)

(ζcm ) (4.28)

The evaluation of this expression can be carried out by diagonalizing1 the matrix

P
(0)

(ζm):

P
(0)

(ζm) = w−1
m Dm wm (4.29)

=
2N∑
n=1

dmn

(
w−1

m

)
n

wT
mn

(4.30)

=
2N∑
n=1

dmn Wmn . (4.31)

The diagonal matrix Dm contains the eigenvalues of P
(0)

(ζm), the columns of wm are
the corresponding eigenvectors, wmn and

(
w−1

m

)
n

are the n-th columns of this matrix

and its inverse, respectively. Wmn is the dyadic product of these two vectors, i.e. a
matrix, and dmn is the n-th eigenvalue.

For the matrix exponential we can now write:

Mζ′

ζcm

{
−jωP

(0)
}

=
2N∑
n=1

e−jω(ζ′−ζcm )dmnWmn (4.32)

and thus

λmn =

{
e−jω(ζ′−ζcm )dmn 1 ≤ n ≤ 2N

0 otherwise
(4.33)

Mmn =

{
Wmn 1 ≤ n ≤ 2N

0 otherwise.
(4.34)

1The diagonalization of a matrix is not always possible. However, we assume that it is possible for
our matrix. Otherwise we must use a different approach to calculate the integral.



4.3 Discussion of the Numerical Methods 69

Equation (4.15), for a transmission line in free space, becomes

I(1)
mnji

=

∫ ζm+1

ζm

e−jkRji(ζ,ζ′)e−jkmn (ζ′−ζcm )

4πRji (ζ, ζ ′)
dζ ′. (4.35)

with kmn = ωdmn . Unfortunately this expression can not be integrated in closed form,
however, when k ≈ kmn a series expansion can be used:

e−jkmn (ζ′−ζcm ) =e−jkmn (ζ′−ζ)e−jkmn (ζ−ζcm ) (4.36)

=e−jk(ζ′−ζ)ej(k−kmn )(ζ′−ζ)e−jkmn (ζ−ζcm ) (4.37)

=e−jk(ζ′−ζ)

(
∞∑

p=0

jp

p!
(k − kmn)p (ζ ′ − ζ)

p

)
e−jkmn (ζ−ζcm ) (4.38)

Inserting this into the integral yields

I(1)
mnji

=
1

4π
e−jkmn (ζ−ζcm )

∞∑
p=0

jp

p!
(k − kmn)p

∫ ζm+1

ζm

e−jkRji(ζ,ζ′)e−jk(ζ′−ζ)

Rji (ζ, ζ ′)
(ζ ′ − ζ)

p
dζ ′,

(4.39)

which has closed-form solutions, see Appendix C.2. For k ≈ kmn this series can be
truncated after a few terms.

4.3 Discussion of the Numerical Methods

We showed two different methods for the calculation of the parameters, one is based
on a Taylor series expansion and one is based on an eigenvalue decomposition. The
truncation of the Taylor series of the first approach after a few terms requires the
segment length to be small. The number of terms and the segment length are directly
related to each other. The more terms one takes into account the longer the segment
can be. In applications it turned out that terms up to a power of 3 and a segment
length, such that the conductors are not longer than λ/10, produced very good results.

Unlike the Taylor series, the eigenvalue expansion is independent from the segment
length. However, it requires almost constant parameters within a segment. Thus it
is especially useful for long, almost uniform line sections. There it allows an efficient
determination of the line parameters. An analytical variant of this technique is used
for the first examples in the following chapter.
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Chapter 5

Application

Abstract — The application of the new transmission-line supertheory is the subject
of this chapter. Here we will start with a rather simple example, a finite-length wire
above ground plane, where analytical solutions for the parameters can be calculated.
This is followed by considerations of the semi-infinite and the infinite line, where
the radiated power and the field coupling are determined. Three additional practical
examples are calculated numerically. The results of the TLST are validated with
the aid of measured data as well as with solutions obtained with the method of
moments. All are in very good agreement.

5.1 The Straight, Finite-Length Wire Above Ground

At a first glance the setup shown in Figure 5.1 might appear to be a simple uniform
transmission line. For low frequencies (h � λ) this indeed is true. Then the classical
transmission-line theory can be successfully applied. However, at higher frequencies,
additional effects occur due to the open ends at the terminals. These influence the per-
unit-length parameters and make them position dependent. We will derive analytical
formulae for these parameters with the aid of the transmission-line supertheory.

h

2a

ζζ0 ζl

Figure 5.1: A transmission line consisting of a straight, finite-length wire parallel to a
ground plane.

The exact geometry of our line is given in Figure 5.1, the line starts at ζ0 and ends at
ζl. It has a radius of a = 1 mm and is at a height h = 50 mm above the ground plane.
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With the aid of the image theory and the thin-wire approximation we can easily find
the Green’s function and the integral kernels, which are scalars in this case:

G (C (ζ) ,C (ζ ′)) =
1

4π

 e−jk
√

(ζ−ζ′)2+a2√
(ζ − ζ ′)2 + a2

− e−jk
√

(ζ−ζ′)2+4h2√
(ζ − ζ ′)2 + 4h2

 (5.1)

kl (ζ, ζ ′) = µ G (C (ζ) ,C (ζ ′)) (5.2)

kc (ζ, ζ ′) =
1

ε
G (C (ζ) ,C (ζ ′)) (5.3)

Equation (3.57) then becomes:

I
(0)

=

∫ ζl

ζ0

[
0 kl (ζ, ζ ′)

kc (ζ, ζ ′) 0

]∣∣∣∣
ω=0

dζ ′ (5.4)

=

[
0 µ
1
ε

0

]
F1 (ζ) (5.5)

where the closed-form solution of the integral is

F1 = ln

√
(ζl − ζ)2 + a2 + (ζl − ζ)√
(ζl − ζ)2 + 4h2 + (ζl − ζ)

− ln

√
(ζ0 − ζ)2 + a2 + (ζ0 − ζ)√
(ζ0 − ζ)2 + 4h2 + (ζ0 − ζ)

. (5.6)

With (3.48) we eventually find the zeroth-order parameters for the finite-length trans-
mission line:

P
(0)

=

[ 1
jωF1

∂F1

∂ζ
1
c20

1 0

]
. (5.7)

The new quantity c0 = 1/
√

µε indicates the propagation speed of the electromagnetic
wave. In the following step we need to evaluate the product integral of (5.7). Unfortu-
nately this is not possible in closed form. Because we are only dealing with the starting
values for the iteration it is acceptable to simplify these parameters. If we are far away
from the two termination regions the function F1 becomes constant and its derivative
vanishes. We can use those parameters everywhere on the line. They can be calculated
by taking the following limit:

I
(0)

= lim
ζ0→−∞
ζl→∞

∫ ζl

ζ0

[
0 kl (ζ, ζ ′)

kc (ζ, ζ ′) 0

]∣∣∣∣
ω=0

dζ ′ (5.8)

=

[
0 µ
1
ε

0

]
lim

ζ0→−∞
ζl→∞

F1 (ζ) (5.9)
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with the solution

lim
ζ0→−∞
ζl→∞

F1 = F∞
1 = 2 ln

2h

a
. (5.10)

Now the zeroth-order parameters are considerably simpler:

P
(0)

=

[
0 1/c2

0

1 0

]
. (5.11)

They are equivalent to the parameters from the classical transmission-line theory. The
computation of the product integral can be carried out analytically:

Mζ′

ζ

{
−jωP

(0)
}

=

[
cos k (ζ ′ − ζ) −j 1

c0
sin k (ζ ′ − ζ)

−jc0 sin k (ζ ′ − ζ) cos k (ζ ′ − ζ)

]
. (5.12)

This expression is now inserted into (3.51) and the elements of the I
(1)

matrix become:

I
(1)
11 = I

(1)
22 = − j

4π

√
µ

ε
G1 (5.13)

I
(1)
12 =

µ

4π
G2 (5.14)

I
(1)
21 =

1

4πε
G2 (5.15)

where{
G1

G2

}
=

∫ ζl

ζ0

G (C (ζ) ,C (ζ ′))

{
sin k (ζ ′ − ζ)
cos k (ζ ′ − ζ)

}
dζ ′

=

{
−j/2
1/2

}(
E1 (jkR1l−)− E1 (jkR10−)− E1 (jkR2l−) + E1 (jkR20−)

± (E1 (jkR1l+)− E1 (jkR10+)− E1 (jkR2l+) + E1 (jkR20+))
)

(5.16)

and

R
1


l
0

ff
±

=

√√√√(ζ
l
0

ff − ζ

)2

+ a2 ±

(
ζ

l
0

ff − ζ

)
(5.17)

R
2


l
0

ff
±

=

√√√√(ζ
l
0

ff − ζ

)2

+ 4h2 ±

(
ζ

l
0

ff − ζ

)
. (5.18)
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The function E1 is the exponential integral (see [AS72])

E1 (z) =

∫ ∞

z

e−t

t
dt. (5.19)

With these results we can give a closed-form solution for the parameter matrix P after
one iteration:

P
(1)

=

[ 1
jω

1
G2

∂G2

∂ζ
1
c20
− 1

ωc0
1

G2

∂G1

∂ζ

1 0

]
. (5.20)

In our setup, the current only has a component in the direction of the conductor, which
is straight and in parallel to the ground plane. Then the vector potential is also in this
direction and we can define the voltage in a plane perpendicular to the conductor as

v (ζ) := ϕ (ζ) , (5.21)

where ϕ is the scalar potential at this conductor. Hence, we can give the telegrapher
equations in the voltage-current representation, as it is known from the classical theory:

∂

∂ζ

[
v
i

]
+ jωP

?(1)
[
v
i

]
= 0, (5.22)

with

P
?(1)

=

[
−j 1

c0

G1

G2

µ
4π

(
G2 +

G2
1

G2

)
4πε 1

G2
j 1
c0

G1

G2

]
. (5.23)

By solving the above equations with appropriate boundary conditions we can compute
currents and voltages. However, it is almost not possible to compare these results with
data from measurements or from computations with other methods, e.g. MoM. Real
setups as well as MoM models require fixed boundary conditions at the terminals. This
means, we have to connect a source and a load at the two ends of the transmission
line. In our TLST setup, there is no connection from the wire to the ground plane. We
would have to take this into account in the parameter computation. This means the
MoM computation and measurements would refer to a different system than the one
computed with the TLST. The results will be different and a comparison does not make
sense. We can, however, compare the parameters from the classical transmission-line
theory with our new parameters.

For this we investigate a line where the conductor is 50 mm above the ground plane,
has a radius of 1 mm and is 1 m long. Figure 5.2 shows the per-unit-length inductance
for different frequencies related to the per-unit-length inductance calculated with the
classical transmission-line theory (l0 = µ

2π
ln 2h

a
). For low frequencies (λ � h) we see
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1

<
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P ?
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l0

)
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Figure 5.2: Per-unit-length inductance of the finite-length transmission line related to
the corresponding parameter from the classical transmission-line theory (upper plot
real part, lower plot imaginary part).
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that in the central part of the line, this parameter is equal to the parameter from the
classical theory. Compared to a point at the central part of the line where the wire is
present at both sides, at the terminals the wire is only present at one side. Only this
wire contributes to the inductance and consequently the value must decreases to one
half of the value at the center.

As we increase the frequency and come into regions where the wavelength and the
height are in the same order of magnitude, the real part of the parameters become
smaller and an imaginary part occurs, which, multiplied with jω, becomes real and
is a part of the radiation resistance. This effect is especially large at the terminals,
but existent along the whole conductor. A similar behavior can be observed for the
per-unit-length capacitance with the difference that it increases when getting closer to
the terminals. Also the diagonal parameters P ?

11 (see Figure 5.3) and P ?
22 reflect this

frequency-dependent behavior. The parameters almost vanish for low frequencies and
become larger with higher frequencies. They show the largest values at the terminals.
The “antisymmetric” progression with respect to ζ is caused by the antisymmetric
definition of the current which always flows towards larger ζ.

To further concentrate on the open end, we move one open end to infinity. This end
is then far enough away to not influence the other end and we can fix the boundary
condition there. This leads to the semi-infinite line.

5.2 The Semi-Infinite Line

As noted before, to get from the finite line to the semi-infinite line we just have to let
ζ0 go to −∞. Then G1 and G2 become{

G1

G2

}
=

{
−j/2
1/2

}(
E1 (jkR1l−)−E1 (jkR2l−)±(E1 (jkR1l+)− E1 (jkR2l+))+2 ln

2h

a

)
.

(5.24)

The parameters are calculated with the aid of (5.20). They are very similar to the
parameters of the finite line. At the open end they show the same behavior. If we
move away from the open end the parameters approach the parameters of the classical
transmission-line theory.

We can now go one step further and calculate currents and voltages on the line by
solving the extended telegrapher equations numerically. A wave can be generated by
connecting a voltage source (v = 1 V). The source should be far enough away from
the open end. This is the case when the per-unit-length parameters are approximately
the same as those of the classical transmission-line theory. Furthermore, the internal
resistance of the source should match the characteristic impedance of the line to avoid
reflections.
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When a wave, that travels along the line, comes into the region, where the parameters
start to change due to the influence of the open end, at every position a small fraction of
the wave will be reflected. Additionally, a small part will be radiated and the remaining
part travels further where again a small fraction will be reflected and radiated. When
the wave eventually reaches the end, again a part of the energy travels further, and
therefore, is radiated and the rest is reflected. This effect is small for low frequencies.
Here almost all energy will be reflected and hence, the reflection factor is one. In
this frequency region the classical transmission-line theory is still valid. For higher
frequencies the radiation increases and less wave energy is reflected. This behavior can
be observed in the reflection factor r vs. frequency. The magnitude of this quantity is
presented in Figure 5.4. It was calculated from the actual voltages and currents from the
transmission-line supertheory. Moreover, the plot shows the magnitude of the reflection
factor calculated with the method of moments (MoM), which is a direct numerical
solution of Maxwell’s equations. For this computation the program CONCEPT was
used. The line was modeled with a thin 5 m long wire. The discretization was chosen
such that at least 20 segments per wavelength were used. At one end the line was
connected to the ground plane and excited with a voltage source. The other end was
left open. Then at the central part of the line, far away from the terminations, one
can assume a TEM mode with forward and backward traveling waves. These waves
were determined from the current distribution. Their quotient then gives the desired
reflection factor. Practically, there is no difference between the two curves. Thus we
can say that the TLST correctly models the physical conditions at the open end, and
this only after one iteration.

5.3 Field Coupling to an Infinite Line

Now we move the remaining end of the semi-infinite line to infinity. This gives an
infinitely long line. As long as there is no external excitation only a TEM mode can
propagate. This statement is supported by the per-unit-length parameters, which can
be calculated by setting ζl in (5.24) to infinity. The result is

G1 = 0 and G2 = 2 ln
2h

a
, (5.25)

which yields the parameters

P
(1)

=

[
0 1

c20

1 0

]
(5.26)

or, for the v-i representation

P
?(1)

=

[
0 µ

2π
ln 2h

a

2πε 1
ln 2h

a

0

]
. (5.27)
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Figure 5.4: The reflection factor at the open end of the semi-infinite transmission line.

These are exactly the same as the zeroth-order parameters, which means, that the
iteration already converged to the exact result. The parameters are frequency and
position independent. The diagonal terms in the v-i representation as well as in the q-i
representation vanish and the remaining parameters are real valued. This indicates that
there is no radiation caused by the transmission line itself. However, when illuminated
with an external field (see Figure 5.5) a non-TEM mode can be excited and radiation
occurs (see also [NT04c]). This is not reflected in the per-unit-length parameters but
in the source terms. With the TLST we are able to derive the correct expressions for
this situation.

h

2a

ζ

E θ

k

Figure 5.5: The infinitely long, uniform transmission line with field coupling.

The electric field strength along the wire for an incident plane-wave field as in Fig. 5.5
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is given by

v(i)′ (ζ) = E0e
−jkζ cos θ, (5.28)

where E0 is the magnitude that also takes into account the reflections from the ground
plane. Normally one would use the iterative procedure (3.59) to determine q′s. In this
special case, however, a closed-form solution is possible. The dependence of the electric
field on the spatial coordinate ζ implies the same dependence of the source term:

q′s (ζ) = q′0e
−jkζ cos θ. (5.29)

Then with (3.46) we may write

I10 = −jc0q
′
0

∫ ∞

−∞
kl (ζ, ζ ′)

∫ ζ′

ζ

sin (k (ζ ′ − ξ)) e−jkξ cos θdξdζ ′ (5.30)

and

I20 = q′0

∫ ∞

−∞
kc (ζ, ζ ′)

∫ ζ′

ζ

cos (k (ζ ′ − ξ)) e−jkξ cos θdξdζ ′. (5.31)

The inner integration is carried out first and yields∫ ζ′

ζ

sin (k (ζ ′ − ξ)) e−jkξ cos θdξ =

e−jkζ cos θ

k sin2 θ

[
e−jk(ζ′−ζ) cos θ − cos (k (ζ ′ − ζ)) + j sin (k (ζ ′ − ζ)) cos θ

]
(5.32)

and∫ ζ′

ζ

cos (k (ζ ′ − ξ)) e−jkξ cos θdξ =

− j cos (θ)
e−jkζ cos θ

k sin2 θ

[
e−jk(ζ′−ζ) cos θ − cos (k (ζ ′ − ζ)) + j sin (k (ζ ′ − ζ))

1

cos θ

]
. (5.33)

Because kl and kc are even functions, and the sine is an odd function the sine compo-
nents in (5.32) and (5.33) do not contribute to the integrals in (5.30) and (5.31). Hence
we may write

I10 = jc0q
′
0

e−jkζ cos θ

k sin2 θ

∫ ∞

−∞
kl (ζ, ζ ′) (cos (k (ζ ′ − ζ))− cos (k (ζ ′ − ζ) cos θ)) dζ ′ (5.34)
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and

I20 = j cos θ q′0
e−jkζ cos θ

k sin2 θ

∫ ∞

−∞
kc (ζ, ζ ′) (cos (k (ζ ′ − ζ))− cos (k (ζ ′ − ζ) cos θ)) dζ ′.

(5.35)

These integrals can be solved (see Appendix C.3) and result in

I10 = j
µ

4π
c0q

′
0

e−jkζ cos θ

k sin2 θ
(G2 −G3) (5.36)

and

I20 = j
1

4πε
cos θ q′0

e−jkζ cos θ

k sin2 θ
(G2 −G3) (5.37)

where

G2 = 4π

∫ ∞

−∞
g (C (ζ) ,C (ζ ′)) cos (k (ζ ′ − ζ)) dζ ′ (5.38)

= 2 ln
2h

a
, (5.39)

G3 = 4π

∫ ∞

−∞
g (C (ζ) ,C (ζ ′)) cos (k (ζ ′ − ζ) cos θ) dζ ′ (5.40)

= −jπ
(
H

(2)
0 (ak sin θ)−H

(2)
0 (2hk sin θ)

)
. (5.41)

With the aid of (5.28) and (5.29) we can now solve (3.49) for q0 giving the rather simple
answer

q0 =
4πε

G3

E0. (5.42)

Then the exact extended telegrapher equations for a uniform, infinite long, ideally
conducting transmission line with plane-wave field coupling become

∂

∂ζ

[
q
i

]
+ jω

[
0 1

c20

1 0

] [
q
i

]
=

[
4πε
G3

E0e
−jkζ cos θ

0

]
. (5.43)

We may also convert this to the v-i representation giving:

∂

∂ζ

[
v
i

]
+ jω

[
0 P ?

12

P ?
21 0

] [
v
i

]
=

[
G2−G3 cos2 θ

G2 sin2 θ
E0e

−jkζ cos θ

−
√

ε
µ

4π(G2−G3) cos θ

G2G3 sin2 θ
E0e

−jkζ cos θ

]
. (5.44)

These equations are identical with the results obtained in [NT04c] with the aid of a
spatial Fourier transformation. For small k, if λ � h, the function G3 converges to
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G2 thus G3 ≈ G2. In this case, the source terms can be simplified and the telegrapher
equations become

∂

∂ζ

[
v
i

]
+ jω

[
0 P ?

12

P ?
21 0

] [
v
i

]
=

[
E0e

−jkζ cos θ

0

]
. (5.45)

This is exactly the same result one gets from the classical transmission-line theory with
Agrawal’s field-coupling model (cf. Section 2.2.3).

5.4 The Skewed Wire Transmission Line

We now choose a more complicated configuration and take a closer look at a skewed
wire transmission line. This line is built from a finite-length wire which is located
above a ground plane. The wire is not parallel to this plane, as shown in Figure 5.6.
Furthermore, at one end the wire is short circuited to the ground plane. This is the

αh0

l

E

k

45◦

2a

H

Figure 5.6: The setup of the skewed wire transmission line (h0 = 1 mm, l = 0.538 m,
a = 0.2 mm).

place where the line will be fed and the current is measured.

The current on this line consists of two components which are often referred to as the
transmission-line-mode current and the antenna-mode current. In order to determine
these two, we take into account the mirror image due to the ground plane. Further-
more, we know that the current is derived from a vector quantity and as such can
be decomposed into mutually orthogonal (horizontal and vertical) components (see
Figure 5.7). The horizontal parts have opposite directions, such that the fields that
are caused by these currents partly compensate each other. This is a property of the
transmission-line mode. The vertical components have the same direction and the field
contributions add up. This indicates the antenna mode.

Thus for an angle of α = 0◦ there are almost no antenna mode currents, (except for the
riser) and the line behaves like a (classical) transmission line. For an angle of α = 90◦
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Figure 5.7: Transmission-line-mode current and antenna-mode current in the skewed
transmission line.

there are no transmission-line-mode currents. The wire is an effective antenna. Both
cases, and all in between, will be correctly modeled by the TLST.

Unfortunately, we can not easily define a voltage in this setup, because the vector
potential does not only have components in the direction of the conductor. The v-i
representation is not suitable here. We will rather use the q-i or ϕ-i representation.
As stated before the quasivoltage has no physical meaning, except for parts of the line,
that are very close (� λ) to the ground plane, e.g., the beginning of the vertical part.
Then ϕ becomes the real voltage between the plane and the transmission line.

The per-unit-length parameters are calculated numerically. Figure 5.8 shows the P12

parameters of the q-i representation, related to the corresponding parameter of a uni-
form line. It was calculated for different angles at a frequency of 1 GHz. For other
frequencies the parameter shows a very similar behavior.

When α = 0◦ the line behaves almost like a uniform line because its distance to the
ground plane is only 1 mm. This is much smaller then the wavelength. Only very close
to the terminals a small deviation from the classical TLT parameters can be observed.
The parameter P12 is real and has a value of almost 1/c2

0, just like a uniform line. When
the angle increases, the value of the parameter starts to change, it becomes position
dependent and complex. For a lossless system this indicates radiation. The biggest
deviation can be observed for an angle of α = 90◦, where the wire is an antenna.

To validate our TLST we compare the magnitude of the input impedance |Zi| of the
transmission line with measured data. The measurement was performed on an actual
setup of the line with an angle of α = 21.7◦ with a network analyzer. The results are
shown in Figure 5.9. The two currents show a reasonably good agreement. Both curves
show the typical behavior of an open-ended transmission line. One can identify the
resonances due to standing waves; their frequencies roughly correspond to the length
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Figure 5.8: The real (upper) and imaginary (lower) parts of the parameter P12 for
the skewed transmission line, related to the corresponding parameter of a uniform line
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of the wire. For lower frequencies the resonances are very sharp and have very high
or very low magnitudes, respectively. With increasing frequency they become smeared
out and less sharp which is caused by losses. These are radiation losses, because the
system is otherwise considered to be lossless. The input impedance looks very similar
for other angles, up to 90◦.

The validity can also be confirmed with MoM calculations. Also here the program
CONCEPT was used. The line was modeled with a thin wire and the discretization
was chosen to have more than 20 segments per wavelength. A 1 V voltage source was
used as the excitation at the beginning of the line . Then the current distribution along
the skewed wire was determined for a frequency of 0.974 GHz, which is very close to a
resonance frequency. The results from the TLST are compared with the MoM solution
in Figure 5.9. Again we have a very good agreement between the two results.

Eventually, we can also excite the skewed transmission line with an external field, i.e.,
use the line as a receiving antenna. The vectors E and k were directed as shown in
Figure 5.6. As can be seen in Figure 5.10 one gets a perfect match between the MoM
and the TLST solution.

5.5 The Periodic Transmission Line

Realistic transmission lines often have a periodic structure. Some examples are lines
that are tied together in periodic distances, lines that are placed above a periodic
structure, or helically-shaped lines that are placed above a ground plane. These periodic
lines exhibit a very interesting behavior, e.g., they block certain frequency bands. These
effects can be computed with the classical transmission-line theory for nonuniform lines
and are not of interest here. We will present strong effects that can not be seen with
this theory.

For this we investigate a rather canonical structure, a sinusoidally-shaped line like the
one shown in Figure 5.11. It is 0.8 m long and has 8.5 periods with an amplitude of
5 cm. The zero-line of the sine is 6 cm above the ground plane and the wire has a radius
of 0.2 mm. At both terminals the line is connected to the ground plane via a resistor
roughly the size of the low-frequency wave resistance (R = 304 Ω). Furthermore a
voltage source of 1 V is connected at the beginning of the line.

Figure 5.12 shows the input and output current of the transmission line as a function
of frequency. Up to 1 GHz the transmission line shows a rather typical behavior.
The resistor of 304 Ω is not a perfect match, such that some reflections occur at the
terminals. This causes the ripples on the current. The input and output currents are
almost equal and close to 1 V/(2 · 304 Ω) = 1.6 mA, just as it should be for a matched
transmission line. There are some irregularities which are caused by the nonuniformity,
they occur above 500 MHz.
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Figure 5.9: The magnitude of the input impedance Zi vs. frequency (upper) and the
current distribution at 0.974 GHz (lower) of the skewed transmission line (α = 21.7◦).
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Figure 5.10: The magnitude of the field excited current to the ground plane vs. fre-
quency of the skewed transmission line (α = 21.7◦).
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Figure 5.11: The mechanical and electrical setup of the sinusoidal transmission line.
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(α = 21.7◦).
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Above 1 GHz the behavior dramatically changes. This is the frequency, where approxi-
mately 8 to 9 periods of the wave are on the line. The output current decreases rapidly
and stays very close to zero for all frequencies. Thus a signal that propagates along the
line does not reach the end. The vanishing current at the end suggests the assumption
that the input impedance is independent from the termination resistor above 1 GHz.
This is indeed the case as can be seen in Figure 5.12, where the magnitudes of the
input impedances for the open, shorted and “almost matched” far end are shown.

Below 1 GHz all three configurations show the typical transmission-line input impedance.
We see the transformation of the termination resistor to the beginning of the line.
Above 1 GHz, all three input impedances are exactly equal. Hence, the input impedance
of the line is independent from the actual termination. Furthermore, above this fre-
quency the input impedance has a large real part (see Figure 5.13) and a rather small
imaginary part. The line acts almost like a resistor. This must be due to the radiation,
because the transmission line itself is perfectly conducting.

We can also calculate the time averaged radiated power by subtracting the power
dissipated in the termination resistors from the power generated by the source. The
result is shown in Figure 5.13 as well. The line is a quite good wide band radiator at
frequencies above 1.5 GHz. Practical applications of this might be possible, however,
further investigations are necessary, e.g., the radiation pattern must be analyzed.

5.6 Cross Talk in a Nonuniform Multiconductor
Transmission Line

In this final example we examine the crosstalk in a nonuniform multiconductor trans-
mission line. Figure 5.14 shows the V-shaped wires which are placed above a ground
plane. One wire is at a constant height of 20 mm, the height of the other wire changes
from 10 mm to 20 mm. Furthermore, the wires are bent at the ends in order to reach
the termination resistors which are located below the ground plane.

The wire that changes its height is driven by a voltage source of 1 V with an internal
resistance of 50 Ω. All other ends are terminated with 50 Ω resistors.

Figure 5.15 shows the cross talk current flowing into the termination resistor at the
far end of the passive wire. The plot presents the solutions from the TLST with the
parameters after one iteration. Additionally, the current, measured with a network
analyzer on a real setup of the wire structure is shown for validation. Also here one
finds a very good agreement between the measurement and the TLST prediction for
the cross talk current. Similar results can be obtained for all other currents which agree
equally well with the measured data.
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Figure 5.15: The far end cross talk current of the passive wire of the NMTL.
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Chapter 6

Conclusion and Perspectives

The focus of this thesis is the full-wave description of the interactions between nonuni-
form multiconductor transmission lines and electromagnetic fields with the aid of an
extended transmission-line theory, the transmission-line supertheory. It covers not only
the derivation of this novel theory but also the application to canonical and realistic
examples.

For the derivation, first an integral equation is formulated based on the general solution
of Maxwell’s equations and the boundary condition at the surface of the conductors.
This rather general expression is then adapted to the geometry of the nonuniform
transmission line, which is described with the aid of space curves and polar coordinate
systems. The unknown quantities in these equations are the current and the per-unit-
length charge along the conductors.

Based on the assumption that the current is governed by a second-order differential
equation, a trial function is formulated and inserted into the adapted integral equation.
Together with the continuity equation the integral equation can then be cast into a
system of first-order differential equations for the unknown currents and per-unit-length
charges. The equations are the extended telegrapher equations of the transmission-line
supertheory. The remarkable result is that this conversion is possible without any
additional assumptions or simplifications.

Moreover, in the course of the derivation one gets integral equations for the determina-
tion of the coefficients of the differential equations, i.e. the per-unit-length parameters,
and for the distributed source terms. Because there are no known general analytical
solutions for these equations iterative procedures are suggested which give very good
results even after one iteration.

The position-dependent per-unit-length parameters become complex and frequency de-
pendent. The extended telegrapher equations with these parameters correctly model
the propagation of electromagnetic waves along nonuniform multiconductor transmis-
sion lines, the radiation of electromagnetic energy, and the coupling of external fields

93
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for all frequencies. There is no restriction to the quasi-TEM mode like in the classical
transmission-line theory.

The capabilities of the new theory are demonstrated in detail for several examples.
First a finite length transmission line is considered and the parameters are computed.
This setup is then modified to a semi-infinite line and the radiated power and reflec-
tion coefficient is calculated at the finite terminal. Both are found to be in perfect
agreement with MoM calculations. Then this line is again modified to an infinitely
long transmission line, and the distributed sources for a plane-wave incident field are
calculated. After this a skewed transmission line is investigated. Also here for differ-
ent excitations all results show a reasonable good agreement with measurements and
comparative MoM calculations. In the next application a periodical transmission line
is analyzed and very interesting properties are found. For instance, above a certain
frequency the input impedance of the line is independent from the termination. In the
final example the cross talk in a multiconductor line is calculated and agrees very well
with measurements.

Future enhancements of the theory include modifications of the derivation to predict
the cross-sectional current and charge distribution. This would allow not only to take
into account, but also to calculate the skin and proximity effects in the conductors. As
mentioned in Chapter 3 this could be done by introducing appropriate series expansions
for the distribution functions.

The consideration of dielectric coating of the wires is also of particular interest. Here
ideas from [Pop91] could be applied.

For the determination of the per-unit-length parameters and the source terms the
solution of integral equations is required. These solutions are obtained iteratively.
The convergence of this iteration has not been proven for the general case. Further
investigations are necessary.



Appendix A

Adaption of the Integral Equations to the

Conductor Geometry

Here we discuss the manipulations of the integral equation (2.39), that are necessary to
adapt this equation to the geometry of a nonuniform multiconductor line. The original
equation (see also (2.39)) reads:

grad
1

ε

∫
V

G (x,x′) % (x′) dv′ + jωµ

∫
V

G (x,x′)J (x′) dv′ +
J (x)

σ
= E(i) (x) . (A.1)

First the volume integrals are split into a sum of integrals over the individual conductor
volumina. Moreover, the observation position x is placed at the surface of one conductor
(e.g. j) at ζ, i.e. x = x̂j (ζ, α):

grad
1

ε

N∑
i=1

∫
Vi

G (x̂j,x
′
i) % (x′i) dv′

+ jωµ
N∑

i=1

∫
Vi

G (x̂j,x
′
i)J (x′i) dv′ +

J (x̂j)

σ
= E(i) (x̂j) . (A.2)

Now we dot multiply this expression with the tangential unit vector Tu
j at the obser-

vation point. This extracts the tangential component along the conductors, all other
components are small and, therefore, neglected.

Tu
j (ζ) · grad

1

ε

N∑
i=1

∫
Vi

G (x̂j,x
′
i) % (x′i) dv′

+ Tu
j (ζ) · jωµ

N∑
i=1

∫
Vi

G (x̂j,x
′
i)J (x′i) dv′ + Tu

j (ζ) · J (x̂j)

σ
= Tu

j (ζ) · E(i) (x̂j) (A.3)
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Eventually, this expression is averaged over the surface by integration over the angle
α:

1

2π

∫ 2π

0

Tu
j (ζ) · grad

1

ε

N∑
i=1

∫
Vi

G (x̂j,x
′
i) % (x′i) dv′ dα

+
1

2π

∫ 2π

0

Tu
j (ζ) · jωµ

N∑
i=1

∫
Vi

G (x̂j,x
′
i)J (x′i) dv′ dα

+
1

2π

∫ 2π

0

Tu
j (ζ) · J (x̂j)

σ
dα =

1

2π

∫ 2π

0

Tu
j (ζ) · E(i) (x̂j) dα. (A.4)

We may now replace the current and charge density with (3.25) and (3.26) and investi-
gate the individual terms of the expression. After some reordering and the application
of

Tu
j · grad =

1

ujj

∂

∂ζ
(A.5)

the first term of the right hand side can be written as

1

2π

∫ 2π

0

Tu
j (ζ) · grad

1

ε

N∑
i=1

∫
Vi

G (x̂j,x
′
i) % (x′i) dv′ dα =

1

ujj

∂

∂ζ

N∑
i=1

∫ ζl

ζ0

kcji
(ζ, ζ ′) qi (ζ

′) dζ ′, (A.6)

where

kcji
(ζ, ζ ′) =

1

2πε

∫ 2π

0

∫
Si(ζ′)

G (x̂j,x
′
i) d%i

(x′i) fci
da′ dα . (A.7)

The second term can be treated in a very similar way resulting in

1

2π

∫ 2π

0

Tu
j (ζ) · jωµ

N∑
i=1

∫
Vi

G (x̂j,x
′
i)J (x′i) dv′ dα =

1

ujj

N∑
i=1

∫ ζl

ζ0

klji
(ζ, ζ ′) ii (ζ

′) dζ ′,

(A.8)

with

klji
(ζ, ζ ′) =

µ

2π
ujj (ζ) uii (ζ

′)Tu
j (ζ) ·Tu

i (ζ ′)

∫ 2π

0

∫
Si(ζ′)

G (x̂j,x
′
i) dJi

(x′i) fci
da′ dα .

(A.9)
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Evaluating the third term is rather easy and yields

1

2π

∫ 2π

0

Tu
j (ζ) · J (x̂j)

σ
dα =

1

ujj

zjjij, (A.10)

where zjj is the surface impedance defined as

zjj (ζ) = ujj (ζ)
1

2π

∫ 2π

0

dJi
(x̂i)

σ
dα. (A.11)

Finally, the term on the left hand side, multiplied with ujj, will be assigned to a new
variable, i.e.,

v
(i)′

j (ζ) =
1

2π
ujj (ζ)

∫ 2π

0

Tu
j (ζ) · E(i) (x̂j) dα. (A.12)

We can now combine these results to the new adapted integral equation

∂

∂ζ

N∑
i=1

∫ ζl

ζ0

kcji
(ζ, ζ ′) qi (ζ

′) dζ ′ + jω
N∑

i=1

∫ ζl

ζ0

klji
(ζ, ζ ′) ii (ζ

′) dζ ′ + zjjij = v
(i)′

j (ζ) .

(A.13)
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Appendix B

The Product Integral

B.1 The Differential Equation and its Solution

Many processes in nature can be described with the aid of a system of first-order
ordinary differential equations of the form

∂

∂ζ
X (ζ)−C (ζ)X (ζ) = X′

s (ζ) (B.1)

where X is an N -element column vector containing the unknown physical quantities,
C the known N ×N coefficient matrix, characterizing the physical system and X′

s(ζ)
the known excitation. The solution is constructed with the product integral Mζ

ζ0
{C}

[Gan84, DF79],

X (ζ) = Mζ
ζ0
{C}X (ζ0) +

∫ ζ

ζ0

Mζ
ξ {C}X′

s (ξ) dξ. (B.2)

The column vector X (ζ0) is determined by the boundary conditions. The product
integral itself fulfills the equation

∂

∂η
Mη

ζ0
{C} = C (η)Mη

ζ0
{C} , (B.3)

and the boundary condition

Mζ0
ζ0
{C} = 1. (B.4)

B.2 The Determination of the Product Integral

One way to calculate the product integral is to integrate (B.3)

Mζ
ζ0
{C} = 1 +

∫ ζ

ζ0

C (η)Mη
ζ0
{C} dη (B.5)
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and successively replace Mη
ζ0
{C} on the right hand side with (B.5). This yields Pi-

card’s series

Mζ
ζ0
{C} = 1 +

∫ ζ

ζ0

C (η) dη +

∫ ζ

ζ0

C (η)

∫ η

ζ0

C (ξ) dξdη + ... (B.6)

Volterra developed a different formula for the product integral. He divided the interval
[ζ0, ζ] into k subintervals, with ζi, i = 0 . . . k being the interval boundaries. Then by
letting the number of subintervals go to infinity and the subinterval size to zero, the
product integral is given by

Mζ
ζ0
{C} = lim

k→∞

k−1∏
i=0

e(ζi+1−ζi)C(ζi) (B.7)

=

ζ∏
ζ0

eC(η)dη. (B.8)

It was this operation that inspired the name product integral, because it is similar to
the ordinary integral, but instead of the summation there is a multiplication. This
formula is also suitable for a numerical evaluation of the product integral, in this case
k is kept finite. There are many more methods for numerical calculations, the most
important are discussed in [HNS03].

A third way to determine the product integral is to develop its Taylor series at ζ0:

Mζ
ζ0
{C} = M0 + M1 (ζ − ζ0) +

1

2
M2 (ζ − ζ0)

2 + · · ·+ 1

n!
Mn (ζ − ζ0)

n + . . . . (B.9)

With the aid of (B.3) and corresponding derivatives, it is easy to find a recursive
expression for the coefficient matrices:

M0 = 1 (B.10)

Mn =
n−1∑
i=0

(
n− 1

i

) (
∂n−i−1

∂ζn−i−1
C (ζ)

)∣∣∣∣
ζ=ζ0

Mi (B.11)

For a commuting parameter matrix function, i.e. C (η1)C (η2) = C (η2)C (η1), the
product integral simplifies to the matrix exponential and one gets

Mζ
ζ0
{C} = e

∫ ζ

ζ0

C (η) dη
. (B.12)
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B.3 Inverse Operation

The inverse operation of product integration is product differentiation. The product
derivative is defined by

Dζ {C} :=
∂C (ζ)

∂ζ
C (ζ)−1 . (B.13)

Thus we may write

Dζ

{
Mζ

ζ0
{C}

}
= C. (B.14)

B.4 Calculation Rules for the Product Integral

There are several rules that can be applied to the product integral, the most important
are:

Mζ
ζ0
{C} = Mζ

ζ1
{C}Mζ1

ζ0
{C} (B.15)

Mζ
ζ0
{C} =

(
Mζ0

ζ {C}
)−1

(B.16)

Mζ
ζ0

{
XCX−1

}
= XMζ0

ζ {C}X−1 (X = const.) (B.17)

Mζ
ζ0
{C +DηX} = X (ζ)Mζ

ζ0

{
X−1CX

}
X (ζ0)

−1 (X = X (ζ)) . (B.18)
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Appendix C

Solutions for Some Important Integrals

C.1 Integrals Involving Powers of
√

x2 + b2

For the numerical evaluation of the parameters the following integral must be solved:

Inp =

∫ (√
x2 + b2 −

√
x2

c + b2
)p

√
x2 + b2

(x− xc)
n dx. (C.1)

It is possible to derive a general solution involving the hypergeometric function [AS72],
which, however, is rather complicated. We will give simpler solutions for individual
numbers n and p. We can distinguish between two cases here, namely b > 0 and b = 0.
The table below shows the results for n = 0, 1, 2 and p = 0, 1, 2 for the first case. These
and higher order terms can be easily obtained with a computer algebra system or with
the aid of integral tables and partial integration.

n p Inp

0 0 arcsinh
x

b

1 0
√

x2 + b2 − xcarcsinh
x

b

2 0
(

1
2
x− 2xc

)√
x2 + b2 +

(
x2

c −
1
2
b2

)
arcsinh

x

b

n 1
(x− xc)

n+1

n + 1
−
√

x2
c + b2In0
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n p Inp

0 2
1
2
x
√

x2 + b2 +
(

3
2
b2 + x2

c

)
arcsinh

x

b
− 2 (x− xc)

√
x2

c + b2

1 2
(

1
3
x− 1

2
xxc + x2

c +
4
3
b2

)√
x2 + b2 − xc

(
3
2
b2 + x2

c

)
arcsinh

x

b
− (x− xc)

2
√

x2
c + b2

2 2
(

1
4
x3 − 2

3
x2xc + xx2

c − 2x3
c − b2

(
5
8
x− 8

3
xc

))√
x2 + b2+(

x4
c −

5
8
b4 + x2

cb
2

)
arcsinh

x

b
− 2

3
(x− xc)

3
√

x2
c + b2

If b = 0 the integral becomes

Inp =

∫
(x− xc)

p+n

x
dx (C.2)

and the solution is much simpler. The results are given in the table below.

n + p Inp

0 lnx

1 x− xc lnx

2
1
2
x2 − 2xxc + x2

c lnx

3
1
3
x3 − 3

2
x2xc + 3xx2

c + x3
c lnx

4
1
4
x4 − 4

3
x3xc + 3x2x2

c − 4xx3
c + x4

c lnx

C.2 Integrals Involving Exponential and Power Functions

The solution of the integral

∫
e
−jk

“√
(ζ′−ζ)2+b2+ζ′−ζ

”
√

(ζ ′ − ζ)2 + b2

(ζ ′ − ζ)
p
dζ ′, (C.3)
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can be found by substituting

t = −jk

(√
(ζ ′ − ζ)2 + b2 + ζ ′ − ζ

)
(C.4)

giving: ∫
et

t

(
(jkb)2 + t2

2jkt

)p

dt. (C.5)

For the first three values of p the results are summarized in the table below.

p
∫

et

t

(
(jkb)2+t2

2jkt

)p
dt

0 −E1(−t)

1 et

2jk − (jkb)2E1(−t)

2 et(t−1)
(2jk)2

+ jkb2et − (jkb)4E1(−t)

3 et(t2−2t+2)
(2jk)3

+ 3
2(jk)3b4et + 3

4b2et(t− 1)− (jkb)6E1(−t)

C.3 Integrals Involving Trigonometric and Exponential
Functions

∫ ∞

−∞

cos
(
k
√

ζ2 + b2
)

√
ζ2 + b2

cos (k1ζ) dζ =

−πY0

(
b
√

k2 − k2
1

)
k > k1 > 0

2K0

(
b
√

k2
1 − k2

)
k1 > k > 0

(C.6)

∫ ∞

−∞

sin
(
k
√

ζ2 + b2
)

√
ζ2 + b2

cos (k1ζ) dζ =

{
−πJ0

(
b
√

k2 − k2
1

)
k > k1 > 0

0 k1 > k > 0
(C.7)

Then:∫ ∞

−∞

e−jk
√

(ζ′−ζ)2+b2√
(ζ ′ − ζ)2 + b2

e−jk1(ζ′−ζ)dz′

=


−πY0

(
a
√

k2 − k2
1

)
− jπJ0

(
a
√

k2 − k2
1

)
+πY0

(
2h
√

k2 − k2
1

)
+ jπJ0

(
2h
√

k2 − k2
1

)
k > k1 > 0

2K0

(
a
√

k2
1 − k2

)
− 2K0

(
2h
√

k2
1 − k2

)
k1 > k > 0

(C.8)
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with H
(2)
0 (z) = J0(z)− jY0(z)

∫ ∞

−∞

e−jk
√

(ζ′−ζ)2+b2√
(ζ ′ − ζ)2 + b2

e−jk1(ζ′−ζ)dζ ′

=

−jπ
[
H

(2)
0

(
a
√

k2 − k2
1

)
−H

(2)
0

(
2h
√

k2 − k2
1

)]
k > k1 > 0

2
[
K0

(
a
√

k2
1 − k2

)
−K0

(
2h
√

k2
1 − k2

)]
k1 > k > 0

(C.9)

The function J0 is the Bessel function of first kind, Y0 the Bessel function of second
kind, K0 the modified Bessel function of second kind, and H

(2)
0 the Hankel function of

second kind.

In free space we have k1 = k, thus the limits of the above formulae must be taken. For
both of the above cases the result is:

lim
k1→k

∫ ∞

−∞

e−jk
√

(ζ′−ζ)2+b2√
(ζ ′ − ζ)2 + b2

e−jk1(ζ′−ζ)dζ ′ = 2 ln
2h

a
(C.10)
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Leitungsführung in komplexen ausgedehnten Leitungsnetzwerken. In EMC
Kompendium, page 95. publish-industry Verlag, GmbH, München, ISBN
3-934698-07-7, 2002.

[Som64] A. Sommerfeld. Electrodynamic. Academic Press, New York, 1964.



114 Bibliography

[Ste05] T. Steinmetz. Analyse dominanter elektromagnetischer Vorgänge in
komplexen Systemen unter besonderer Berücksichtigung von ausgedehn-
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