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Group Theoretic Approach to Internal and Collective Degrees of
Freedom in Mechanics and Field Theory

J.J. Slawianowski

Discussed are group-theoretical models of collective degrees of freedom of extended bodies and internal
degrees of freedom of point-like objects. We concentrate on the use of groups GL(n, IR), SL(n, IR) and
U(n). Relationships with the theory of integrable systems are mentioned.

We have used the terms ”collective and internal degrees of freedom”. What, roughly, do they mean? Let
us suppose that we consider a system with an infinite (including non-denumerable) number of degrees of
freedom or with a finite but rather large number of degrees of freedom. Further, let us suppose that it is
rather a small number of parameters that is relevant for the system behaviour and that those parameters
are non-local in the sense that all degrees of freedom of individual particles enter them, roughly speaking,
on the equal footing. If those relevant parameters obey approximately some autonomous evolution
equations, we say they are collective variables and the corresponding evolution equations give an account
of the behaviour of the system. Formally this means that we are dealing with some quotient manifold
or with submanifold of the configuration space Q (the submanifold consists of representatives of cosets).
Internal degrees of freedom of objects which are essentially non-extended or which are so small that details
of their spatial structure are hidden, are described in such a way that conversely, their configuration
spaces Q are fibre bundles over the space or space-time manifold M . The base points describe their
spatial localization, whereas the fibre points are internal variables.

Usually the typical models of collective and internal degrees of freedom have to do with Lie groups or
their homogeneous spaces. Because of this quite often some rigorous solutions may be found at least in
the form of series; this is due to the analycity of Lie groups.

On the classical level the use of Lie groups as configuration spaces has an additional advantage, namely
their tangent and cotangent bundles are canonically trivialized in two ways

TG ' G×G′, T ∗G ' G×G′∗. (1)

G′ denoting the Lie algebra and G′∗ – its dual. For example, if G is a matrix group, then the elements
of TG are identified with pairs

(g, ω) or (g, ω′), (2)

where

ω = ġ g−1, ω′ = g−1 ġ, ω = g ω′ g−1. (3)

The canonical example is the rigid body with the configuration space SO(n, IR). ω is the angular velocity
in laboratory representation, whereas the matrix elements of ω′ are co-moving components of the angular
velocity. Similarly, the elements of T ∗G are then represented by pairs

(g, σ) or (g, σ′), (4)

where σ ∈ SO(n, IR′)∗ ' SO(n, IR) is a laboratory representation of the internal canonical angular
momentum (spin), and σ′ ∈ SO(n, IR′)∗ ' SO(n, IR) is its co-moving representation; σ = gσ′g−1. The
quantities σ, σ′ are Hamiltonian generators (momentum maps) of left and right regular translations in
SO(n, IR), respectively.
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Our subject here is an affine model of collective or internal degrees of freedom, i.e., an affine top, affinely-
rigid body. This is a natural extension of gyroscopic degrees of freedom, because affine geometry is more
primary, more fundamental than the Euclidean one.

Of course, the dominant role in physics is played by orthogonal and pseudo-orthogonal groups which are
symmetries of the Euclidean space or pseudo-Euclidean space–time. Similarly, in typical physical theories
except the gauge gravitation theory, internal symmetries are described by unitary groups. Nevertheless,
the amorphous affine symmetry was also used in various branches of physics, for example in the collective
models of nuclei. Linear groups occur also as non-invariance groups in certain quantum multi-body
problems. There were also attempts to base the gauge approach to gravitation on the linear group
GL(4, IR) as a gauge group.

Affinely-rigid body is a system, the behaviour of which is confined in such a way that all affine geometric
relationships between its constituents remain invariant, similarly as in the usual rigid body all metrical
relationships are frozen. This is a compromise between rigid body mechanics and the general theory
of deformable objects, which may be considered as dynamical systems on the infinite-dimensional Lie
group of all diffeomorphisms in IRn (physically n = 3) or volume preserving diffeomorphisms (ideal
fluids) (Arnold, 1978; Binz, 1971). Such a model and other discretization-based approaches provide a
convenient and reasonable simplification, because it is rather difficult to be rigorous when dealing with
infinite-dimensional groups (Slawianowski, 1982).

In an affinely-rigid motion the material and spatial Cartesian coordinates of material points aK , xi are
related to each other by the formula

xi(t, a) = ϕi
K(t) aK + ri(t), (5)

where ϕ is a time-dependent non-singular matrix and r is a time-dependent vector. They describe the
relative motion and the centre of mass motion, respectively. Metric tensors of the physical and material
spaces will be denoted by g and η, respectively. Obviously in Cartesian coordinates both are represented
by the Kronecker matrix. The mass distribution in material representation is described by the fixed
positive measure µ, and the density of forces per unit mass by the vector-valued function Φ. Inertial
properties of the body are described by the total mass M and the constant tensor of internal inertia

M =
∫

dµ(a), JKL =
∫

aK aL dµ(a). (6)

The total force and dipole moment of forces are given by

F i =
∫

Φi (t, r, ϕ, ṙ, ϕ̇, a) dµ(a), (7)

N ij =
∫

(

xi(t, a)− ri) Φj (t, r, ϕ, ṙ, ϕ̇, a) dµ(a). (8)

N ij is related to the centre of mass and both F , N depend on r, ϕ, ṙ, ϕ̇ and perhaps explicitely on t. In
a more explicit form

N ij = ϕiK
∫

aK Φj dµ(a). (9)

The doubled skew-symmetric part of N equals the usual moment of forces (torque). D’Alembert principle
implies that equations of motion have the form

M
d2ri

dt2
= F i, ϕi

K
d2ϕj

L

dt2
JKL = N ij . (10)

The non-holonomic affine velocity in laboratory and co-moving representations is given by

Ωi
j =

dϕi
A

dt
ϕ−1 A

j , Ω̂A
B = ϕ−1 A

i
dϕi

B

dt
. (11)
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If the motion is rigid

ηAB = gij ϕi
A ϕj

B , (12)

then Ωij , Ω̂AB are skew-symmetric (indices moved respectively by g and η) and become the usual angular
velocities.

Introducing the dipole moment of the linear momentum distribution

Kij =
∫

(

xi(t, a)− ri) (

ẋj(t, a)− ṙj) dµ(a) = ϕi
K

dϕj
L

dt
JKL, (13)

and its co-moving representation

KAB = ϕ−1 A
i ϕ−1 B

j Kij , (14)

one can write our equations of motions as balance laws, obtaining in particular the affine counterpart of
the rigid body Euler equations

dP i

dt
F i,

dKij

dt
=

dϕi
A

dt
dϕj

B

dt
J AB + N ij . (15)

Obviously, P i = M
dri

dt
is the total linear momentum.

Let us quote also other equivalent forms of the above system

dP i

dt
= F i,

dKij

dt
= Ωi

mKmj + N ij , (16)

dPA

dt
= −PBJ̃BC KCA + FA,

dKAB

dt
= −KAC J̃CD KDB + NAB , (17)

M
dvA

dt
= −MΩ̂A

BvB + FA,
dΩ̂B

C

dt
J̃ CA = −Ω̂B

D Ω̂D
CJ CA + NAB , (18)

where quantities with capital indices refer to the comoving system, and

J̃ AC JCB = δA
B . (19)

If the system is non-dissipative and has the Lagrangian L = T − V (r, ϕ), then

F i = −gik ∂V
∂rk , N ij = −gik ∂V

∂ϕj
A

ϕk
A. (20)

A Legendre transformation expresses the conjugate momenta through generalized velocities

pi =
∂L
∂ṙi = Mgij

drj

dt
, PA

i =
∂L
∂ϕ̇i

A
= gij

dϕj
B

dt
J BA. (21)

The quantities

P i
j := ϕi

A PA
j = gjkKki, P̂A

B := PA
iϕi

B (22)

are Hamiltonian generators of left and right regular translations

[

ϕi
A

]

7→
[

U i
j ϕj

A

]

,
[

ϕi
A

]

7→
[

ϕi
B V B

A
]

, (23)

where U , V are nonsingular matrices. The kinetic energy

T = Ttr + Trel =
M
2

gij
dri

dt
drj

dt
+

1
2

gij
dϕi

A

dt
dϕj

B

dt
J AB (24)
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is never invariant under left or right regular translations. Thus P i
j , PA

B fail to be constants of motion.
Therefore, even if there is no potential, the above dynamical model, based on the d’Alembert principle,
is not a system on a Lie group in the Hermann–Arnold sense, therefore its structure essentially differs
from that of the usual rigid body (where T is left-invariant and, in the case of spherical top, also right-
invariant). However, there are no doubts concerning its physical applicability. Let us mention, e.g.,
astrophysical problems (vibration of stars, shape of earth) (Bogoyavlenski, 1985), macroscopic elasticity
(when the size of the body is comparable with the length of excited waves), micromorphic continua,
vibrations of molecules, collective modes of nuclei. Nevertheless, the study of left and right invariant
kinetic energies, when equations of motion are not derivable from the usual d’Alembert principle, is at
least of academic interest. One can also expect some non-standard applications in the collective model
of nuclei, and it turns out, also in the theory of integrable one-dimensional lattices.

It is obvious that any left-invariant kinetic energy of the internal motion must have the form

Trel =
1
2
LA

B
C

D
ΩA

B ΩC
D, (25)

where L is constant and LA
B

C
D

= LC
D

A
B

.

The only possibility for the translational part is

Ttr =
M
2

Cij
dri

dt
drj

dt
=

1
2

ηAB ϕ−1 A
i ϕ−1 B

j
dri

dt
drj

dt
=

M
2

ηAB V AV B , (26)

where C is the inverse Cauchy deformation tensor. Similarly, for the right-invariant models we have

Trel =
1
2
Ri

j
k

l
Ωi

j Ωk
l, (27)

where Ri
j
k

l
= Rk

l
i
j

is constant. As previously (24),

Ttr =
M
2

GAB vAvB =
M
2

gij
dri

dt
drj

dt
, (28)

where G denotes the Green deformation tensor,

GAB = gij ϕi
A ϕj

B . (29)

Although the left invariant translational energy (26) with metric coefficients built of internal degrees of
freedom looks rather exotic, one should mention that models of this type were used in defect theory
(Zorski, 19681; Zorski, 19682).

The balance forms of equations of motion corresponding to (25), (27) read, respectively

dP i
j

dt
= N i

j ,
dP̂A

B

dt
= N̂A

B , (30)

P i
j , P̂A

B given by (22). Unlike (16), (17), (18) they become conservation laws for the interaction-free
case (due to affine invariance), i.e., when N i

j = 0, N̂A
B = 0.

Let us concentrate now on the models for relative motion. Those suggested above (24), (25), (26) are too
general to be effectively treated. Therefore, we assume that the usual one (24) is isotropic in the material
space, i.e., J AB = µηAB , the same will be assumed about the left invariant one (25), and let the right
invariant one (27) be isotropic in the physical space. The corresponding expressions for affinely-invariant
models are given by

Trel =
A
2

Tr(Ω̂2) +
B
2

(TrΩ̂)2 +
C
2

(TrΩ̂T Ω̂), (31)

Trel =
A
2

Tr(Ω2) +
B
2

(TrΩ)2 +
C
2

(TrΩT Ω), (32)
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where A, B, C are constant, and transpositions are meant in the sense of the metrics η, g. By an
appropriate choice of A, B, C one can achieve the positive definitness of these expressions. The doubly-
invariant model (left and right under linear group)

T rel =
A
2

Tr(Ω2) +
B
2

(TrΩ)2 =
A
2

Tr (Ω̂)2 +
B
2

(Tr Ω̂)2 (33)

is never positively definite, because SL(n, IR) is a non-compact semi-simple group. However, expressions
(31), (32) differ from (33) by constants of motion in such a way that their discussion may be in a sense
reduced to that of (33). It is convenient and in principle not less general to put B = 0 in (33).

Another possibility of collective modes consists in compactifying deformative degrees of freedom, i.e.,
replacing in an appropriate way the group GL(n, IR) by U(n).

If the motion of internal degrees of freedom is described by time-dependent unitary matrices U(t) ∈ U(n)
then we introduce, as in the GL(n, IR)-case, the Lie algebraic objects

Ω =
dU
dt

U−1, Ω̂ = U−1 dU
dt

. (34)

They are anti-Hermitian, and the collective kinetic energy of internal motion may be postulated as the
following positive expression

T = −A
2

Tr(Ω2) = −A
2

Tr(Ω̂2), A > 0. (35)

It is convenient to use the two-polar decomposition of ϕ ∈ GL(N, IR), namely

ϕ = LD RT , (36)

where L, R ∈ SO(n, IR) are proper-orthogonal, and D is diagonal

D = Diag
(

exp (q1), . . . , exp (qn)
)

, qa ∈ IR. (37)

Compatification to U(n) consists in putting

D = Diag
(

exp (iq1), . . . , exp (iqn)
)

, qa ∈ IR. (38)

In the case of GL(n, IR) there is a very natural interpretation: qa-s are deformation invariants, and L,
R describe the orientations of principal axes of the Cauchy and Green deformation tensors, respectively.
The U(n)-description replaces straight-lines of invariants by circles.

Performing the Legendre transformations on the kinetic energies (24), (33) (this one with B = 0), (35),
we obtain the following Hamiltonians

H =
1

2A

∑

i

Pi
2 +

1
8A

∑

ij

M2
ij

(Qi −Qj)2
+

1
8A

∑

ij

N2
ij

(Qi + Qj)2
, (39)

H =
1

2A

∑

i

pi
2 +

1
32A

∑

ij

M2
ij

sh2 qi−qj

2

− 1
32A

∑

ij

N2
ij

ch2 qi−qj

2

, (40)

H =
1

2A

∑

i

pi
2 +

1
32A

∑

ij

M2
ij

sin2 qi−qj

2

+
1

32A

∑

ij

N2
ij

cos2 qi−qj

2

. (41)

The meaning of symbols is as follows: Qa = exp (qa), Pa is its canonical conjugate momentum, pa is a
canonical momentum conjugate to qa,

Mab = −Vab − Sab, Nab = Vab + Sab, (42)
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and Sab, Vab are, respectively, canonical angular momenta (Hamiltonian generators of right regular trans-
lations by SO(n, IR) acting on L and left ones acting on R). They are non-holonomic (Poisson non-
commuting) canonical momenta conjugate to co-moving angular velocities of the L- and R-rigid tops,

l = L−1 dL
dt

, r = R−1 dR
dt

. (43)

It is surprising and promising that the models (39), (40), (41) are, as seen, strongly related to the
integrable lattices studied by Calogero–Moser and Sutherland (Calogero and Marchioro, 1974; Guillemin
and Sternberg, 1984; Moser, 1975).

The above analysis is performed for arbitrary n, and this generality is interesting for studying the men-
tioned relationship with lattices. Obviously, for applications to deformable bodies, only the special cases
n = 3, 2 are relevant.

Acknowledgments

The author is greatly indebted to the Organizers of the Conference CIMRF in Berlin, 2001, first of all to
Professor W. Muschik who celebrated his 65-th birthday. The paper and participation were supported
by the Polish Committee of Scientific Research (KBN) within the framework of the grant 8T07A 047 20.

Literature

1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer Graduate Texts in Mathe-
matics, Nr. 60, Springer-Verlag, New York, (1978).

2. Binz, J.E.: [in:] Lecture Notes in Physics, Nr. 379, ed. J.D. Hennig, W. Lücke, J. Tolar, Springer-
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