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Constitutive Theory in General Relativity and Einstein-Cartan
Theory:
Spin Balances, Energy-Momentum Balances and Weyssenhoff
Fluid
H. Herrmann, G. Rückner, T. Chrobok, W. Muschik

It is shown, that the usually considered spin balances are too restrictive and only valid for pointlike
particles. Furthermore, we will derive the full spin balance and discuss the Weyssenhoff-Fluid.

1 Introduction

We are interested in constitutive theory under the influence of gravitation. General Relativity Theory
(GRT) using Riemann geometry for geometrization of the gravitation force is currently assumed to be
the most correct geometrization. But from a constitutive point of view some problems arise, which are
generated by different types of coupling between geometric and constitutive properties in different ge-
ometrizations.
In the Einstein-Cartan theory (ECT) (Schouten, 1924, 1954; Hehl et al., 1995) with non-vanishing tor-
sion and curvature, the spin is coupled with torsion, and the energy-momentum tensor, which is spin-
dependent, non-symmetric, and not divergence-free, is coupled with curvature. If the torsion vanishes,
also the spin tensor and the skew-symmetric part of the energy-momentum tensor vanish.
In the Einstein theory with vanishing torsion and non-vanishing curvature, the spin appears as in the
Einstein-Cartan theory in the non-symmetric and not divergence-free energy-momentum tensor, which
is split into its symmetric and skew-symmetric part. The divergence-free symmetric part couples by
the Einstein equations to curvature, whereas the skew-symmetric part does not couple to any geometric
quantity. It represents the source in spin balance.
In the Minkowski theory, being flat and torsion-free, there are no geometric objects to which spin and
energy-momentum tensor are coupled. If we regard Minkowski- and Einstein theories as special cases of
the Einstein-Cartan theory, and presupposing they all have the same type of coupling, consequently in
this view Einstein theory has to be spin-free and Minkowski theory is only valid in vacuum.

Until now, concerning cosmological models and materials like the Weyssenhoff fluid in GRT and ECT,
only reduced spin balances are used. Here we consider in the framework of GRT and ECT the general
spin balance and its contribution to the energy momentum tensor and its balances. As an example, the
Weyssenhoff fluid with regard to the general spin balance is discussed.

2 Lifting the Balance of Spin

In order to give a motivation for the relativistic spin balance, the classical balance of angular momentum
is used for deriving the spin balance.

2.1 Nonrelativistic

2.1.1 Classical Balance of Angular Momentum

If the angular momentum is introduced as a tensor of second order

M ij = x[iρvj] + ρsij (1)
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its balance becomes

1
2
∂t(ρsij) + ∂tx[iρvj] + ∂k

(

1
2
ρsijvk −mijk + x[iρvj]vk − x[itj]k

)

= lij + x[if j] (2)

Here mijk is the couple stress and lij the external angular moment.

2.1.2 Classical Balance of Spin

Because of sij ⇔ sk in R3 the balance of angular momentum can be written down as a vector equation.
If from this balance the balance of momentum multiplied by x is subtracted, we obtain the balance of
spin in vector formulation

∂t(ρs) +∇ ·
(

vρs− w>
)

+ ε : T = ρg (3)

2.2 SRT

2.2.1 Balance of Angular Momentum

In special relativity theory the definition of angular momentum becomes

Mαβµ := x[αT β]µ + Sαβµ (4)

and the balance results in

∂µMαβµ = Lαβ + x[αfβ] (5)

Here Sαβµ is the spin tensor and Lαβ is the external moment.

2.2.2 3+1 Split of Sαβγ

By the 4-velocity uα the spin tensor can be split into the following parts

S · ·ν
µλ = s · ·νµλ + s̃µλuν + uµŝ ·νλ + š ·νµ uλ + s̃µuλuν + uµŝλuν + uµuλšν + suµuλuν (6)

The spin tensor has to be antisymmetric in its first two indices

S · ·ν
µλ = S · ·ν

[µλ] (7)

This results in

S · ·ν
[µλ] = s · ·ν[µλ] + s̃[µλ]uν + u[µŝ ·νλ] + š ·ν[µ|u|λ] + s̃[µuλ]uν + u[µŝλ]uν (8)

= s · ·ν[µλ] + s̃[µλ]uν + u[µΞν
λ] + u[µΘλ]uν (9)

Now one can identify s · ·ν[µλ] as the couple stress and s̃[µλ] as the spin density. As there is up to now no
physical interpretation of u[µΞν

λ] and u[µΘλ]uν , these terms are set to zero, so that (8) results in

S · ·ν
µλ ≡ S · ·ν

[µλ] = s · ·ν[µλ] + s̃[µλ]uν (10)

2.2.3 Balance of Spin

As (2) follows from the balance of angular momentum (1) we obtain from (4) the balance of spin in SRT

1
2
∂µ

(

sαβuµ)

− ∂µmαβµ = T [αβ] + Lαβ (11)
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2.3 Balance of Spin in GRT

Replacing the partial derivatives in (11) by covariant ones, we obtain the balance of spin in GRT

1
2
∇µ

(

sαβuµ)

−∇µmαβµ = T [αβ] + Lαβ (12)

2.4 Balance of Spin in ECT

In ECT the spin tensor is presupposed to couple to the torsion, so that the field equations are

Rµν − 1
2
gµνR = κTµν , Rµν 6= R(µν) (13)

T · ·µ
αβ + 3δµ

[αTβ] = κS · ·µ
αβ (14)

Then the balance of spin is a result of the field equations. By taking the antisymmetric part of the first
field equation, an identity for the Ricci tensor, and the second field equation, one can derive the following
balance of spin

(∇̃α − 3Tα)S · ·α
µλ = T[µλ] (15)

If we want to describe the influence of an external torque, equation (15) has to be modified by a skew-
symmetric quantity Lµλ = L[µλ] and the body torque (see eq. (11))

(∇̃α − 3Tα)S · ·α
µλ = T[µλ] + Lµλ (16)

By doing this, the first field equation has also to be modified by Lµλ

Rµν − 1
2
gµνR = κTµν + κLµν (17)

As the energy-momentum balance is symmetric, it is not influenced by this modification.
By comparison with the non-relativistic case one can interprete the components of the spin tensor S · ·α

µλ
(see 2.2.2).

3 Geometrical Constraints in GRT and ECT

In GRT and ECT the mixed second order derivatives do not commute. They can be represented by
the curvature tensor. Here we write down the formulas for the 4-velocity, the spin density and the spin
tensor. Later on we use these relations to rewrite the energy momentum balance due to the constraints
given by the relations below.

ECT: uα;[βγ] =
1
2
(−R̃ακγβuκ)− T · ·κ

βγ ∇̃κuα (18)

GRT: uα;[βγ] =
1
2
(−Rακγβuκ) (19)

ECT: s̃αδ;[βγ] =
1
2
(−R̃ακγβ s̃κ ·

·δ − R̃δκγβ s̃ ·κα · )− T · ·κ
βγ ∇̃κs̃αδ (20)

GRT: s̃αδ;[βγ] =
1
2
(−Rακγβ s̃κ ·

·δ −Rδκγβ s̃ ·κα · )

ECT: Sκλ
· ·ω;[µν] =

1
2
(R̃ · · ·κ

νµρ Sρλ
· ·ω + R̃ · · ·λ

νµρ Sκρ
· ·ω − R̃ · · ·ρ

νµω Sκλ
· ·ρ)− T · ·ρ

νµ ∇̃ρSκλ
· ·ω (21)

GRT: Sκλ
· ·ω;[µν] =

1
2
(R · · ·κ

νµρ Sρλ
· ·ω + R · · ·λ

νµρ Sκρ
· ·ω −R · · ·ρ

νµω Sκλ
· ·ρ) (22)

According to the space-like character of the spin density and of the couple stress tensor, one finds a relation
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between the representation of the curvature tensor due to a time-like vector field, like the velocity field,
and the representation of the curvature tensor according to the couple stress tensor and the spin density.
In order to get the relation one has to contract the spin density and couple stress geometry relations
given above with the four-velocity uα and taking the divergence in this relations. So one obtains in GRT
and ECT

∇[β∇γ][s̃ ·βσ ·u
σ] != 0

⇐⇒ (∇[β∇γ]s̃ ·βσ · )u
σ = −(s̃ ·βσ · )(∇[β∇γ]uσ) (23)

and

∇[β∇γ][s ·βγ
σ · ·u

σ] != 0

⇐⇒ (∇[β∇γ]s ·βγ
σ · · )u

σ = −(s ·βγ
σ · · )(∇[β∇γ]uσ). (24)

3.1 Energy Momentum Tensor and its First Covariant Derivatives in GRT and ECT

Independent of the used geometry, the energy momentum tensor can be defined as follows

T =









t p

q ε









. (25)

Now we perform a (3+1)-decomposition of the energy momentum tensor using the projections parallel
to the velocity field ( uα) and perpendicular to it, using the projector

hγβ = (gγβ +
1
c2 uγuβ) (26)

Tαβ = h ·γα · tγδhδ ·
·β + h ·γα ·pγuβ + uαqδhδ ·

·β −
1
c2 εuαuβ = T(αβ) + T[αβ] (27)

⇐⇒ Tαβ = t(αβ) + u(αQβ) −
1
c2 εu(αuβ) + t[αβ] + u[αPβ] + ε u[αuβ]

︸ ︷︷ ︸

=0

(28)

Using (16) one finally gets a representation for the 4-momentum Pβ in the ECT case

∇̃µ(s · ·µ[αβ] + s̃[αβ]uµ)− Lαβ − t[αβ] − 3TµS · ·µ
αβ = uαPβ − uβPα. (29)

Contracting (29) with uα leads to

−1
c2 (εuβ + uα2∇̃µS · ·µ

βα − uαLαβ − uα3TµS · ·µ
αβ ) = Pβ . (30)

Inserting equation (30) back into (27) one obtains

Tαβ = t(αβ) −
2
c2 εu(αuβ) −

1
c2 u(α|uγ2∇̃µS · ·µ

|β)γ +
1
c2 u(α|uγLγ|β) +

3
c2 uγu(α|TµS · ·µ

γ|β) +

+t[αβ] −
1
c2 u[α|uγ2∇̃µS · ·µ

|β]γ +
1
c2 u[α|uγLγ|β] +

3
c2 uγu[α|TµS · ·µ

γ|β] . (31)

Crossing out the torsion in the last equation, one gets the analogous representation of the energy mo-
mentum tensor in the GRT case.
Taking the divergence of (27) one gets in the ECT case

∇̃βTαβ = ∇̃βt(αβ) − ∇̃β

(

2
c2 εu(αuβ)

)

+ ∇̃β

(

1
c2 u(αuγL ·β)

γ ·

)

− (32)
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−∇̃β

(

1
c2 u(α|uγ4

)

∇̃µ

(

s̃|β) ·
·γ uµ + s|β) ·µ

·γ ·

)

−

− 1
c2 u(α|uγ4∇̃β∇̃µ

(

s̃|β) ·
·γ uµ + s|β) ·µ

·γ ·

)

+

+∇̃β

(

3
c2 uγu(α|TµS · |β)µ

γ · ·

)

+

+∇̃βt[αβ] + ∇̃β

(

1
c2 u[α|uγL · |β]

γ ·

)

−

−∇̃β

(

1
c2 u[α|uγ4

)

∇̃µ

(

s̃|β] ·
·γ uµ + s|β] ·µ

·γ ·

)

−

− 1
c2 u[α|uγ4∇̃β∇̃µ

(

s̃|β] ·
·γ uµ + s|β] ·µ

·γ ·

)

+

+∇̃β

(

3
c2 uγu[α|TµS · |β]µ

γ · ·

)

.

Now it is possible to replace the skew-symmetric parts of the second covariant derivatives of the spin
density and the couple stress in (32) by (23) first and then by (18), one finally gets another possible
representation of the balance of the energy momentum tensor including the curvature tensor and no
more skew-symmetric parts of the second derivatives of the spin density and the couple stress

∇̃βTαβ = ∇̃βt(αβ) − ∇̃β

(

1
c2 εu(αuβ)

)

+ ∇̃β

(

1
c2 u(α|uγL · |β)

γ ·

)

− (33)

−∇̃β

(

1
c2 u(α|uγ4

)

∇̃µ

(

s̃|β) ·
·γ uµ + s|β) ·µ

·γ ·

)

−

− 1
c2 u(α|uγ4∇̃(β|∇̃µ)

(

s̃|β) ·
·γ uµ + s|β) ·µ

·γ ·

)

+

+∇̃β

(

3
c2 uγu(α|TµS · |β)µ

γ · ·

)

+

+∇̃βt[αβ] + ∇̃β

(

1
c2 u[α|uγL · |β]

γ ·

)

−

−∇̃β

(

1
c2 u[α|uγ4

)

∇̃µ

(

s̃|β] ·
·γ uµ + s|β] ·µ

·γ ·

)

−

− 1
c2 u[α|uγ4∇̃(β|∇̃µ)

(

s̃|β] ·
·γ uµ + s|β] ·µ

·γ ·

)

+

+∇̃β

(

3
c2 uγu[α|TµS · |β]µ

γ · ·

)

−

− 4
c2 u(α|

(

s̃|β) ·
·γ uµ + s|β) ·µ

·γ ·

)(

∇̃[β|∇̃µ]uγ
)

−

− 4
c2 u[α|

(

s̃|β] ·
·γ uµ + s|β] ·µ

·γ ·

)(

∇̃[β∇̃µ]uγ
)

.

Inserting now (18) in (33)

∇̃βTαβ = ∇̃βt(αβ) − ∇̃β

(

2
c2 εu(αuβ)

)

+ ∇̃β

(

1
c2 u(α|uγL · |β)

γ ·

)

− (34)

−∇̃β

(

1
c2 u(α|uγ4

)

∇̃µ

(

s̃|β) ·
·γ uµ + s|β) · µ ·γ ·

)

−

− 1
c2 u(α|uγ4∇̃(β|∇̃µ)

(

s̃|β) ·
·γ uµ + s|β) ·µ

·γ ·

)

+

+∇̃β

(

3
c2 uγu(α|TµS · |β)µ

γ · ·

)

+

+∇̃βt[αβ] + ∇̃β

(

1
c2 u[α|uγL · |β]

γ ·

)

−

−∇̃β

(

1
c2 u[α|uγ4

)

∇̃µ

(

s̃|β] ·
·γ uµ + s|β] ·µ

·γ ·

)

−
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− 1
c2 u[α|uγ4∇̃(β∇̃µ)

(

s̃|β] ·
·γ uµ + s|β] ·µ

·γ ·

)

+

+∇̃β

(

3
c2 uγu[α|TµS · |β]µ

γ · ·

)

+

+
4
c2 u(α|

(

s̃|β) ·
·γ uµ + s|β) ·µ

·γ ·

)

(

1
2
R̃λκµβuκgλγ + T · ·κ

βµ ∇̃κuλgλγ
)

+

+
4
c2 u[α|

(

s̃|β] ·
·γ uµ + s|β] ·µ

·γ ·

)

(

1
2
R̃λκµβuκgλγ + T · ·κ

βµ ∇̃κuλgλγ
)

.

In the case of GRT and Riemannn geometry one has to satisfy some additional constraints according to
the used geometry

• ∇βTαβ != 0

• Tαβ = T βα

• uα;[βγ] = 1
2 (−Rακγβuκ)

• Rαβ = Rβα

• Γα
βδ = Γα

δβ = { α
βδ}

Taking into account these constraints given above leads to the representation of the energy momentum
tensor in the GRT case

∇βT (αβ) != 0

0 = ∇βt(αβ) −∇β

(

2
c2 εu(αuβ)

)

+∇β

(

1
c2 u(α|uγL · |β)

γ ·

)

− (35)

−∇β

(

1
c2 u(α|uγ4

)

∇µ

(

s̃|β) ·
·γ uµ + s|β) ·µ

·γ ·

)

−

− 1
c2 u(α|uγ4

(

∇(β∇µ)s̃
|β) ·
·γ

)

uµ −

− 1
c2 u(α|uγ4∇(β∇µ)s

|β) ·µ
·γ · +

+
1
c2 u(α|4

(

∇[β∇µ]uγ)

s̃|β) ·
·γ uµ +

+
1
c2 u(α|4

(

∇[β∇µ]uγ)

s|β) ·µ
·γ · .

Inserting now (19) in (35) leads to the representation of the energy momentum tensor including the
curvature tensor in the GRT case

∇βT (αβ) != 0

0 = ∇βt(αβ) −∇β

(

2
c2 εu(αuβ)

)

+ 2∇β

(

1
c2 u(α|uγL · |β)

γ ·

)

− (36)

−∇β

(

1
c2 u(αuγ4

)

∇µ

(

s̃β) ·
·γ uµ + s|β) ·µ

·γ ·

)

−

− 1
c2 u(α|uγ4

(

∇(β∇µ)s̃
|β) ·
·γ

)

uµ −

− 1
c2 u(α|uγ4∇(β∇µ)s

|β) ·µ
·γ · −

− 1
c2 u(α|4

1
2
Rγρβµuρs̃|β)γuµ −

− 1
c2 u(α|4

1
2
Rγρβµuρs|β)γµ.
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4 Weyssenhoff-Fluid: Heuristic Description

Now the Weyssenhoff fluid (Weyssenhoff and Raabe, 1947) is discussed as it is worked out by Obukhov
and Korotky (Obukhof and Korotky, 1987).
The Weyssenhoff fluid is defined as an ideal spinning fluid.
A spin density is introduced as a skew-symmetric tensor

Sµν = −Sνµ (37)

The spin density is spacelike, which is ensured by the Frenkel condition

Sµνuν = 0 (38)

The constitutive assumptions (postulates) for a Weyssenhoff fluid are as follows

• The spin tensor is a function of the spin density and the following constitutive equation is assumed

S · ·µ
αβ = uµs̃αβ (39)

• The energy-momentum tensor is a function of the energy-momentum density, and is defined as
follows

Tµ
·α = uµPα (40)

• Neglecting the torque Lαβ
!= 0.

• Neglecting the couple stress s · ·δαβ ·
!= 0.

• Interaction of the particles as point particles.

Then we have the balance of spin

(∇̃α − 3Tα)(κS · ·α
µλ ) = κT[µλ] (41)

Next one calculates the explicit form of the energy-momentum-density Pα. This can be done by starting
with the anti-symmetric part of the energy-momentum tensor (41) and (40)

2T[µν] = uµPν − uνPµ = 2(∇̃α − 3Tα)S · ·α
µν (42)

• and with the usual definition of the internal-energy

uµPµ
!= ε (43)

one obtains

−c2Pν = εuν + 2uµ(∇̃α − 3Tα)(uαs̃µν) (44)

Tµ
·ν = − 1

c2 εuµuν −
1
c2 2uµuα∇̃βS · ·β

αν (45)

If it is now assumed that the interaction between the elements of the fluid is given in such a way that

• Pascal’s law is valid, one has to modify the equations by an isotropic pressure

T̂µ
·ν = +

1
c2 pδµ

ν −
1
c2 uµ(uν(ε + p) + 2uα∇̃βS · ·β

αν ) (46)
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5 Concluding Remarks

As we have shown, the usually considered spin balances are too restrictive, as they are only valid for
pointlike particles and vanishing couple stress and body torque.
The Weyssenhoff-fluid is a very restricted special case of a spinning fluid: it is considered to consist of
pointlike particles, as a consequence of this assumption the couple stress vanishes.
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