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Recent Developments in Finite Time Thermodynamics

K.H. Hoffmann

Finite time thermodynamics is a non—equilibrium theory. Its aim is to provide performance bounds and

extremes for irreversible thermodynamic processes. Recent developments in difierent areas of this theory

are presented. First it is shown how irreversible processes between reversible systems can be described

by the endoreversible theory. Then maximum power and minimum entropy production processes are

introduced. And finally the extension of finite time thermodynamics to the realm of quantum theory is

demonstrated.

1 Introduction

Thermodynamics started in 1826 when SADI CARNOT, a French engineer, published his famous article

‘Reflexions sur la puissance motrice du feu’ (On the motive power of heat). He reported the results of

the first systematic study on the physical processes governing steam engines. Building on this one of

the earliest successes of thermodynamics was the formulation of bounds and optima for thermodynamic

processes. Carnot showed that any engine which produces work taking heat from a heat reservoir at

temperature TH has to deposit part of that heat in a colder reservoir at temperature TL and moreover

no engine can convert more than the fraction

770:1——
(1)

of the heat taken from the heat reservoir to work. nc is the well—known Carnot efficiency and it is an

upper bound for the efficiency of any heat engine running between two heat baths. In the subsequent de—

velopment of thermodynamics the emphasis changed over to equilibrium concepts like entropy and energy.

The past 30 years, however, have seen again a shift to process quantities and the development of non—

equilibrium thermodynamic theories. Why is it that the non—equilibrium character of thermodynamics

has again gained the importance it has today?

To understand this renewed interest in the conversion of heat into power let us look at a real life example.

In a recently built brown coal power station near Lippendorf close to Leipzig the temperature TH of

the burner is roughly 900 K and the corresponding cooling tower temperature TL is about 300 K. The

observed efficiencies are little higher than 40%. From the temperature data follows that in a reversible

process the achievable efficiency is about 66%. This efficiency exceeds the observed efficiency by a factor

larger than 1.5. To emphazise this discrepancy I like to call it the science—reality gap in power conversion.

It shows that between the observed efficiencies and the efficiencies which are provided by the often used

reversible theories in thermodynamics a wide gap remains open which needs to be explained.

One possible explanation could be that the design which is currently used by the engineers for building

power stations is not optimal for the purpose desired. In other words: a better design could be possibly

used to increase efficiency further. To explore this possibility we look at the primary energy usage in

power production (in SKE/kWh) as a function of time in Germany: 0.569 (1953), 0.361 (1973)7 and

0.347 (1993). The figures show that between 1953 and 1973 the primary energy usage decreased by about

30%, but between 1973 and 1993 the usage did not drop much further. From this we can conclude that

most probably technology does not have much potential for further improvement. That means that the

physical theory using the Carnot efficiency to determine the efficiency of power stations misses important

effects of real life power stations and needs to be improved.

The realization of this science—reality gap led to the development of new non—equilibrium thermodynamics

theories. One of these is finite time thermodynamics (Andresen, 1984; Andresen, 1983a). It developed

starting from a number of simple but important questions:

14



q2 q1 qb Qa Qe = 0 qd

Q3 go qf

Figure 1: Tricycle decomposition of the general heat flows q1, q2‚ q3 of a process into a reversible part

and a totally irreversible part.

o Is there a price to be payed in terms of efficiency to operate a power station in finite time or at

finite rates?

a How large is that price?

0 Which kind of process leads to the minimal price?

Starting from these questions finite time thermodynamics developed into several directions.

2 Early Concepts in Finite Time Thermodynamics

One of the earliest concepts in finite time thermodynamics is the tricycle formalism (Andresen, 1977). It

is a very convenient way to access the cost of a finite time operation for a heat exchange system, making

use of the conversation laws for the process in question.

A system which is in contact with 3 heat reservoirs or 2 heat reservoirs and a work reservoir, e.g.

a flywheel, is graphically depicted as a triangle, with heat flows ql, (12, and q3 into the reservoirs at

temperatures T1, T2, and T3. In the case of a work reservoir the corresponding temperature is infinite

and the energy flow is not accompanied by an entropy flow. The idea behind the tricycle is that it

represents a cyclic or continuously operating energy conversion system, which does not produce energy

itself, thus

(114—924—4320 (2)

where for a cyclic operating system the q’s are cycle averages. Using 7-,- : T271 the entropy production 5

is given by

s:q17'1+q27'2+q37'3 >0.

One now decomposes the tricycle process into a reversible part and into a totally irreversible part as

shown in Figure 1. To make the decomposition unique, qe is set to zero. Such a decomposition becomes

useful if by specifying the loss mechanisms the dependencies of the irreversibilities on the reversible flows

or rates are determined. Once that has been achieved the objective (like power, efficiency, minimum

entropy production etc.) for the optimization must be chosen and then the optimal flows and thus the

corresponding size of the irreversibilities can be determined. One advantage of the tricycle formalism is

that it allows to treat several loss mechanisms simultaneously, for instance the interplay between friction

and heat leak losses have been analyzed. The formalism also allows to separate the most serious losses

and concentrate on them. And finally it may be convenient for processes which have unavoidable losses,

to split the tricycle into three parts: one for the reversible operation, one for the unavoidable losses, and

one for the excess losses.

Another early concept of finite time thermodynamics is the finite time potential (Salamon, 1977). As

pointed out above, thermodynamics started out as a practical science dealing with energy conversion,

and throughout its develOpment one basic question remained of interest at least from a practical point

of view: How much work or heat can one get out of a system undergoing a thermodynamic process from

one state to another?

The answer to this kind of question is given for certain reversible processes by the appropriate thermo-

dynamic potentials. For irreversible processes these could provide only bounds on the process variables



which might be far from being realistic. The usually known potentials for reversible processes are charac-

terized by the constancy of some state variables like volume, pressure or temperature. This is, however,

not necessary, and Salamon, Andresen and Berry (Salamon, 1977) presented an extension of the Leg—

endre transformations used in classical thermodynamics which allows to handle a much wider class of

constraints including those which depend on time.

These extended potentials are called finite time potentials. They can handle finite rate and finite time

constraints and provide a bound for process variables in the form of the difference of their value between

final and initial states. For certain processes they can explicitly depend on time. The bounds provided

by finite time potentials contain the losses by the irreversibilities and are thus more realistic than those

for ordinary potentials. The same applies to bounds derived from finite—time availability, which is an

extension of the usual availability to irreversible processes (Andresen, 1983a; Andresen, 1983b).

3 The Quest for Principles

The early concepts presented above already show the main idea behind the development of finite time

thermodynamics. Even though it is a theory of irreversible processes, the systems are still described by

equilibrium variables like pressure or temperature. The underlining reason why this description is still

possible is a time scale separation, which is observed in nature in very many circumstances. Looking

at thermodynamic systems one sees that even though parts of the system are not in equilibrium, large

parts can be considered to be very close to equilibrium because their internal relaxation time is much

smaller than that of the total system (Hoffmann, 1997). Thus the subsystems can be described very well

by equilibrium terms. The resulting picture one has of a non—equilibrium system is therefore a picture of

a collection of near equilibrium subsystems which interact in an irreversible manner.

The ideas developed in finite times thermodynamics have been applied in a variety of situations, for

instance, in the field of heat engines the performance of internal combustion engines has been studied

while in the field of chemical reactors the optimal type of fuel gas production has been considered. In

the area of solar cells the efficiencies have been the goal of investigation while in the field of chemical

distillation the question of diabatic columns is of recent interest. In all these cases the goal has been to

find realistic process limits and to determine the corresponding optimal process.

Of course the optimization of the thermodynamic processes in these applications is an important goal in

its own right. However, behind the treatment of these special problems lies the hope that in this way

underlying principles can be discovered. It is this quest for principles (Salamon, 2001) which has led to a

large number of very interesting investigations into special systems. In some of these areas more general

principles have been uncovered.

In the following we will present four areas in finite time thermodynamics, in which recent progress has

led to a deeper understanding of non—equilibrium thermodynamic processes.

4 Endoreversible Systems

Endoreversible thermodynamics (Rubin, 1979; de Vos. 199‘2: Hofi'mann, 1997) look at a thermodynamic

system in the specific way presented already above: The thermodynamical system is considered to consist

of a number of equilibrium subsystems which interact in a highly irreversible way, as shown in Figure

The advantage of the equilibrium subsystems is that the well known relations from equilibrium

thermodynamics can be used while all the entropy production occurs during the transport between the

subsystems.

The transport between the subsystems is characterized by so called ‘interactions’ which are usually given

by irreversible transport equations. Very simple examples are for instance the Newtonian heat conduction

q : 5(T — T’) or q : It’ (T4 —T’4) for radiative energy transfer, while for interactions exchanging particles

one might use j = It(,u — M)” with ‚u being the chemical potential and y some appropriate exponent.

The reversible subsystems which are connected by the interactions described above can of course be

equilibrium systems described by the usual intensities. The classical example is a heat bath described by

a temperature T. Other examples are reservoirs of chemical substances with given chemical potential.
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Figure 2: (a) Endoreversible thermodynamics views a thermodynamic system as a collection of reversible

subsystems interacting in an irreversible manner. (b) Reversible engines receive extensities at different

values of the corresponding intensity, thus allowing a very effective system endoreversible description.

Generally a subsystem 7C is described by its extensive thermodynamic variables Xi“, for instance the volume

Vi, or particle number Ni, all of which are counted by a. We note that there may be thermodynamic

variables like the surface of the subsystem, which are not truly extensive, but for the sake of simplicity

are here called ’extensive’ too. The entropy S,- of subsystem 7? is a well defined state variable due to

endoreversibility and belongs to the set of extensive variables. Thus the state of the subsystem is uniquely

described by the set of its extensities {X We then have

Ei = (4)

Note that (4) defines the properties of subsystem i, i.e. specifying Ei as a function of the X determines

What the thermal behavior of that subsystem is. The energy E is not confined to be the internal energy,

it can in addition include for instance the translational kinetic energy or the elastic energy. In each case

the proper ‘extensive’ (or more common ‘dynamical’) variables must be included in the set of extensities.

Even pure mechanical systems are within the scope of this description, which is very convenient for

instance in the combined treatment of dynamic and thermodynamic systems.

Due to endoreversibility all the standard equilibrium relations hold within a subsystem. We obtain the

respective conjugate intensive variables Y,“ from (4):

 

8E-
a _ 1

The Gibbs equation becomes dEi = 2a 3?de and in each subsystem the extensive and the intensive

variables are related via the equations of state Due to the Gibbs equation each influx of an extensity

dXZ-a into the system carries an accompanying influx of energy dEf‘ (Falk, 1976):

dE,a z Yf‘de‘. (6)

For instance any heat flux q is carried by an entropy fiux q/T, see figure 3(a). Figure 3(b) shows that in

an irreversible interaction some of the energy switches from its original carrier to entropy as the carrier,

(tarricrl I
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Figure 3: (a) Any influx of a ‘carrier’ dX into a system is accompanied by an energy influx dE. (b) In

an irreversible interaction between systems part of the energy is transferred from its carrier to the new

carrier entropy, which is created by the dissipation.
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Figure 4: (a) shows a Curzon—Ahlborn—engine, consisting of a Carnot engine coupled to two heat baths by

finite heat conductances. (b) shows the power of the Curzon—Ahlborn—engine as a function of the efficiency

of the engine, indicating the interplay between the degree of irreversibility and the power output of its

operation.
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i.e. the dissipated energy becomes heat.

A large step forward in the description of endoreversible systems is the insight that the reversible sub—

systems should not only be reservoirs but can also be reversible engines, for instance Carnot engines or

even more general systems which interact with each other due to many interactions. The new feature in

reversible engines is that it has an exchange of extensities at different intensities at the same time. This

is shown in figure 2(b) where for instance the substance A enters the system at a chemical potential m

and could leave the system at a chemical potential #2. A more familiar system is a Carnot engine where

entropy and heat enter at temperature T1 and leave the system at temperature Tg.

Such a description using reversible engines allows to determine process quantities like entropy production

or work very effectively in dependence on the manner in which a thermodynamic process is executed.

The process can usually be controlled by certain control variables, for instance temperature differences

or other quantities describing the states of the equilibrium subsystem. Thus endoreversible thermody—

namics provide a unified description for non-equilibrium processes to determine performance bounds and

extremes. Due to the introduction of reversible engines for the use as reversible subsystems the power of

the theory has increased by much and provides nowadays a network description to simulate the dynamics

of thermodynamic systems. One example for the power of this description is provided in the next chapter

which deals with maximum power processes.

5 Maximum Power Processes

Maximum power processes have been at the center of interest of finite time thermodynamics from the

very beginning. Maximum power processes have been studied for different types of heat engines ranging

from the well—known Novikov and Curzon—Ahlborn engines to the optimization of internal combustion

engines like Otto and Diesel engines (Mozurkewich, 1982; Hoffmann, 1985; Burzler, 2000) to the study of

light driven engines (Watowich, 1985). They are of very great interest because they are of technological

importance. In the following we present as an introduction the Curzon—Ahlborn engine (Curzon, 1975)

which shows in a very simple way what type of results can be achieved.

As shown in Figure 4 (a) a Carnot engine operating between its two internal temperatures T2 and T3

is linked to two external heat baths at temperatures T1 and T4. Heat flows only from the hot bath to

the engine and from the engine to the cold bath if there is a finite temperature difference between the

respective temperatures T1 and T2, as well as T3 and T4. In this example it is assumed that heat transport

occurs proportional to the temperature difference. Due to the finite heat conduction the produced power

is limited. The efficiency of the engine at the operating point of maximum power is

T4
= 1 — — .

770A T1 (7)
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This is the well known Curzon-Ahlborn—efficiency which is smaller than the Carnot efliciency for the same

temperatures. It is worthwhile to note that it does not depend on the values of the heat conductances It.

In the following table taken from (Curzon, 1975), a comparison between the Carnot efficiency and the

Curzon—Ahlborn—efficiency is shown for a number of power stations:

 

power station | type | TL I TH I 770 I 770A I meal

West Thurock coal 25 565 0.64 0.40 0.36

CANDU nuclear 25 300 0.48 0.28 0.30

Landerello geothermal 80 250 0.32 0.17 0.16

The table shows that mm is much closer to the observed efficiency than 77g. Thus the Curzon—Ahlborn—

efficiency is a first step forward towards a more realistic description of energy conversion processes.

In a number of studies it has been shown that the Curzon-Ahlborn efficiency occurs in several instances

and is always connected to the case where the heat conduction in and out of the engine is proportional to

the temperature difference which the heat has to cross. It does for instance not apply to engines for which

the energy is transported by radiation. These results suggest that the applicability of the Curzon-Ahlborn

efficiency is restricted to the case of Newtonian heat conduction.

In a recent work (Burzler, 2001) it was shown that that is not the case. In that paper heat engines

with polytropic cycles are considered. Polytropic processes are used to describe the state change of the

working fluid in a generalized way and include common standard branches, such as isotherms, isochors,

and isobars, as special cases. A polytropic process of a working fluid is characterized by a constant

product pV" where p is the pressure and V is the volume of the working fluid. The constant exponent

n refers to the polytropic degree of the heat transfer process. The concept of polytropic processes was

taken into the realm of finite time thermodynamics by Pathria, Nulton and Salamon (Nulton, 1993).

The polytropic degree n can in principle take any value between ~00 and oo. Common standard processes

correspond to n : 1 for isothermal, n : 0 for isobaric, n : ioo for isochoric, and n = y for adiabatic

processes. The quantity 7 : Cp/CV is the ratio of the heat capacities Cp and CV of the working fluid

at constant pressure and constant volume, respectively. In practice, a desired polytropic process can be

achieved by controlling some of the state variables, for instance the volume or the pressure of the working

fluid. The polytropic degree In is directly related to the polytropic heat capacity which is defined as

 

CnZCvn—fy

n — 1

The polytropic heat capacity Cn is not a material parameter but a process parameter and may in principle

take any value between —oo and 00, if no restrictions on n are imposed. A negative polytropic heat

capacity 0,, is not unrealistic. It could for example occur in a system where the working fluid receives

heat and at the same time is very rapidly expanded such that the temperature of the working fluid

decreases with time and the polytropic heat capacity Cn becomes negative even though the heat capacity

of the working fluid has a finite positive value.

The thermodynamic cycle of the endoreversible engine investigated by Burzler et al. is made up of two

polytropic and two adiabatic branches, like the example depicted in Figure 5(a). The engine operates

between heat reservoirs at constant high and low temperatures, TOH and TOL7 respectively. During the

upper (lower) heat transfer process the entire working fluid is in thermal contact with the hot (cold)

reservoir. Thus the model is capable of describing technologically important cycles like the Brayton cycle

and Otto cycle and accounts for the finite time character of the heat transfer processes.

For engine cycles with arbitrary, non—equal polytropic heat capacities CH and CL the maximum power

output is not easily obtained analytically. Thus numerical optimizations of the heat engine have been

performed. The interesting and not expected result of the numerical calculations was that the efficiency

of the polytropic engine differs significantly from the Curzon—Ahlborn efliciency if the branches are of a

different type, i.e. have different polytropic heat capacities CL 7E CH.

A plot of the efficiency versus the polytropic heat capacities (in dimensionless units) is shown in Figure

5. The efficiency 77 of the optimized cycle is equal to the Curzon—Ahlborn efficiency 770A = 1 — w/TÜL /T0H
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Figure 5: (a) Sketch of a polytropic engine cycle. (b) Deviation of the efficiency from the Curzon—Ahlborn

value as a function of the polytropic heat capacities.

only if both polytropic heat capacities are equal. For all other cases the efficiency deviates up to about

8% from the Curzon~Ahlborn efficiency.

The above results show that the Curzon—Ahlborn efficiency can not be used as a universal figure for

heat engines optimized for maximum work output although it still can serve as a rough estimate of the

efficiency for such engines. This is quite surprising since the existing literature suggested that the linearity

of the heat conduction law is the main criterion for an applicability of the Curzon—Ahlborn efficiency.

But instead it turned out that the exponents of the polytropic branches are crucial in this context.

6 Minimum Entropy Production Processes

Minimum entropy production processes are often believed to be more or less the same as maximum power

processes. It is very important to understand that they are not equivalent. This can be demonstrated

in a very simple example. Assume that a person wants to drive in his car to the airport. If he is in a

hurry, then he is interested in a maximum power process for his car engine, because that will provide the

fastest transport. If on the other hand he is low on fuel, he is interested in minimum entropy production

processes. because that will give him the best mileage. The difference between the two cases is obvious.

Being different from maximum power processes, the analysis of minimum entropy production processes

has developed its own tools (Sieniutycz, 1990; Hofl'mann, 1997). One of these is the concept of ther—

modynamic length or distance (Salamon, 1983). Its definition starts out from thermodynamic stability,

which guarantees that the second derivative matrix of the entropy with respect to the other extensities is

positive definite. Thus one can use that matrix to define a thermodynamic distance in the space of the

equilibrium states of a system. The thermodynamic length E of a process is given by the line element

(Salamon, 1998).

dz = \/—dZtD2SdZ’, (9)

where Z : (U, V, . . is the vector of extensities and DES is the matrix of partial derivatives 823/8Zi8Zj.

An important result of finite time thermodynamics is that this length can be used to bound the entrOpy

production of that system. The nature of this bound becomes much clearer in the following application

to the diabatic distillation in chemical separation processes.

While an adiabatic distillation column uses just one heat source (reboiler) and one heat sink (condenser),

a diabatic column uses a heat exchanger at each tray of the column (see Figure 6). The idea goes back

to the work of Z. Fonyo in the early seventies (Fonyo, 1974), but has recently been explored by a number

of authors (see (Schaller7 2001) and literature therein.) The additional heat exchangers add or remove
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Figure 6: Sketch of a conventional adiabatic distillation column and a diabatic column with additional

heat exchange. Both columns have N 2 8 trays including the reboiler as tray 8.

heat to maintain a particular temperature profile inside the column.

The distillation process is modeled as an N—step process (Nulton, 1985), with N corresponding to the

number of trays in the distillation column. Asymptotically in the limit of N —> 00, the total entropy

production AS“ of an N—step process is bound by AS“ 2 Ü /(2N) (a result from the horse—carrot theorem

(Salamon, 1998; Nulton, 1985)). The thermodynamic length of an N—step process can be written as

L 2 Z A117,, (10)

where All” is the length of the n—th step. A process where the lengths of the steps are equal, i.e,

Ag 2 2 A137, 2 2 ALN is called an equal thermodynamic distance (ETD) process. For the

distillation model described in the previous section, the thermodynamic length element (9) is given by

(Salamon, 1998) (M 2 \/C—,,T_1 dT where 0,, is the total constant pressure coexistence heat capacity of

the binary two—phase mixture in equilibrium.

As an ETD process minimizes the entropy production only asymptotically (Salamon, 1998; Andresen,

2000) in 1/N the question is how good is ETD for columns with few trays?

In order to answer this question, Schaller et a1. (Schaller, 2001) investigated in a recent study the entropy

production associated with distillation on shorter (small N) columns. They chose benzene/toluene as

their system to be separated. The mixture to be separated is introduced as feed F usually near the middle

of the column and the separated components are removed at the top as distillate D and at the bottom

as bottoms B. The column is considered to be operating at steady-state so all extensive quantities are

per unit time. For convenience, only binary mixtures are considered and the pressure is assumed to

be constant throughout the column. The reflux is taken equal to zero. In order to calculate the heat

required at each tray to maintain the desired temperature profile, the energy and mass balance has to be

maintained for each tray. Constant heat capacities, a noninteracting mixture of ideal gases for the vapor

phase, and an ideal solution for the liquid phase were assumed.

The entropy production for the separation of a 50/50 mole fraction benzene/toluene mixture is minimized

by applying a fully numerical, multidimensional optimization routine as well as ETD. The number of

trays and purity requirements were varied to Show differences in the performance of ETD and numerical

optimization. The comparisons are always between columns with the same material flows in and out.

Notably the feed, bottoms and distillate flows match not only in magnitude but also in composition
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Figure 7: Entropy production for the separation of a benzene/ toluene mixture.

Notably the feed, bottoms and distillate flows match not only in magnitude but also in composition

and temperature in the columns compared. Because of its asymptotic nature, the minimum entropy

production calculated with ETD should be higher than the true minimum for fewer trays.

Figure 7 shows the entropy production associated with the separation as a function of the number of

trays for a conventional column, the ETD column, the numerically optimized column, and

(7112) the asymptotic lower bound (£2 /2N) for the entropy production based on the ETD calculation.

Interestingly the ILZ/ZN values are surprisingly far from the ETD curves. The good match between

ASgpmnal and ASETD led later to a deeper explanation. It turns out that the match between these two

quantities is always of order 1/N3 (Salamon, 2001).

For all purity requirements considered, the optimal columns are far more efficient than their conventional

adiabatic counterparts. The optimal results also are above the ETD lower bound, but approached the

ETD bound as N was increased. Thelarge N simulation for the 99/01 purity requirement has the

closest values to the ETD bound as was expected due to the asymptotic nature of the ETD theory. The

numerical optimization results predict slightly less entropy production in the small N regions, but agree

very well with the ETD results for larger N values.

Finally we remark that similar studies comparing a different optimization algorithm to an isoforce criterion

have appeared elsewhere (see Koeijer, 1999 and literature therein). From a technological point of View it

is very promising that the optimal profile calls for a nearly constant heat demand which works well with

the Rivero implementation of diabatic columns (Rivero, 1993).

7 Quantum Finite Time Thermodynamics

The ideas of finite time thermodynamics can be taken over into the regime where one needs to use

quantum theory. In that regime the interactions are no longer described by phenomenological transport

laws, but are derived from a quantum mechanical coupling of the system to the baths.

In the following a simple system in which the dynamics is given by quantum mechanical considerations

(Geva, 1994) is presented. The system is shown in Figure 8. It consists of a number of atoms with three

energy levels E1, E2 and E3, where levels 1 and 3 are coupled to a hot temperature bath and levels 1 and

2 are coupled to a cold temperature bath. The dynamics is given by a quantum master equation. Such
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Figure 8: A three level quantum system is shown, coupled to two heat baths. The coupling tries to

establish a certain population ratio between the respective levels. Work is delivered or taken from the

system by coupling to an external field. (a) shows a quantum amplifier, (b) a quantum refrigerator with

the arrows indicating the cycle taken by the system.

dynamics aim at establishing an appropriate population density of the levels so that the population ratio

between level 3 and 1 moves towards

E —> HEFEIV’QTH (11)
m

while the population ratio between levels 2 and 1 moves towards

—> e-<E2*E1V’“TC. (12)
m

For this system the definition of an internal temperature is simple: the internal temperature of the hot

side of the system is given by the actual population ratio of levels 1 and 3, and the internal temperature

of the cold side is given by the actual ratio between levels 1 and ‘2.

Based on these internal temperatures it can be shown that the dynamics given by the quantum master

equation lead to a heat transport law which differs markedly from the well known Newtonian heat

transport. A surprising result is that even though the interaction and the transport law between heat

bath and system are no longer Newtonian the efficiency at the maximum power output goes in the high

temperature limit to the Curzon—Ahlborn—efficiency

TC

TH

 

77—H70A21—
(13)

Thus the result from classical finite time thermodynamics reoccurs in quantum theory even though only

in a limiting case.

Another interesting application of the system is to run it backwards as a three level quantum refrigerator

(Kosloff, 2000). Here a coherent radiative work input in form of a radiation field leads to a heat transport

from the cold temperature reservoir to the hot temperature reservoir as is shown in Figure 8. The cycle

works as follows: The incoming radiation increases the population of level 3 compared to level 2. The

resulting population ratio between levels 3 and l is now too high compared to the desired population

ratio from the heat bath. Thus a number of atoms loose their energy to the hot temperature heat bath

and make a transition into level 1. On the other hand level 2 is depleted due to the incoming field and

its population is too low compared to level 1. Thus energy from the cold heat bath will be taken to

increase the population in level 2 and the combined result of these changes is a heat transport from the

cold temperature bath to the hot temperature bath by the use of coherent radiative work input.

For this system one can show that the cooling rate can be varied by changing a control parameter

which in this case is the energy difference between E2 and E1. The cooling rate shows a maximum very
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similar to the power of the Curzon—Ahlborn-engine. It turns out that the maximum of the cooling rate is

proportional to the temperature of the cold heat bath. This result is, for instance, of interest for cooling

at temperatures close to absolute zero.

The two examples show that quantum theory now provides the means to investigate important thermo—

dynamic questions also for systems which are far from equilibrium and which need a quantum mechanical

treatment. The ongoing miniaturization of devices as well as the fact that larger systems are showing

quantum effects too will increase the demand for such treatments in the future.

8 Summary

Recent developments in four different areas of finite time thermodynamics have been presented. For the

irreversible interaction between a network of reversible systems endoreversible thermodynamics provides

a highly effective tool to analyze performance bounds and extremes. Especially the use of reversible

engines as subsystems make this tool very powerful. In the area of maximum power processes the range

of validity of the Curzon—Ahlborn efficiency is analysed. The surprising result is that even though there

is a linear heat conduction the well—known Curzon—Ahlborn formula no longer holds for the efficiency

at the maximum power point. In the area of minimum entropy production processes the quality of

ETD solutions based on the thermodynamic length were studied for the case of diabatic distillation.

For columns with many trays the agreement between ETD and numerically obtained optimal operation

is good, while for shorter columns there are significant deviations. And finally the extension of finite

time thermodynamics into the realm of quantum mechanics was shown presenting a three level amplifier

and refrigerator. All these examples show that finite time thermodynamics is a powerful theory for the

description and analysis of non equilibrium thermodynamic processes.
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