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The Statics of Fluid Films with Bending Stiffness

A. Krawietz

Based on the principles of rational mechanics, a general formulation for the bending of a fluid mono-

layer is given. The internal forces of the surface turn out to be by far more copious than for the classical

theory of capillarity, in which case the energy density is independent of the local curvature. There are

two striking consequences of the investigation: the membrane forces are not isotropic and hence cannot

be characterized by one single surface tension and the tangential component of the surface force must

vanish if no torque density acts on the surface. The results should be noted in the study of amphiphiles.

1 Introduction

Amphiphilic monolayers, separating, e.g., oil and water within a microemulsion, are most interesting

objects of physical chemistry (cf. Strey, 1994). Their mechanical behaviour has been treated by various

theoretical techniques: microscopic models, Landau theories, and membrane models (cf. Gompper and

Schick, 1994). We follow the last mentioned approach7 also called phenomenological 7 which considers

the monomolecular fluid film as a structureless two—dimensional curved sheet with bending stiffness. A

free energy 7 also called bending energy 7 may be attributed to the actual (isothermal) shape of this

material surface

Wz/Aw(C)dA (1)

The energy density w is assumed to be a function of the local curvature C. This concept was elaborated

by Helfrich (1973) who considered the special case of a quadratic dependence of v1 on C. More general

functions w(C) have meanwhile been discussed (cf. Leitao et al., 1996; Lade and Krawietz, 2001). In the

paper in hand, we will not impose any restriction on the functional form of w(C) in order to embrace

the various proposals and to obtain results of utmost generality. Thus we are in accord with a central

principle of rational mechanics (cf. Truesdell and Noll, 1965; Krawietz, 1986).

The curvature dependence of the energy density may be tuned, e. g., by the temperature so that a variety

of structures 7 with typical lengths in the nanometer range 7 can be observed experimentally: lamellae,

micelles as well as bicontinuous surfaces. These impose various volumetric constraints on the enclosed

water or oil volumes. Therefore, the microemulsion of water, oil, and amphiphile may coexist with excess

phases of pure water and oil. It was demonstrated by Lade and Krawietz (2001) how the postulate of a

minimal free energy allows a prediction of the observed phase behaviour.

Although Helfrich (1973) pointed out that the dependence of the surface energy on the curvature gives

rise to a variety of internal forces and torques within a fluid film, his arguments did not receive broad

attention. While his concept of a bending energy is frequently cited, the internal forces of amphiphilic

monolayers are even today treated by the inappropriate concept of a surface tension, taken from the

classical theory of capillarity. The aim of the present paper is the clarification of the internal forces

within an amphiphilic film and of its equilibrium conditions.

Since this article is intended to bridge the gap between experts of physical chemistry dealing with

amphiphiles and experts of continuum mechanics studying elastic shells, the presentation is detailed and

a knowledge of shell theory is not presupposed.

Symbolic vector and tensor notation is used throughout the paper (cf. Truesdell and Toupin, 1960;

Lagally and Franz, 1959; Trostel, 1993, 1997; Krawietz, 1986). Bold face minusculcs and majuscules

v, T denote vectors and second—order tensors, respectively. The dot product, cross product and dyadic

product of two vectors is written ab, :1 x b, a®b. A second—order tensor can be represented as a sum of
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dyadic products, and the dot product of a dyadic product and a vector is defined by a®b - v : (b - v) a.

The dot product of two dyadic products is defined by a (X) b - c (8) d 2 (b - c) a 8) d and the double dot

product by a (8 b : c (X) d = (a - c)(b - d). Accents are sometimes used to indicate fields which are to be

differentiated. So Vfla ' b) means that the differentiation of VT acts on the vector field a alone, While

b is treated as a constant vector. If there is no ambiguity, accents will be omitted.

2 Facts from Differential Geometry

The points of a material surface may uniquely be characterized by their position vector x0 in a reference

placement of the surface in three—dimensional observer space V (e.g., the placement at time t : 0).

Vectors dxo from x0 to the reference positions of infinitesimally neighbouring material points constitute

the tangential plane T0.

Given the actual placement of the material surface, the position vector of the material point is X, and

the vectors dx constitute the actual tangential plane T, the unit normal vector of which will be denoted

by n.

A field (I) that is defined on the material surface may be represented as a function of the vector x (Eulerian

description) or as a function of the vector x0 (Lagrangean description), i.e.,

q) = <i>(x) = <i>(x0) (2)

It was Sommerfeld (1945) who pointed out that fluids as well as solids may be described in Eulerian

as well as in Langrangean manner. When passing to an infinitesimally neighbouring material point the

increment of <I> is

d<I> z ci>(x) ® VT - dx z <i>(x0) ® VT, -dx0 (3)

The operators VT and VTO denote tangential differentiation with respect to the position vectors x and

x0, respectively, and their algebraical behaviour is that of vectors in T and T0, respectively.

Considering as a first choice <I> : x, we find

dx:x®VTrdx:x®VT0-dx0 (4)

The symbols and are omitted from now on. Obviously, x ® VT is the identical mapping on the

tangential plane T,

X ® VT 2 1T
(5)

while the transplacement

F : X ® VTO

which is an invertible mapping from To into T, connects the material line elements dxo and dx of the

reference and the actual placement according to

dx 2 F ' dXO

The tensors 1T and F may as well be interpreted as mappings of the observer space V into itself, but

are then no longer invertible. The identical mappings on V and T are related by

1 = 1T + n ® n
(8)

The second choice (I) : n gives rise to

dn 2 n®VT-dx=n®VTO-dx0

= —C-dx=—C-F-dx0 (9)
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with the definition of the curvature tensor C according to

C = —n ® VT
(10)

and a comparison shows

C'FI-H®VT0
(11.)

The tensor C, connnecting dx E T with dn 6 T ' note that differentiation of n - n = 1 yields dn - n = 0

— is a mapping of T into itself, and since it is symmetric (cf. the proof in Appendix A), it possesses a

spectral representation

Czcle1®e1+02eg®e2
(12)

with the principal curvatures c1, Cg and the principal axes given by the unit vectors e1, e2 6 T. Half of

the trace and the second invariant of this tensor are called mean curvature H and Gaussian curvature

K‚ respectively.

Hztlztl‘C:%(C1'f—CQ) KZ2H2—%CZC:{;102 (13)

Next7 we study the (temporal) rate of fields during a motion of the material surface. The velocity v of

a material point is simply the material time derivative of its actual position, i.e.,

V = 5c (l4)

and the rate of the transplacement F is obtained by differentiation of equation (6)

F=X®VT0=V®VT0 (15)

(Note that the material time derivative (), evaluated at fixed x0, commutes with the spatial derivative

VTÜ with respect to x0 — but not with VT * according to Schwarz’s theorem.)

The actual unit normal n is orthogonal to any dx e T. Thus we have

0=n~dx=an~dx0 (16)

and hence

O : n a F

The time derivative of this equation yields a statement on the rate of the unit normal

151 - F 2 —n . F (18)

Differentiating equation (11), we get information on the rate of the curvature tensor

Crwmrrz—nevn um

From now on7 it is appropriate to choose the actual placement as the reference placement. Then T : To,

F = 1TÜ = 1T and VTÜ = VT. The tensor F , which is then called L, turns out to be the tangential

velocity gradient on the actual surface

L Jim. =V®VT (20)

Since n - n : 1 implies

anzo ä her an
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equation (18) reduces to

n.1T=n=—n-L (22)

and equation (19) to

CJT+C~L:—n®VT am

Another form of the rate of the curvature tensor can be derived from equation (12), giving

C2c1e1 ®e1+é262®82+01(é1®e1+e1®é1)+62<é2®82+e2®é2) (24)

which allows to conclude

e1~Cte1=c1, eg-C-egzcg (‘25)

The rate of a material line element is obtained by differentiating equation (7)

d—sz'dxozL-dx (26)

Two material line elements dxl z dslel and de : dSQBQ along the lines of principal curvatures determine

a material surface element according to

da 2 dx; X ng : dsldSQ e1 >< 62 : dAn (27)

The rate of its area is given by — note equation (21), the fact that e1, e2, n form a right—handed ortho—

normal basis, and the identity a- (b >< c) : (a >< b) - c 7

n-da : n. (fln+dAi1) 27

II nn(JT1deQ+dx1:n'((L-dx1)><dx2+dx1><(L'dx2))

: d31d32((e2><n)'L‘e1+(n><el)-L‘eg)=dA(e1-L-e1+e2-L-e2)

= dA(e1®e1+e-Z®eg) :L=dAlT:L

(m

and hence

EM
JÄleZL2VT‘V

3 Internal and External Power

We assume the free energy W of the material surface to be a function of its actual shape. Therefore, the

energy density w (free energy per actual unit area) is a function of the local shape, i.e., of the curvature

tensor C, and the free energy can be written

Wz/AwdAz/1D(C)dA:A1D(c1,cz)dA (30)
. A

The last (reduced) form is inferred from the fact that the free energy will not change during a rigid body

motion of the surface, and hence w cannot depend on the principal axes — which change their orientation

during a rotation w— but only on the principal values cl, Cg ~ or, equivalently, on the invariants H and

K — of the curvature tensor C [cf. equations (12) and This is a generalization of Helfrich’s

quadratic ansatz.
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Next, we study the rate of the free energy during a quasi—static isothermal motion of the material surface.

According to equation (25), the rate of the energy density can be written

613 ~ 81D 81D 81D - 811')

' z —— ; : —-— I — "t : — - C - + — C e

w ac C ac1 61+ ac2 C2 ac, 9‘ 91 e2 2

z fle163>e1-l—Q—1fle28w2)2C (31)

661 562

and a comparison shows

87l; 82D 81D
___ z _ _ . , 32

ac ac,91‘89‘1‘Laa‘32m2 ( )

The symbols and (V) are henceforth omitted. The symmetric tensor

8w

“AZ—E
(33)

later on interpreted as a tensor of moments, is a mapping of T into itself. It has the same principal axes

as C and hence commutes with C, i.e., M-C : C ‚M is a symmetric tensor. SoA with equation (23) 7

8U) . . . .

El) _ —M.C_—(M-1T).C_—M. (0.1T)

z —M;(—C.L—n®VT)

: (C-M):L+M:(n®VT) (34)

For brevity, we introduce the tensor

T:U11T+C-M (35)

later on interpreted as a tensor of membrane forces, and obtain, from equations (30) with (20), (29)

W 2 /A(u')dA+wd—Ä)

/A((w1T+C.M);L+M;(n®vT))dA

„(
z / T:(V®VT)+M:(f1®VT))dA (36)

From the last equation, the rate of the free energy is seen to be equivalent to the power of two kinds of

internal forces: the first contribution is the power of the membrane forces T and the second one is the

power of the moments M.

In the rest of this section, we will integrate the internal power by parts in order to construct an equivalence

between the power of internal and external forces. (This equivalence is called the work theorem of

mechanics. Integration by parts is usually applied to find the Euler-Lagrangean differential equations

from a variational problem. As we will see, this technique can also be used without reference to a

maximum or minimum principle.)
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First, we obtain

W /(v.T+ä-M).\7TdA
A

= /(v-T+/n-M)-VTdA
A

—/(v-T-VT+n-M~VT)dA (37)

A

Next, we introduce the vector qT E T, later on interpreted as a transverse force operator. Because of

the equations (22) and (20), we find

—n'qT=n-L-qT=n-v®VT'CIT=V‘n®qT-VT (38)

andhence

—/n-quA:/v~n®QT-VTdA

A A

z/v-n/quT-VTdA-/v-n®’qT-VTdA (39)

A A

Adding this identity to equation (37), we arrive at

 

W = /(VI(T+n®qT)+n-M)‘VTdA

-A

 

—/A<v-(T+ri®qT)~VT+h’(M-VT-QT))d/1 (40)

Now, v-n®qT = (v-n) (1T 6 T and also v~T E T and n-M E T, because the (symmetric) tensors M and

T are mappings of T into itself. Hence the divergence theorem (83) of Appendix B can be applied to the

underlined integral in the last equation. To be precise, we consider the surface integrals extended over

an arbitrary part of our material surface which we think cut out in the sense of Euler. The boundary of

that part is then in general not a real boundary of the material surface but an imaginary cut through the

surface. Therefore, the boundary forces and torques that we will identify have the meaning of contact

interactions between adjacent regions of our material surface and actually represent internal forces and

torques within the surface.

We get the result

W : fv-(T+n®qT)-eds+7{n~M-eds

_/v.(T+x{®qT)-deA—/n.(M-vT-qTMA (41)
A A

and notice that the rate of the free energy of the considered part of the material surface is equivalent to

the power of four external agents.

1) If a point on the boundary moves with the velocity v, then the power of the boundary force (per unit

length of the boundary) is

v~(T+n®qT)-e
(42)

and hence the boundary force (per unit length) is given by

f=<T+n®qT>-e=T-e+<qT-e>n <43)
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Figure 1. The external and internal forces and torques acting on a (nearly) rectangular surface ele-

ment bounded by orthogonal coordinate lines a and ß. Arrows with one head: Normal, tangential and

transverse components of contact forces per unit length. Arrows with two heads: Bending and twisting

contact torques per unit length. Thick arrows with one head: Normal and tangential components of

the surface force per unit area. In the case of a fluid film at rest without surface torques, the (dashed)

tangential components must be zero. Thick arrows with two heads: Components of the surface torque

per unit area. If a, ß are lines of principal curvature then Tag = T30 = O and Maß 2 M50 z 0 hold.

It is composed of a membrane force T - e E T, which in general has components normal and parallel to

the boundary, i.e., normal and shearing (or tangential) forces in the tangential plane, and a shearing (or

transverse) force (qT -e) n perpendicular to the tangential plane, i.e., in the direction of n (arrows with

one head in Fig. 1).

2) Defining the angular velocity we T of the tangential plane T by

wznxn (44)

we find

nzwxn (45)

If the tangential plane at a point of the boundary rotates with the angular velocity w, then the power

of the boundary torque (per unit length of the boundary) is

fl-M-e=(wxn)-M-e=w-(nXM'e) (46)
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and hence the boundary torque (per unit length) is given by

m : n >< M - e (47)

In general, it has components parallel and normal to the boundary, i.e. bending and twisting moments

(arrows with two heads in Fig. 1).

3) If a point within the cut out part of our material surface moves with the velocity v, then the power

of the distributed surface force (per unit area of the surface) is

—v~(T+xf®qT)-VT (48)

and hence the surface force (per unit area) is

p:—(T+n®qT) -VT (49)

Noting

n-T-szfi-VT—T;fi®VT=T:C (50)

and

m'VT=n(VT'tiT)+fl®VT'QT=n(VT-QT)—C'QT (51)

we can decompose the surface force into components tangential and normal to the surface (thick arrows

with one head in Fig. 1).

1T'p=pT:—1T~T’.VT+C.qT (52)

n'PIPn=—TIC—VT'QT (53)

4) If the tangential plane at a point within the cut out part of our material surface rotates with the

angular velocity w , then the power of the distributed surface torque (per unit area of the surface) is

—r'1- (M-VT—-qT) =—(w xn)'(M'VT—qT) =—w-nx (M-VT—qT) (54)

and hence the surface torque (per unit area) is

t:—nx(M~VT~qT) (55)

(thick arrows with two heads in Fig. 1) which implies

1T.M-VT—qT=nxt ‘ (56)

Using the abbreviations (43), (47), (49), (55), we can give the external power the illuminating form

W:]f(v-f+w-m)d3+A(v-p+w-t)dA (57)

The equations (52), (53), (56) are the local equilibrium conditions of forces and moments of a curved

surface structure. Structures of that kind are called shells by the engineers and have been studied by

them for a hundred years (cf. Fliigge, 1960; Naghdi, 1972). However, the solid elastic shells of the

engineering applications (pressure vessels, concrete domes) possess an energy density of the more general

form w(F‚ C) so that their membrane forces mainly depend on the surface strains.

In our case, the energy density is assumed to be independent of the transplacement F. Such a material

model is applicable to an amphiphilic film, consisting of molecules which are arranged like needles in

the direction of the normal n. No work is required to perform a rearrangement of the molecules within

the fixed shape of the surface. In the first instance, this interpretation of the film as a two-dimensional
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fluid is surely correct as long as the area of the material surface element does not change. However, it

will also be correct if the area changes but the mass ‚u per actual unit area remains constant due to a

mass exchange with the surroundings; but this will only be possible in the limiting case of a quasi-static

process, to which we restrict our attention. (If we would like to study rapid movements of a fluid film,

we have to assume the energy density to be of the more general form 10(01,Cg, p). The treatment of such

a kinetic process would require an evolution equation for ,u.)

According to equation (35), the membrane forces of our model depend solely on the curvature. This

allows us to prove an important theorem: The surface torque and the tangential component pT of the

surface force cannot be prescribed independently of each other, but must satisfy the condition

pT+C~(n><t)EO
(58)

In order to see this, we introduce equations (35) and (56) into equation (52) and find

DT+C'(nXt) 2 —-1T‘(U}1T+C'M)'VT+C‘1T'M'VT

Z —VTw—w1T11’T.VT

-1T-C-M-vT—C-MVTJFC-MVT (59)

The last two underlined terms obviously cancel each other. The first underlined term is equal to zero,

too, since the underlined terms in the following identity vanish:

lT'iT-VTZIT'(1-Il®n)'VT:—1T'fl®n'VT—1T'Il®fl'VT:O

Becauseof

v ~@~(C’®v) (61)Tw—r-aC- T

equation (59) with equation (33) reduces to

pT+C-(n><t) 2 M Z C®VT—1T~C-M-VT I M: lT-Ö'1T®VT—1T'Ö'1T®VT2 M (62)

But the right-hand side expression is, indeed, equal to zero, since the third-order tensor 1T - C- 17 ® VT

is totally symmetric according to Appendix A.

4 Conclusions

Which is the physical meaning of our results?

As is to be expected, the classical theory of capillarity is included in our equations. It results if the

surface does not possess any bending stiffness so that the energy density is actually independent of the

curvature and hence constant. Moreover, no surface torques are admitted, which implies pT : 0. The

equations (33), (56), (35) reduce to

w :const, M20, qT : 0, T :w 1T

In this case, w does not only denote the energy density but also the surface tension which is the same in

all directions. According to equations (43), (47), the boundary force and the boundary torque reduce to

f : w e , m = O
(64)

while the surface force (53) normal to the surface becomes

pn=—T:C:~w1T:C=—2wH (65)

51



In the general case where the energy density w actually depends on the curvature C of the surface,

its internal forces are by far more copious (cf. Fig. 1). The equations (12), (32), (33), (35) yield the

following representatiOns of the tensors of membrane forces and of moments

ö

T = w—clflu- e1®e1+(w—C2—g}—) €2®62 (66)

601 (902

M = —é)—we1 ® e1— age-2 ® 92 (67)

861 862

while the transverse forces are determined by the operator [cf. equation (56)]

qulT-M-VT—nxt (68)

The extensions, compared with the classical case, are the following ones.

I The membrane forces are not the same in all directions and hence cannot be characterized by the

concept of one single surface tension. This implies that there are not only normal forces but also

tangential forces on cuts which do not coincide with a principal axis of curvature.

- A tensor of moments exists which describes bending moments and twisting moments within the

surface.

0 According to equation (68), a tangential variability of the moments requires the existence of trans—

verse forces (perpendicular to the surface). These assist the membrane forces in bearing the surface

force pn [cf. equation (53)].

Most of these features were already discussed by Helfrich (1973) in the context of a quadratic energy

density and on the basis of physical arguments. (His use of the termini normal and tangential in the

description of the internal forces is opposite to ours, since he refers them to the normal vector n of the

surface and not to the normal vector e of the cut.)

In the special case c; = Cg = c, the membrane forces are the same in all directions but, in general, are

not identical with the energy density w. Let us illustrate this with an energy density of the special form

     

A

“I

k H.»2

„Ä
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D

O l

M _ 7' 7

k H0 k

Figure 2. The dimensionless values of the energy density w, the membrane force T and the bending

moment M, plotted as functions of the dimensionless curvature of a sphere with the special material

behaviour given by equation (69).



 

'2

’w:]<7(01—;c2 —H0) +ZÜ((C1—Cg)2>

which satisfies the requirement 111(c1, Cg) : 711(02, cl) and contains Helfrich’s quadratic ansatz. We obtain

from (66), (67)

w : k (C — H0)2 + 1I)(0)

T : T IT with T = —k (c — H0)H0 + 113(0)

M : M 1T with M = —k (c — H0) (70)

Fig. 2 gives the plots of w,T, M as functions of the curvature c of the sphere. The values of w and T

coincide in the two cases 0 : 0 and M : 0, i.e.‚ c : H0.

The behaviour of our fluid material surfaces with bending stiffness is in two points more special than

that of solid ones.

I The tensor of membrane forces T shows a peculiar dependence on the curvature. If the actual

tensor of moments M or of curvature C vanishes, then the tensor of membrane forces reduces to

T : wlT as in the theory of capillarity.

0 Due to this structure of T, the surface force p is subject to a severe restriction: lts tangential

component pT must vanish in the absence of a surface torque t so that p is of the special form

p : pnn-

There are analogous restrictions in the theory of three—dimensional fluids at rest. First, the stress tensor

is of the special form T z ——p1 (p denotes the pressure) and second, the local equilibrium condition

T - V + b : 0 reduces to ~Vp + b : 0 so that the body force field b is subject to the condition

V x b : O. Fortunately, the restrictions on fluid films and on bulk fluids fit together very well. If the

material surface and the bulk fluids on both its sides are at rest, then the surface normal force pn acting

on the (extremely thin) fluid film is connected with the pressures pi and p0 of the inner and outer bulk

fluids, respectively, by

pn :po —pi (71)

(We define the normal n to point to the inner side.) There is, indeed, no tangential force pT and no

torque t acting on the surface since the bulk fluids at rest are free of shear stresses. (If the bulk fluids

are in motion and possess a viscosity, then the fluid film will not remain at rest and inertial forces are

to be incorporated into the surface force p and the surface torque t. The treatment of such a kinetic

problem is out of the range of this paper.)

Finally, let us have a look at the equations which connect the shape of a material surface with its surface

load.

1) Classical capillarity (w =const, t : 0): The local mean curvature H is determined by the local surface

force pn according to equation (65).

l ‘2) Fluid film with bending stiffness (in : w(C)): The introduction of equation (68) into equation (53)

gives a scalar differential equation which shows that the local surface force pn is connected with the local

curvature as well as with its first and second derivatives. The vector differential equation (52), however,

need not be solved, since it either possesses no solution (if pgr + C - (n X t) z 0 is given) or is identically

satisfied (in the case pT + C - (n x t) E 0).

Solid elastic shell (w = w(F, C)): Not only the scalar equation (53) but also the vector equation (52)

have to be considered.
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Appendix A: The Symmetry of the Curvature Tensor and of its Gradient

We may characterize the points X3 within small layers on both sides of a surface by prescribing a point

x on the surface and a distance l from the surface in the direction of the unit normal n(x). Then l(x3)

may be considered a scalar field on a part of the three—dimensional Space V, and its spatial gradient is

just the unit normal vector n, which does not change when l varies while x is fixed. Hence

n = Vl and ä : 0 (72)

On the surface, we have

V=VT+n%, VTle'V (73)

and therefore

C=—n®VT:—n®V+@®n=—V®Vl (74)

öl

This reveals the symmetry of the curvature tensor C.

The gradient of C along the surface is given by

CevT:—V®Vi®1T-v=—V®V®1T-Vi (75)

and therefore the third—order tensor

1T-C-1TevT=—1T.V®1T-V®1T.vi . (76)

is obviously totally symmetric.

Appendix B: The Divergence Theorem of a Curved Surface

The integral theorem of Stokes is known from three—dimensional vector analysis

/An-(V><W)dA=%dx-w (77)

It allows us to transform an integral over a curved surface into a line integral along the boundary curves

of the surface. Noting equation (73) and the identity n x n : O we find

n'(VXW):(nXV)~vv=(nXVT)'vv:n~(VTxw) (78)

so that only tangential derivatives enter the surface integral. In order to apply the Stokes theorem, it

is therefore sufficient that the vector field w is defined on the surface only and not in the neighbouring

space. We restrict our attention to the case where w is defined by means of a tangential vector field zT

(i.e., zT - n E 0) according to

W : n X ZT
(79)

With the identity

VT X (n x z’T) : (VT - z’T) f1 — (VT - iT (80)

and the product rule7 we find

n-(VTXW)=n'(VT><(nXZT))

211-((VT'iT)Il+ZT'(VT®fl)“(VT‘fi)ZT—n'(VT®ZT)) =VT’ZT (81)



(NoteVT®Ii-n=—C-n=0, n-zT=0andn-VT=0.) Weput

dx=gds and e=gxn (82)

so that the tangent vector g, the normal to the surface n and the external normal e E T of the boundary

represent a natural orthonormal basis. Thus we arrive at the divergence (or Gauss integral) theorem of

the curved surface:

/VT-szA=fe-2Tds (83)

A
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