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Evaluation of Conjugate Stresses to Seth’s Strain Tensors

L. Rosati, N. Valoroso

An eztplicit expression providing the symmetric stress tensor TU”) conjugate to the Seth’s strain measure

E0”) for each integer m #— 0 is presented. The result is obtained by exploiting an original approach

for the solution of a tensor equation in the unknown TV”) expressed as function of the powers of

the right stretch tensor U, The proposed approach is based upon the spectral decomposition of U

and estploits some peculiar features of the set of fourth-order tensors obtained as linear combination

of dyadic and square tensor products of the eigenprojectors of U. 0n the basis of such properties it

is shown that the unknown TU”) can be ewpressed in the given reference frame as linear combination

of sin: fourth—order tensors scaled through coefficients which are rational functions of the eigenvalues ofU.

1 Introduction

The class of symmetric strain measures known as Seth’s strains is defined by the expression (Seth, 1964):

AT

1 1

E0") = Ems”) — 1) z E 220;” —1)ui® u, (1)

,1

where m is an arbitrary integer, )q and u,- are in turn the eigenvalues and eigenvectors of U while 1 is

the rank-two identity tensor. Unless differently stated, We shall use in the sequel bold-faced lowercase

(uppercase) symbols to denote vectors (second—order tensors) on a N —dimensional (N = 2 or N = 3)

inner product space V over the real field.

The class of strain tensors defined by equation (1) embodies several well—known strain measures such as

the logarithmic strain tensor, obtained by setting m = 0, the Biot strain (m : 1), and the Green—Lagrange

tensor, which corresponds to the choice m : 2. More general strain measures have been subsequently

introduced by Hill (1968) as

N

E : E(U) z Z man, ® u, (2)

i=1

where f (-) is a strictly—increasing smooth scalar function satisfying the conditions f(1) 2 O and f’ (1) : 1.

In particular, the class of Seth’s strain tensors is obtained from equation (2) by setting

1
—(>\,’." — 1) if m 7r 0

f(>\i) = m (3)

ln()\i) if m = 0

The stress measures associated with strains belonging to the Seth’s class can be derived by invoking the

classical notion of work—conjugacy, see e.g. Hill (1968). Specifically, a symmetric second—order tensor

Tm") is said to be work—conjugate of the strain measure EV”) if it fulfills the condition

T0") EM 2 Ja . d (4)

where E0”) denotes the material time derivative of E0”), cr is the Cauchy stress, d the rate of deformation

tensor and J is the determinant of the deformation gradient F, i.e., the third principal invariant of U.

The stresses conjugate to E9), and Em are well—known, see e.g. Guo (1984), Hill (1978), Ogden (1984),

Silhavy (1997), Truesdell and N011 (1965). They are the second Piola—Kirchhofi tensor

T0) = .]F_1UF_t (5)
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and the Biot stress tensor:

(1) 1 <2) <2)T = 5 [T U + UT l (6)

The expression of the stress Tm) conjugate to ln(U) has been first worked out by Hoger (1987) as

Tm) = JRt[A1a + A2(VU + 0V) + A3(V‘Za + aVZ) + A4VUV+

t . Ä t (7)
+A5 (VZO’V + VO’VZ) + [\GVZU’VZDR,

where R is the rotation tensor, V the left stretch tensor and A1 . . . A6 are functions of the eigenvalues of

U, assumed to be distinct. Finally, the expression for T(—1)

1 . K
T(‘1) : 5 [T<—2>U—1 + U—1T<—2>] (8)

has been contributed by Guo and Man (1992).

Moreover, by using Hill’s principal axis method and Rivlin's representation formula for isotropic tensor

functions (Rivlin, 1955), Guo and Man were the first ones to present a systematic approach to the

derivation of the stress TU”) conjugate to the Seth’s strain EU”) for arbitrary integers m 75 0. In

particular, they showed that TV”) can be characterized as the solution of the tensor equation in the

unknown X

m

Z Um‘rXUT‘l = H (9)

r:1

the explicit form of which is

m=2 UX+XU=H

m:3 U2X+UXU+XU2=H

10

m24 U3X+U2XU+UXU2+XU32H ( )

with

H : me for m > 0 (11)

and

H : 7nUm’_1T(_1)Um“1 for m < 0 (12)

The derivation of (9) is quite standard, see Guo and Man (1992) for the details.

It is worth noting that the tensor equation (9) may also used to provide the relationships between different

stress measures conjugate to the Seth’s strain tensors, see also Farahani and Naghdabadi (2000). Actually,

for any pair of positive integers m and n, use of the work—conjugacy identity

T(m) .E(m) : TM) .E(n)
(13)

allows one to characterize TV”) as the solution of the tensor equation

m n

Um—rXUr—l : fl Un—rT(n) r—l

Z n 2 U (14>
7‘21 r21

The relationship between T(_m) and TW or T(_") can be obtained by noting that

T(m) .U(m) : U(-m)T(-m)U(-m) . U( ) (15)
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so that from (14) one has

n

in: Um—rXUr—l : in; Z Um+n—TT(n)Um+r—1

r:1 n r21

and

m n

ZUm—TXUT—l 2 fl Z Um—rT(—n)Um—n+r—1

r21 n T’l

for X = T(“m).

Relative to any principal basis for U, the solution of (9) can be obtained by the simple component formula

H
_ w"
_ m

m—r r—l

Z’V >9
7‘21

which immediately follows from (9) by decomposing the tensors X and H under the principal frame for

U, see also Guo and Man (1992).

Xi, i,j:1,...,N (18)

Several researchers have derived expressions of X in tensor (intrinsic) form. Besides the one provided in

Guo and Man (1992), the solution of (9) has been pursued in Guo et al. (1994), while different approaches

to the evaluation of To”) have been presented in Guansuo and Quingwen (1999), Guansuo et al. (2000);

more elaborate results on conjugate stresses and rates of arbitrary Seth—Hill strain measures can be found

in Alfano et al. (2002), Guansuo et al. (1999), Xiao (1995).

We here present a novel approach to the evaluation of TV"), which is based upon some recent results

contributed by the authors (Rosati and Valoroso, 2001a). Namely, in order to obtain the solution of

equation (9), we provide hereafter a generalization of the methodology illustrated in Rosati and Valoroso

(2001b) for the solution of the tensor equation

AX + XA z H (19)

which represents the specialization of (9) for m : 2.

Such a generalization is carried out by exploiting the properties of the square tensor product between

second—order tensors first introduced by Del Piero (1979), which allows one to express the equation (9)

in the equivalent form

m

ZUm—TXUr—l : H ¢> UX = H (20)

r:1

where:

m

U : Z Um‘T m UT“1 (21)

r:1

Specifically, by suitably enhancing the treatment developed in Xiao (1995), it is shown how to express U as

linear combination of the N(N+1)/2 tensors ng2sym(UZ-®Uj), j : 1, . . . , N), and of the N(N—1)/2

tensors ME! = UZ- Uj + Uj E Ui, at J), where Uk is the generic eigenprojector of U. It is then proved

that the coefiicients multiplying the terms can be arranged in a matrix [U‘g] which is nonsingular if

U does share the same property; moreover, under this last hypothesis, the coefficients multiplying the

tensors UP;- turn out to be non—zero. By virtue of a further result contributed by the authors in Rosati

and Valoroso (2001a), the inverse of U is then expressed as ill—1 2 [U®],—j1Uf-3 + (1 /ugflUg, thus providing

an amazingly simple expression for X in the given reference frame in terms of H and of the eigenvalues

and eigenprojectors of U.
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2 Some Algebra of Fourth— and Second-order Tensors

Let Lin be the space of all linear transformations (tensors) on V and Lin the space of all tensors on Lin.

The dyadic ® and square E tensor product between two elements A, B 6 Lin are defined by

(A ® B)C : (B - C)A (A E B)C : ACBt VC e Lin (22)

where the superscript t stands for transpose. Their cartesian components are given by

(A 8) B)ijkl Z AijBkl E B)ijkl Z AM.le VA, B 6 L111

The definition of square tensor product, first introduced in Del Piero (1979), is nowadays wideSpread in

both theoretical (Podio—Guidugli and Virga, 1987; Rosati, 2000) and computational mechanics (Palazzo

et al., 2001; Rosati and Valoroso, 2001a).

An interesting result, which relates the dyadic and square tensor product, is

(a®b)®(c®d)=(a®c)®(b®d) Va,b,c,dEV (24)

which can be used to infer that the dyadic and square tensor product of projection operators, i.e. tensors

defined as P : e (8 e, (e e V; |e| : 1), coincide

P (59 P = P E P (25)

Given a, b, c, d E V and A 6 Lin, the following relations can be proved

(a®b)~(c®d): (a-c)(b-d) (a®b)(c®d) :(b-c)(a®d)

26

A-(a®b)=(a®b)~A:Ab~a A(a®b):Aa®b (a®b)A=a®Atb ( )

while composition formulas between elements of Lin and Lin are

(A®B)(c®d):[B-(c®d)]A:(Btc-d)A ( )

27

(AEB)(c®d) =A(C®d)Bt =Ac®Bd

for every B 6 Lin.

2.1 Eigenprojectors of Second-order Symmetric Tensors

Let Sym g Lin denote the linear subspace of second—order symmetric tensors and A E Sym. According

to the spectral theorem (Halmos, 1958) A is amenable to the representation

N N

A Z Z aiai ® a, Z Z aiAi

121 i:1

where a,- (i = 1, . . . ,N) are the eigenvalues of A, supposed to be distinct, and a,- the associated unit

eigenvectors.

The eigenprojectors A,- form a set of N mutually orthogonal tensors having unit norm; they further fulfill

the following properties

A,- m2) N

A'A» = AxA' I and Ar : 29

Z J J Z { 0 otherwise l ( )

Remark. It can be shown that if p < N eigenvalues of A do coincide, it is always possible to define N

orthogonal eigenprojectors so as to fulfill relations (28)~(‘29).
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The eigenprojectors can be expressed as function of A and of its eigenvalues through Sylvester’s formula.

For N z 3 this result can be deduced by solving the linear system

1 1 1 A1 1

(l1 a2 CL3 A2 I A

a? a3 a3 A3 A2

which is obtained by exploiting the properties (28) and (29). This yields (Luher and Rubin7 1990)

(A — aj1)(A — akl)

Ai Z (az- — amaz- — am
i,j,k:1,...,N jyékaéi (31)

provided that the eigenvalues of A are distinct.

If two eigenvalues do coincide the previous formula specializes to

A1 : A2 zM

(CL1 — a2) (a2 — r11)

m

3 Uniqueness of the Solution of the Tensor Equation X:Um_TXUr_‘l : H

r:1

The tensor equation (9) admits a unique solution if and only if the tensor U defined in (21) is nonsingular

or, equivalently, if all its eigenvalues are non—zero. The eigenvalues of U can be expressed in terms of the

eigenvalues of U through the following:

Lemma 1. The eigenvalues of the rank—four tensor U7 See equation (21), are the N (N + 1) /2 scalars

27:1 Aim—W571 (i,j : 1, . . . ,N) where Ak is the generic (eventually coalescent) eigenvalue of U. The

relevant eigenvectors are u, ® 113- where uk is the eigenvector of U associated with M.

Proof. Invoking relationships (22); and (27)2 one has:

(Z Um—r E Ur—1)(ui (X) uj) : 2(Um—rui) ®(Ur—1uj) : ZÄT-Tkg—lui ® llj

r:1 rzl T21

so that ui ® Uj is an eigenvector of U having 2:1 Agn—TAZT—l as associated eigenvalue.

Since the eigenvalues x\,- of U are positive, such are those of U. Accordingly, we can state the following:

Proposition 1. The tensor equation

m

Z Um‘TXUT‘I : H (34)

7':1

does always admit a unique solution.

4 Representation of Symmetric Fourth-order Tensors in Principal Space

Let us consider a symmetric fourth—order tensor A expressed in the form:

1N-

A = Z
(1:0

N—1

Z [cf/3W“ ® Aß + Aß ® A“) + cäßma a A5 + Aa x A“) (35)

6:0

where (:33 and cgß are arbitrary scalars. As shown in Palazzo et al. (2001), the above expression

represents a general class of nonlinear tensor function of a tensor argument A.
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We are interested to investigate on the expression of A resulting from the spectral representation of A;

to be specific we shall set N : 3. Recalling (25) and (28), one has

A = Eat-AMA]- + Eat-Aimi- : [A®1~[A®1+[AE1-[A®1 =

04% Ga (1% A1 (X) A1 A1 ® A2 A1 ® A3

Z 0% ”3% “3% ' A2 ® A1 A2 ® A2 A2 ® A3 +

aägjg 03% (11% A3 ® A1 (X) A2 (X) A3

O 0%; (1% (D A1 E A2 A1 g A3

+ a?) 0 (1?; ~ A2 n A1 o A2 x A3

(15% (1?; 0 A3 x A1 A3 E A2 o

the entries of;

and (E5. The dots between arrays [ ] ’ [ ] used in the previous formula indicate sum of the products of the

elements having the same position.

and ag- being polynomial expressions of the eigenvalues of A and of the coefficients 633

As an example of the previous representation formula of fourth—order tensors we consider the identity l[

in lLin. Observing that l : 1 1 and recalling (‘29)2 we have

ll 2 1211:A1®A1+A2®A2+A3®A3+ ( >
37

+A1EA2+A2EA1+A2®A3+A3$A2+A3EA1+A1EA3

Hence:

H = [1®l'[A®l+[1El-[Agl=

1 0 0 A1®A1 A1®Ag A1®A3

2 O 1 Ü A2®A1 A2®A2 A2®A3 +

o 0 1 A3®A1 A3®A2 A3®A3 (38)

O 1 1 (O) A1®A2 A1EA3

+ 1 0 1 - AQEIAl (D AZXAg

1 1 0 A3®A1 AgEAg (O)

The main result exploited in the paper is provided by the following

Lemma 2. Let A : [A®] - [A®] + [Ag] - [Ag] be a rank—four tensor. Then A is nonsingular if and only if

[A‘x] is nonsingular and each off~diag0nal entry of [Ag] is non—zero.

Proof. By definition:

A nonsingular <3 KerA = {B 6 Lin : AB : 0} = {0} (39)

Stated equivalently, AB 75 O if and only if B 96 0.

Let A be nonsingular. Expressing B in the cartesian frame represented by the eigenvectors of A

9

B = Z bklak ® a;
(40)

k,l:l
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and observing that the following composition rules

(Az‘ ® Aj)(alc ® at)

{Ai ifj:k:l

O otherwise

(41)

) ai®aj

A' E A ' ak ® a; I

( l J)( 0 otherwise

hold true on account of (27), it can be shown that

(1% (1% h11 A1 3

AB Z a‘% ((1333 bgg ‘ A2 + Z ® aj)

(1% (€93 aä 1333 A3 Iii/:11

Choosing as B the tensor whose associated matrix [B] in the principal reference frame for A has only

one non—zero off—diagonal term bij yé O 9€ j), yields

AB : aäbiflai 69 aj) (no sum on 7'. nor j) (43)

Hence7 to ensure AB ;£ 0, it must necessarily be 7€ 0, (7C‚j : 1, . . . ‚N; 7C 75 j). Consider now a

diagonal matrix for [B] with non—zero entries; then:

AB = [A®][b] - [Ai] (44)

where it has been set [b] = [b11,b22‚633]t and : [A1,A2,A;>,]t. Since [b] ;E o by hypothesis, AB aß 0

if and only if Ker [A®] : {o}, i.e. if [A03] is non—singular.

Let us now prove the if part of the lemma. Notice that the N tensors A“ = 1, . . . 7 N), and aj ® a,c7

(j7 k : l, . . . ‚ N) are linearly independent since they represent a basis for Lin. Hence7 their unique linear

combination yielding the null tensor is the one with null coefficients. Since, by hypothesis

[A‘X'llbl = 0 ö [bl = 0

(45)
: 0 c> bij = O no sum on 71 nor j

we infer from (42) that AB : 0 if and only if B : 0, i.e. if A is invertible. D

The second result which plays a paramount role in the sequel is contained in the following lemma whose

detailed proof can be found in Rosati and Valoroso (2001a)

Lemma 3. Given a nonsingular fourth—order tensor A of the form

A = lA®l - W3] + lAEl ' [Ag] (46)

it turns out to be:

A“ :lAQQT1 ‘ W3] +[AET1 ' [Ag] (47)

where [A®]—1 is the inverse matrix of and [AE]_1 is the matrix whose components are the reciprocals

of the non—zero entries of [Ag].

5 Evaluation of the Conjugate Stress TV”)

Formula (10) shows that the tensor equation (9) represents a generalization of the more classical tensor

equation AX + XA = H widely encountered in continuum mechanics, see e.g. Scheidler (1994) and

references therein.
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At least in principle, one may apply to (9) the general approach presented in Rosati (2000). This would

require in turn to represent 1U—1 either in the particular form

Iii—1 =a(1®1)+b(UE1-I—1X1U)+c(UEU)+d(U2®1+1lZIU2)+

. . . . (48)
+e(U2 IXIU+U®U1)+f(U3 EUZ)

suggested from the condition

U—liuziJU—lzizlm (49)

or in the form

III—1 :a(1®1)+b(UE1+1|ZU)+c(U2E1+1®U2)+

+d(1®1)+e(U®1+1®U)+f(U2®1+1®U2)+ (50)

+g(U®U)+h(U2®U+U®U2)+i(U2®U2)

stemming from the property which characterizes the solution of (9) as an isotropic tensor function of U

and H, linear in H, see Sidoroff (1978). However, in order to arrive at a solution for X expressed solely

in terms of U and H, it would be necessary to dispose of a general formula providing for any integer

q > 4, U4 as function of the invariants of U and of 1, U and U2 through repeated applications of the

Cayley—Hamilton theorem. Unfortunately, this formula, which is required for determining the coefficients

of the representations (48) or (50) upon enforcement of (49), is well—known to be still lacking in the

specialized literature (Taher and Rachidi, 2001).

For this reason we here exploit an alternative original approach to the solution of the tensor equation

(9) which is based on the results presented in the previous section. According to (36) we can express the

tensor U defined by (21) as

U = i Um"? E! UH = [Us - [W] + [Um] ' [Um] =
7‘21

mun—1 o 0 U1® U1 U1® U2 U1 ® U3

Z 0 ’mÄgL—l 0 ' U2 (X) U1 U2 ® U2 U2 8) U3 Jr

O 0 WÄän—l U3 ® U1 U3 ® U2 U3 ® U3

O

m m

Z Agn—ug-l Z Agn-ug-I

m 7:1 7“: o U1EU2 U1XU3

+ Z Ään—ug—I o Z Agn—TAg—l . U2 E U1 (0 U2 X U3

r:1
7:1 U3 E U1 U3 E U2 Ü

m m

ZAgwxg-l Z Ag—ug-l 0

r=1 r:1

It is worth noting that the conditions stated in Lemma 1 ensuring that 10 is nonsingular can be immediately

deduced from the previous representation formula and Lemma 2. Therefore, we ultimately infer

U“ = [U‘grl ' [U691 + [UEW - [Um] (52)

by virtue of Lemma 3. Hence, one obtains the expression of X as:

N 1 N(N—1)/‘2 1

X: Zäxg—MUMUHF Z m——(U,~X]Uk+Uk®UJ-) H (53)

i:1 j:l Z Äm—rÄr—l

k

7‘:1 J
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where k = 1 + MOD(j,N) and the function MOD is defined as MOD(j,N) z: j — [INT(j/N)] * N,

being INT the standard truncate—to—integer function.

Straighforward calculations show that the components of the previous expression relative to any principal

basis for U do coincide with the ones provided by (18) and that X and H are simultaneously symmetric

or skew—symmetric.

Since for any pair of distinct eigenvalues Aj, A], it turns out to be

m it” — Am
zign—ug-l = _ A: ; (54)

.7
r:1

by invoking (25) and recalling that X : TU") we finally get the particularly compact formula

N(N—1)/‘2

l N 1T17") z Eizl—mUz-GUH Z

i:1 j:l

x\- — /\ _
fimeHUmUJ) H (55)

J k

where the symbol ® stands either for the dyadic or the square product.

6 Concluding Remarks

It has been provided an explicit intrinsic expression for the stress TV”) conjugate to the Seth’s strain

measure EV") valid for arbitrary integers m # 0. The contributed expression has several distinguished

features with respect to existing formulas.

First, it provides the solution directly in the given reference frame. If, for some reason, the solution

needs to be expressed as function of U and its powers, proper use can be made of Sylvester’s formula

(31). Second, no special distinction needs to be made between the three— and two—dimensional case as it

happens for other direct formulas contributed in the literature. Third, the case of coincident eigenvalues

can be trivially dealt with provided that, for each eigenvalue with multiplicity s > 1, one associates s

suitably defined eigenprojectors.

As a final remark we note that, by following an approach similar to the one developed in the present work,

more complex tensor equations such as 2278:1 gmArXBS = H can be solved with reasonable effort. This

issue will be addressed in a forthcoming paper.
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