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Localization of Deformations in Finite Elastoplasticity

V. Ciancio, M.Dolfin, M. Francaviglia

In this paper the guidelines for constructing a geometrical model for the localization of deformations

during elastic—plastic deformations are given. A geometrical object, namely the physical metric,

introduced to take into account the internal disarrangement during the plastic flow. A number of very

general thermomechanical relations are obtained. Constitutive relations giving the conditions for the

absence of localization phenomena are also obtained for the two different cases of decomposition of the

total deformation gradient into the elastic and the plastic part (Lee, 1969; Nemat—Nasser, 1.979).

1 Introduction

We will first introduce an experimentally observed phenomenon: the formation of shear bands in geotech—

nical structures due to ground motion (Peck and Terzaghi, 1984). It has been observed (Miihlhaus, 1991)

that inside these bands the strain can become very large eventually leading to fracture. Then, for this

kind of phenomenon the stability analysis and the search for the critical stress level at which the bands

first appear, is of evident importance for many engineering purposes. The analysis of the band geometry

appears to be significant too, also because it can be shown (Miihlhaus, 1991) that the onset of localization

is often the point of inception of rupture.

Next we consider another very well known, at least from a practical Viewpoint, problem, i.e. the formation

of landslips due to the creation of capillar disarrangement on the backside (Peck and Terzaghi, 1984).

These two phenomena give examples of two rather different physical problems having a basic common

feature: the presence of local inhomogeneities in the material distribution and deformations. Moreover,

they both need a more refined geometrical setting than the usual one of classical continuum mechanics,

aimed to better connect the phenomena acting at the microscale to the visible effects at the macroscopic

level.1 The presence of discontinuities generate in fact difficulties in applying the classical theory of finite

elastoplasticity. In the next section we will introduce some problems connected with the application of

the basic features of the classical theory to these kinds of phenomena.

2 The Intermediate Configuration in the Classical Theory of Finite Elastoplasticity

We are considering, as usual in classical continuum mechanics, a body it as a regular manifold, the

elements of which are called particles. A configuration C of the body lit is an embedding of IR into the

Euclidean 3—dimensional space R3. The motion of the continuum is defined as a l—parameter family

{Others of successive configurations. One can construct a diffeomorphism Xt E Diff(CO, Ct) which gives

the deformation map of the body, assuming CO as initial reference configuration. We will consider as

initial reference configuration Co the one assumed by the body in its undisturbed state (free of loads and

strains) at uniform temperature. The general deformation of the body is given in Euclidean coordinates

in R3 by the difl'eomorphism Xt, locally expressed as x : f(X,t). The deformation gradient is then

Vf(X,t) z

Lee and Liu (Lee, 1969) introduced the notion of released intermediate configuration, by using the explicit

decomposition

Vf : FeFP (1)

where Fe and Fp denote the elastic part of the gradient of deformation and the plastic one, respectively.

This decomposition is unique up to a rotation of the intermediate configuration. The decomposition (1)

introduces the idea of an intermediate configuration Ct which can be considered as the one associated to

the body when the loads are removed and the temperature is reduced to the initial one, thus releasing

 

1For the problem of an adequate geometry needed to describe the underlying mechanisms, which might be responsible

for the dissipative character of plastic deformations, see Aifantis (1999)
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the thermoelastic strains. The final and the intermediate configuration are associated with the state of

the body at each instant of time during the plastic flow, so that the transformations depend on time

as well as on space variables. As one can see, as far as kinematics is concerned, the idea is that the

plastic deformation considered from C0 to 0, simply introduces a change in shape for the unstressed

state. Then, the total deformation is considered as being obtained through thermoelastic strain from the

plastically deformed configuration C’" (Lee, 1969).

In their work Lee and Liu point out a fundamental remark: ” For a body subject to a nonhomogeneous

stress distribution which has caused plastic flow, removal of the loads and the temperature diflerences

in general leaves a distribution of residual stress so that the unstressed state is not achieved at each

element.” This means that the intermediate configuration is not usually a possible one in a continuous

body (destressing may require the body to be cut into infinitesimal elements) so that the mapping FF

may be discontinuous and even not one—to—one. Accordingly the tensor fields FP and Fe are in general

not given in terms of displacement derivatives, although the total deformation Vf is. In other words

we can say that neither F17 nor Fe is separately integrable into a displacement function. We want to

stress that in any case, due to the migration of dislocations associated to the plastic flow, discontinuous

displacement fields occur in the study of the crystal lattice according to the physical theory of plasticity.

Thus it happens that when a homogeneous stress distribution causes a macroscopically homogeneous

plastic flow, the removal of the surface tractions leaves the body without residual stresses, so that the

unstressed configuration appears to be a continuous one. However, at the crystal lattice level, lack of

continuity occurs owing to the migration of dislocations due to plastic flow. This is an experimentally

observed problem: macroscopically uniform material domains which develop localized, i.e. not uniform,

deformations although subject to uniform surface tractions. This is one of the reasons why anelastic

phenomena can be considered to be dissipative. Moreover, in the case of large deformations of inelastic

solids, the inner coupling between the various microscopic processes involved becomes very influential.

3 A New Geometric Internal Variable

Our model is essentially based on the introduction of a non-Euclidean metric tensor characterizing the

incompatibility of the intermediate configuration in the classical multiplicative decomposition of finite

elastoplasticity. Then, this non—Euclidean metric tensor is introduced by means of its gradient as an

internal variable in the state space of non equilibrium processes with a material—dependent rate equation.

In our case, as a standard method of the thermodynamical theory with internal variables, the state

space is enlarged to describe microscopic instabilities inducing plastic behaviour, so obtaining constitutive

equations of dissipative character (Muschik and Maugin, 1994). The physical meaning of this new variable

g, which appears among the internal variables, has been extensively discussed in previous literature

(Valanis, 1995; Valanis et al., 2001) and in a forthcoming paper (Francaviglia and Ciancio, 2001). It has

to do with an average tensor characterization of local deviations from the Euclidean structure associated

with therrnomechanical effects on the mesoscopic scale (atomic, molecular or grain level).

According to the classical theory, in the initial configuration Co, free of loads and strains at uniform

temperature, the squared mutual distance between points is given by the Euclidean expression

ds‘ä : (dX)TdX = adeLdX» (2)

After the deformation f, the distance is expressed by

dag = (dx)TCde z Cijdwidwj (3)

where the Euclidean right Cauchy—Green tensor given by

CE : (Vf)TVf (4)

has been introduced. In our model a purely microscopic deformation characterized by a suitably thermo—

dynamically induced variation of the metric from Euclidean into non—Euclidean (Valanis, 1995; Valanis

et al., 2001) is superposed upon the macroscopic elastic—plastic one. The deformation is macroscopically

given by the identity map i so that the positions of points do not change. Accordingly, in our model

the mutual distance between points is given by an expression formally analogous to (4) where the new

expression for the right Cauchy—Green tensor involves now the non—Euclidean metric g, namely

C z (vr)Tgi (5)
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By using the classical multiplicative decomposition for the macrosc0pic deformation gradient

Vf z FeFP (6)

one has then

C = (Fp)T(Fe)TgFer. (7)

Now we set

(F6)TgFe = HTH = C, (8)

where H is any regular matrix such that FeH—1 diagonalizes g, i.e.

(FeH-UTgmeH-l) = 1

this defines a new tensor Ö which Will be later used as an independent variable. The expression for the

right Cauchy~Green tensor takes now the form

C : (HFP)T(HFP) : (FP)TÖFP‚ (9)

which resembles the Euclidean expression (4) provided Vf is replaced by the now total deformation

gradient (the microscopic plus the macroscopic one) given by HFP.

We remark that the above decomposition is introduced only with the purpose of distinguishing among

different contributions to the anelastic phenomena, and, of course7 the intermediate configurations in—

troduced are not really attained by the body during the motion. Moreover in particular we want to

distinguish between microscopic phenomena (more geometrical) and macroscopic ones (more phenomeno—

logical). The definition (8), together with (33), has three basic features:

7 A physical background for the introduction of the variation of the non—Euclidean metric as an internal

variable in the state space of non-equilibrium processes, which is not in contrast to the usual features of

the macroscopic theory of continuum mechanics.

— A mathematical justification of the physically based deductions of Lee and Liu (Lee, 1969) on the

noneintegrability of the elastic and plastic part of the total gradient of deformation.

— The agreeement with the theory of structured deformations of Owen and Del Piero (1993) (where our

quantity H offers a possible example of structured deformation).

4 Energetic Considerations for the Model Applied to the Decomposition Vf 2 FeFI’

To describe the process we adopt now as state variables the ”elastic” Cauchy-Green tensor Ö, the plastic

part F13 of the classical deformation gradient, the gradient of the non—Euclidean metric tensor g considered

as an internal variable, and the absolute temperature 0. Then the free energy \I/ is given as a functional

of the following type

\r : \II(C,FP,Vg,6). (10)

Notice that ‘11 depends on g through Ö. By derivation with respect to time we obtain

\r=T~C+A.FP+B-(vg)—§é (11)

where we set

air 6x1! 8x11 ail
——„— A = —— B _ —— .

ac’ 6FP’ a(Vg) 39

By using a simple vectorial relation we can write

\FzT-C+A-(FP)—§é+V~(Bg)~VB~g. (13)
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For the velocity gradient L one has

L = (V'fwf—1 (14)

which, together with the multiplicative decomposition of the deformation gradient (1), gives the following

relation for the stress power

T . L 2 T- [(Fe)FPVf-1]+ T . (F€(F‘p)Vf-1) =

= [T(Fe)‘T]-(Fe)+[(F8)TT(Vf)‘T]-(W), (15)

where the usual rules for the tensor product have been used. By multiplying the whole relation by the

Jacobian J : det(Vf) 2 0 one obtains

JT . L = T; . (Fe) + [(Fe)TTR] . (F?) (16)

where TR = JT(Vf)_T is the first Piola-Kirchoff stress tensor7 and the definition

t = „mm-T (17)

for what will be called in the following the ’7 elastic” first Piola—Kirchoff stress tensor is made. The entropy

function .9 satisfies the dissipation inequality

es+v.(6Js)—Js.v930 (18)

where J S is the entropy flux density. By using the Legendre transformation as in \II = e — 6.9 together

with relation (18) and the balance law for the internal energy e

e:T-L+h‚ (19)

with h : —V - q7 we obtain the Clausius—Duhem inequality in the form

—(xix+sé)+T.L—Js-v0+v.(0Js)+h30. (20)

With respect to the classical prescription for the entropy flux density J3, a different relation with the

heat flux density q is now given following Müller and Maugin, by setting

Js:%+k (21)

which includes a phenomenological coefficient k to be determined in the sequel (see Müller (1985) and

Maugin (1992)). By replacing (21) in (20), the following relation is obtained

—(\1I+sé)+T-L—Js-V0+V-(0k)30. (22)

By substituting relation (13) together with (16) in the Clausius—Duhem inequality (20), one obtains

[(Fe)TTR — JA] - F17 + T52 - Fe _ .11"? . a: +

+J(§ — s)9' — JJs - W + JVB -g + N - (6k — Bg) 3 o. (23)

After differentiating the "elastic” right Cauchy—Green tensor Ö, the quantity T - Ö appearing in (23)

takes the form

T ' ö = [T(F6)Tg + gTFeTl - (Fe) +[F6T(F6>T1 g (24)

where the identity AT - B = A - BT together with the usual algebraical rules are used. Inequality (23)

together with (24) gives finally

[(F6)TTR — JA] ' (FF) + {Tä - J[T(F6)Tg + gTFeTH i (Fe) +

+J[VB — F6T(F6)T] - g + JV - (6k — 3g) +

+J(§ _ s)9‘ — JJS - V9 2 o. (25)
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We assume now that the entropy s does not depend on Ö, the coefficient of (Fe) in (25) is assumed to not

depend on itself while the remaining coefficients in (25) may in general depend on the corresponding

variables. Since (25) cannot change sign, the argument of Maugin (Maugin, 1987) also applies to this

case and we find

N 6i! .

s = s : —W (26)

and

T32 = J[(T(F6)Tg - gTFeTH- (27)

Moreover, following again an earlier argument of Maugin (1987), it is reasonable to choose the following

value for the phenomenological coefficient k

k z 5g (28)

so that at the end we have the following dissipation inequality

[(F6)TTR — JA] - (F?) +

+J[‘\7B — FeT(Fe)T] . g — JJ, - v9 2 o (29)

where the three contributions due to the plastic part of the classical deformation FF, the non—Euclidean

metric tensor g and the heat flow are recognizable. We remark that the localization of deformation

depends on the gradient VFP (with this we mean that a spatially homogeneous Fp does not produce

effects of localization). Us1ng the standard rules for total time derivatives FP = + %x’ we see

that (F€)TTR — JA is the coefficient of VFP in Eq. (29). Then the non localization condition gives the

following constitutive equation

T : (Fe)-T%(vr)T (30)

where the definition of the first Piola—Kirchoff stress tensor and the assuption (12); have been used,

together with T3 : JT(Vf)—T.

5 The Model Applied to the Decomposition Vf = FPFe

By using the alternative decomposition

Vf : FPFe (31)

(see Nemat—Nasser (1979), Francaviglia and Dolfin (2000)) relation (4) is replaced by

C : (F8)T(Fp)TgFPF€. (32)

As for (8) we choose a regular matrix K such that

(FP)TgFP = KTK z Ö (33)

so that the corresponding expression for the right Cauchy—Green tensor takes now the form

c : (KFe)T(KFe) : (Fe)TCF€. (34)

With the position (33) the metric in the actual configuration is again in the Euclidean form with the

total deformation gradient given by KFC. With respect to the energetic considerations, in this second

case we will not deal explicitly with all the passages as in the previous section but we will give only the

basic results. The free energy ‘II is supposed, in this case, to be a functional of the following type

x11 2 \r/(C,F€,Vg,9) (35)
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and the stress power, multiplied by the Jacobian, is given by

JT ~ L = Ti. ~ (FF) +[<FP>TTR1 - (Fe), <36)

where

T}, = JT(FP)—T (37)

(in full analogy to the previous section) is the first “plastic” Piola—Kirchoff stress tensor. Clausius—Duhem

inequality takes now the form

[T113 - J(T(Fp)Tg + gTFp'i‘H ' (FP) + [(F”)TTR - JÄ] ' (Fe) +

+J[VB — FPT(FP)T] - g — JJS . v9 2 0 (38)

where definitions analogous to those giving rise to (12) have been made, i.e.

A .. B _ f. — 39

aö’ 8Fe7 8(Vg) ’ 5 66 ( )

 

'jj :

In this case the dissipation inequality reads

[T32 — J<T(FP)Tg + gTFPTfl u (F40) +

JWB — FeT(Fe)T] . g — JJS . V6 2 0 (40)

and the condition for which no localization occurs is given by

8‘11 8%

T : —-„—(F”)Tg — gTFp-—A(FP)T. (41)

8C 8C

So, in this second case of decomposition Vf = FDFG7 the constitutive relation giving the condition of no

localization involves only the plastic part of the deformation gradient together with the rioanuclidean

metric (internal variable) g.

6 Conclusions

ln this paper we have investigated the role played by the new mesoscopic variable g (a non—Euclidean

metric) assumed as an internal variable in finite elastoplasticity, both in Lee’s hypothesis of decomposition

Vf : FCFP and in Nemat—Nasser’s alternative decomposition Vf = FPFe. We were not interested

in the evolution equations for the internal variables g,Fe,FP (and their gradients) but simply in the

contributions of these internal variables to Clausius—Duhem inequality and to the extra entropy flux. We

have seen that in the two cases the effects of localization (i.e. those related to the inhomogeneities of

the gradient of plastic deformation) depend on suitable constitutive equations, i.e. (30) and (41). The

two cases are rather different, since in the case of Lee’s decomposition the constitutive equation does not

depend on the internal variable g, while in the opposite case the constitutive equation is more complicated

and depends on g and only on the plastic part of the deformation gradient. Moreover looking at the

dissipation inequalities (29) and (40) for the two different decomposition we can see that in the second

case the elastic deformation is not at all involved in the plastic one.
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