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The variational approach to weakly nonlocal thermodynamic theories is critically revisited in the light of
modern nonequilibrium thermodynamics. The example of Ginzburg-Landau equation is investigated in
detail.

1 Introduction

In the last decades there has been a continuous interest in developing generalized classical continuum
theories that are able to describe nonlocal effects. One of the most important (and popular) strategies is to
develop so called weakly nonlocal continuum theories that is to incorporate higher order space derivatives
into the governing equations of continuum physics. The crucial point in these investigations is to clarify
the relation of the new equations to the second law of thermodynamics.

From that point of view the weakly nonlocal continuum theories can be divided into two groups. The
theories in the first group take seriously the thermodynamic requirements and the established structure of
continuum physics. We can call them thermodynamic weakly nonlocal continuum theories. The theories
in the second group do not follow the structure of classical continuum physics, and we can call them
variational weakly nonlocal continuum theories according to the basic method of equation construction.
Examples of thermodynamic theories are the gradient theory (of thermomechanics) developed by Kosiński
(1997) and Valanis (1996, 1998), the virtual power considerations of Germain and Maugin (Maugin, 1990),
the multifield theory of Mariano (Mariano and Augusti, 1998), the concept of microforce balance of
Gurtin (1996), and the investigations toward the weakly nonlocal extension of extended thermodynamics
by Lebon, Jou and coworkers (Lebon and Grmela, 1996; Lebon et al., 1995, 1997, 1998). Instead of
reviewing and criticizing the different approaches, our general remark is that they usually introduce
disputable new concepts, which seem to be too special to serve as a foundation of a general nonlocal
thermodynamic theory.

The second group starts from the investigations and method introduced by Ginzburg and Landau and
constructs a set of prototypical classical weakly nonlocal equations like the Ginzburg-Landau equation
and the Cahn-Hilliard equation (see e.g. Hohenberg and Halperin (1977) and the references therein).
A unified treatment of weak nonlocality based on this variational approach appears in the so called
GENERIC scheme developed by Grmela and Öttinger (Grmela and Öttinger, 1997; Öttinger and Grmela,
1997).

The following table compares the different nonlocal theories with theories modelling memory effects
according to their basic structural ingredient of nonlocality (in space or time):

Space Time
Strongly nonlocal space integrals memory functionals
Weakly nonlocal gradient dependent con-

stitutive functions
rate dependent constitu-
tive relations

Relocalized ??? internal variables

The table is self explanatory. What we should observe is, that all of the weakly nonlocal approaches can
be found in the third row of the second column. Every known approach introduces gradient dependent
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constitutive quantities (thermodynamic potential, entropy current, conductivity tensor, etc...) to generate
the nonlocal effects. It is remarkable that there is no nonlocal counterpart of internal variable theories.

The main purpose of this paper is to confront the variational approach with the thermodynamic re-
quirements by the example of Ginzburg-Landau equation. In the following section we will review the
traditional variational derivation of the Ginzburg-Landau equation. In the second section a Ginzburg-
Landau like equation is constructed from thermodynamic principles preserving the compatibility with
classical continuum theories. The derivation generalizes the internal variables to nonlocal phenomena
and based on a general entropy current. With this method nonlocal constitutive functions can be gener-
ated with the help of a force-current system like in classical irreversible thermodynamics (Ván, 2001a).
In this way we can eliminate several ad-hoc assumptions of the previously mentioned thermodynamic
approaches. The nonlocality of internal variables is generated by thermodynamic requirements and the
structure of the theory. In the fourth section a more rigorous derivation, based on the Liu procedure,
shows the applicability conditions of the irreversible thermodynamic treatment. From that considera-
tions we can recognize that the previous heuristic thermodynamic derivation is general under some minor
physical requirements and considering a relocalized internal variable representation of nonlocal effects.

2 Variational Derivation of the Ginzburg-Landau Equation

From a thermodynamic point of view Ginzburg-Landau equation seems to be the first nonlocal extension
of an evolution equation of an internal variable (e.g. order parameter, dynamic degree of freedom, orien-
tation). Its traditional derivation is based on the introduction of a gradient dependent thermodynamic
potential, e.g. the (Helmholtz) free energy functional. In the most simple case this thermodynamic
potential can be written in the following form

F(ξ) =
∫ (

f(ξ) +
λ
2
(∇ξ)2

)

dV. (1)

where ξ denotes the internal variable, and f is the ’equilibrium part’ of the free energy and λ is a material
parameter. According to intuitive thermodynamic requirements we may assume that the equilibrium
of the related physical system is characterized by the extremum (minimum) of the above free energy
functional. In this case we perform a variation and get the ’functional derivative’ of F as a generalized
intensive quantity conjugated to the internal variable

δξF = f ′(ξ)− λ∆ξ.

Here the dash denotes a derivative. We can get the stationary Ginzburg-Landau equation assuming that
this functional derivative is zero

f ′(ξ)− λ∆ξ = 0.

Introducing a ’relaxational dynamics’ we can generate the time dependent Ginzburg-Landau equation as

ξ̇ = −lδξF = −l(f ′(ξ)− λ∆ξ). (2)

where l is a positive scalar coefficient (e.g. in case of scalar internal variable and isotropic material). We
may introduce more general free energies, the essence of the variational derivations remains the same.

As it was pointed out by Gurtin, the most important problem with these derivations is that they have
nothing to do with the balances of the fundamental physical quantities. He emphasizes the importance
of the separation of balances from the constitutive properties: ”My view is that while derivations of the
form ... are useful and important, they should not be regarded as basic, rather as precursors of more
complete theories. While variational derivations often point the way toward a correct statement of basic
laws, to me such derivations obscure the fundamental nature of balance laws in any general framework
that includes dissipation.” (Gurtin, 1996).

There are three specific problems with the variational approach as a result of the incompatibility with
the structure of continuum physics.
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– The above derivation has nothing to do with a nonnegative entropy production, e.g. the sign of l
is fixed according to some stability requirements, not by pure thermodynamic conditions.

– The whole equation is not derived from the variational principle, the time dependence, the ’relax-
ational dynamics’ is an additional, independent requirement.

– The whole procedure restricts how the rate terms can appear in the equation. Essentially they
can be added by ad-hoc physical arguments in each specific theory, but experiments and different
theoretical considerations show that they have a typical form, which is independent of the specific
theory, and a generalized Ginzburg-Landau equation can be written as (see Gurtin (1996) and the
references therein)

ξ̇ = −l(f ′(ξ)− λ∆ξ) + k∆ξ̇. (3)

Here k is a positive coefficient.

3 Thermodynamic Derivation of the Ginzburg-Landau Equation

In this case our task is to find an evolution equation of an internal variable that corresponds to the
requirement of nonnegative entropy production. We suppose here that the entropy function depends only
on the internal variable and we will use the notation Γξ := Ds(ξ), where Ds denotes the total derivative
of the entropy function . If ξ = 0 then Γξ(0) = 0, because ξ is an internal, dynamic variable. As regards
the entropy current we apply a straightforward physical assumption: if ξ was zero then there is no entropy
flow. Moreover, in the light of this assumption and according to the mean value theorem, the entropy
current can be written as a linear function of the derivative of the entropy, as in classical irreversible
thermodynamics. The coefficient can depend on the internal variable, too:

js(ξ) = A(ξ)Γξ.

That form of the entropy current was suggested by Nýıri (1991). Therefore the entropy production follows
as

σs = ṡ(ξ) +∇ · js = Γξ(ξ̇ +∇ ·A) + A · ∇Γξ ≥ 0.

We can recognize a force-current structure. In isotropic materials the two terms do not couple and the
corresponding Onsagerian equations in the linear approximation are

ξ̇ +∇ ·A = l1Γξ, (4)

A = l2∇Γξ. (5)

Eliminating A from (4) and (5), we get

ξ̇ = l1Γξ −∇ · (l2∇Γξ). (6)

Here we have got an equation that is similar to the Ginzburg-Landau equation (2). On the other hand,
there are some differences.

– At the second term of the right hand side, under the space derivatives there is Γξ instead of ξ.
However, Γξ is a homogeneous linear function of ξ, being an internal variable.

– The sign of the material coefficients is determined by the second law, direct stability considerations.

– There is no additional rate term at this level of approximation.

– To extend the derivation to nonlinear and anisotropic cases is straightforward. However, the non-
linearities and anisotropies show a different structure, than in the original equation.
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This thermodynamic Ginzburg-Landau equation was derived also by Verhás under some slightly different
assumptions, as a governing equation for the transport of dynamic degrees of freedom (Verhás, 1983,
1997).

3.1 Generalized Thermodynamic Ginzburg-Landau Equation

We can get the generalized form of the Ginzburg-Landau equation at the next level of approximation. A
similar equation was received by Gurtin with the principle of microforce balance. In the thermodynamic
derivation we consider the previously introduced current intensity factor A as an internal variable and
follow the same procedure as above. For the sake of simplicity we suppose, that the entropy function does
not depend on A, that is we are not interested in the associated memory effects, we are investigating only
the nonlocal extension. The form of the entropy current is similar to that of the Cahn-Hilliard equation
(Ván, 2001a):

js(A, ξ) = AΓξ + B(A, ξ) ·A.

Here B is a second order tensor. This form is completely general under the conditions of the mean value
theorem, if we exploit that there is no entropy flow when the internal variable A is zero. Now the entropy
production will be

σs = Γξ(ξ̇ +∇ ·A) + A · (∇Γξ +∇ ·B) + B : ∇A ≥ 0.

It is straightforward to put down the Onsagerian conductivity equations, but after the elimination of B,
one cannot simplify them further. Therefore, we will treat here only the simplest situation, when the
material is isotropic and the approximation is strictly linear (the conductivity coefficients are constants).
Now the conductivity equations are reduced to the following form

ξ̇ +∇ ·A = l1Γξ, (7)

A = l2(∇Γξ +∇ ·B), (8)

B = l13∇ ◦A + l23(∇ ◦A)∗ + l33∇ ·A, (9)

where l1, l2, l13, l
2
3, l

3
3 are positive, scalar, constant coefficients and ∗ denotes the transpose. A simple

calculation eliminates A and B from the above equations and we get

ξ̇ = l1Γξ − l2∆(1 + l1l3)Γξ + l3∆ξ̇, (10)

where l3 = l13 + l23 + l33. The last term, that is additional to (6) corresponds to the generalized Ginzburg-
Landau equation (3). The positivity (positive definiteness in a more general situation) of the material
coefficients is ensured by the second law. However, we should observe, that this generalization has not
changed the characteristic thermodynamic term which differs form the original Ginzburg-Landau form:
Γξ stands under the Laplacian instead of ξ.

We can continue the introduction of new nonlocal internal variables, putting B into the basic state space.
In this case B becomes internal variable and we can introduce a corresponding current intensity factor.
Continuing this procedure, we can develop a whole phenomenological hierarchy of weakly nonlocal trans-
port equations of higher and higher orders. The further research in this direction has a special importance
for the kinetic theories, because we do not have a well established approximation scheme for nonlocal
phenomena like the momentum series expansion in case of memory effects. The outlined phenomenologi-
cal hierarchy of nonlocal equations can suggest a similar approach for the kinetic equations including the
sensitive question regarding the closure of the corresponding relations (Liboff, 1990; Nettleton, 1993) . It
is straightforward to extend the above treatment considering memory and nonlocal effects together.

4 A More Exact Derivation of the Ginzburg-Landau Equation

There are some basic problems in the heuristic approach of irreversible thermodynamics that should be
addressed in a modern treatment. We can avoid them applying a more rigorous form and exploitation of
the second law (nonnegative entropy production) that was used in the previous section. In this section
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we make a distinction between the state variables and the constitutive quantities at the beginning and
we apply the Liu procedure (Liu I-Shih, 1972; Muschik et al., 2001).

As we have seen in the heuristic treatment, the thermodynamic Ginzburg-Landau equation was received
as a general evolution equation for an arbitrary internal variable with the requirement of the compatibility
with the second law. Therefore, let us denote our basic state space spanned by an internal variable ξ
with Zξ. We are to find an evolution equation of the internal variable in the form:

∂tξ + F = 0, (11)

with the requirement of a nonnegative entropy production

∂ts +∇ · js ≥ 0.

Here js is the entropy current and ∂t denotes the partial time derivative. With the different notation of
the time derivatives we emphasize that in case of moving media some further considerations are necessary.
The constitution space, where the constitutive quantities are defined is spanned by ξ and its first and
second gradients (ξ,∇ξ, ∇2ξ). Therefore CI = Zξ × Lin(Zξ,R3) × Bilin(Zξ,R3) is the constitution
space of the nonlocal dynamics of an arbitrary scalar internal variable. The constitutive quantities are
the entropy, the entropy current and the form of the evolution equation (s, js,F). Therefore in the Liu
procedure the nonnegative entropy production is supplemented by (11)

∂tξ + F = 0,

∂1s∂tξ + ∂2s∂t∇ξ + ∂3s∂t∇2ξ + ∂1js · ∇ξ + ∂2js : ∇2ξ + ∂3js· : ∇3ξ ≥ 0.

According to Liu’s theorem there exist a Γ, to be determined from the Liu equations, which can be
written in a particularly simple form

∂1s− Γ = 0,
∂2s = 0,

∂3s = 0,

∂3js = 0.

The dissipation inequality in our case is

∂1js · ∇ξ + ∂2js : ∇2ξ − ΓF ≥ 0. (12)

The solution of the Liu equations gives that s depends only on the internal variable ξ, Γ = Γξ = Ds(ξ)
is the derivative of the entropy and js does not depend on the second gradient of ξ. Unfortunately these
considerations do not simplify the entropy inequality at all, we may look for additional conditions. We
write the entropy current in the following form

js(ξ,∇ξ) = A(ξ,∇ξ)Γ(ξ). (13)

Considering the Liu equations we can see again, that this form of the entropy current is completely
general. Under some differentiability conditions the entropy inequality turns out to have the same form
that we received with the heuristic considerations of the previous section

A · ∇Γ + (∇ ·A + F)Γ ≥ 0.

Let us remark, that in (12) there are two constitutive quantities (the entropy current and F) and three
additive terms. To simplify the inequality for constructing a force current system there is no other choice
that we have done here: we should unite two of the terms with some reasonable physical assumption.
Assumption (13) is almost purely mathematical, the physical condition is hidden in the differentiability
of A. But that is necessary for the construction of constitutive functions, because, if A is continuously
differentiable we can solve the resulted inequality and get the Onsagerian structure of (4) and (5).
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Remark 4.1 In this procedure we applied the Coleman-Mizel form of the second law, with the requirement
that the nonnegative entropy production is a consequence of pure material properties, and valid for all
(continuous) solutions of the evolution equation of the internal variable (Muschik and Ehrentraut, 1996).

Let us observe that one of the consequences is that a gradient dependent thermodynamic potential
(entropy or free energy) is not compatible with a nonnegative entropy production and a relaxational (or
any) kind of evolution equation for the internal variable without any further ado. To get a gradient
theory we need some additional assumptions.

5 Discussion and Further Remarks

The applied thermodynamic procedure can be used to get several other classical weakly nonlocal equations
of continuum physics, e.g. the Guyer-Krumhansl equation for nonlocal heat conduction or the Cahn-
Hilliard equation for first order phase transitions (Ván, 2001b). The Liu procedure shows well that the
conditions do not give serious restrictions from a physical point of view.

The differences between the traditional and the thermodynamic form makes possible to compare the conse-
quences of the equations experimentally. Understanding the (space-time) structure generating properties
of the original Ginzburg-Landau equation from a thermodynamic point of view seem to be really interest-
ing. Furthermore, we have seen that the experimentally observed additional rate dependent term of the
generalized Ginzburg-Landau equation is a natural consequence of the thermodynamic approach. More
thorough considerations on the possibilities of variational principles show well that it would be hard to
derive that rate dependent term from a variational principle (see e.g. Ván and Muschik, 1995; Ván and
Nýıri, 1999).
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17. Öttinger, H.C.; Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of
a general formalism. Physical Review E, 56(6), (1997), 6633-6655.

18. Valanis, K.C.: A gradient theory of internal variables. Acta Mechanica, 116, (1996), 1-14.

19. Valanis, K.C.: A gradient thermodynamic theory of self-organization. Acta Mechanica, 127, (1998),
1-23.

20. Ván, P.: Weakly nonlocal irreversible thermodynamics - the Guyer-Krumhansl and the Cahn-
Hilliard equations. Physics Letters A, 290(1-2), (2001a), 88-92. cond-mat/0106568.

21. Ván, P.: Weakly nonlocal irreversible thermodynamics, cond-mat/0112214, (2001b).

22. Ván, P.; Muschik, W.: Structure of variational principes in nonequilibrium thermodynamics. Phys-
ical Review E, 5(4), (1995), 3584-3590.
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