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A model of material interface, for which the metric tensor is regarded as an internal variable, is

considered. Both a local and a non-local evolution equation for such a variable are analyzed. The

consequences of the second law of thermodynamics are derived in both cases.

1 Introduction

Interfacial phenomena arise frequently in nature and have useful applications in science and technology.

For instance, they are observeded in the thin layer between different phases of the same material, or

in a film of a given substance spread on a surface (Adamson, 1982). Within a certain approximation,

these systems behave as twosdirnensional continua carrying suitable material properties. For instance, in

a soap bubble in mechanical equilibrium the pressure jump is proportional to the mean curvature. The

proportionality factor is a force per unit of area, which is referred to as surface tension. Analogously,

a surface internal energy and a surface free energy can be measured by standard techniques (Adamson,

1982). The presence of material passing through the interface is accounted for by certain jumps of three-

dirnensional fields appearing in the balance equations. Two cases are possible: the interface is material,

i.e. it is formed at any instant of time by the same particles; the interface is non—material, i.e. it is a

propagating geometrical surface occupied at different instants of time by different particles. When the

interface is material the related model describes films; when the interface is not material the model applies

to phase transitions. In both cases that region is regarded as a two-dimensional non—Euclidean continuum

the geometrical and material properties of which influence each other. in the classical theory of interfaces

(Moeckel, 1987; Müller, 1985), the metric tensor is regarded as a standard thermodynamic variable,

playing the role of the two-dimensional strain tensor. A stress~strain relation follows from the second

law of thermodynamics. Such an approach excludes the possibility of a dissipation of energy related to

the interface deformation. To our opinion such a dissipation is possible. For example, let us consider

an interface which contains a granular material, as it happens in many detergent substances. Then the

grains migrate and diffuse inside the interstitial volume but such a micromotion, which is superposed to

the surface macroinotion and influences its deformation, cannot be described by any three-dimensional

field since, in that picture, the thickness of the interfacial region is zero. However, the diffusive motion of

the grains, besides influencing the surface macromotion, yields an additional entropy production inside

the interstitial region. These observations suggest that the metric tensor defined on the interface should

be considered as a dissipative material field related to the intrinsic nature of the actuai three-dimensional

volume. Hence, following the point of View already expressed in Valanis (1998) and Ciancio et al. (2001),

in the present paper we regard the metric tensor as an internal thermodynamic variable. Its evolution

is controlled by a differential equation which depends on certain material fields such as the surface mass

density or the surface temperature. Both the local and the gradient approaches will be-considered since,

at the interfacial scale, the long range interactions could be important (Cirnmelli and Starita, 1990). In

this framework we determine the conditions under which a stress-strain relation, involving the physical

metric, exists. It turns out that this is true only if the evolution of the metric is controlled by a partial

differential equation (nonalocal theory). In such a case the metric tensor is nothing but the local strain at

the interface and, moreover, no dissipation of energy results from the surface deformation. If, instead, the

internal variable is ruled by an ordinary differential equation (local theory) then we have the dissipation

of the interstitial working, and a stress-strain relation does not exist in general. In such a case one can

apply the standard procedures of Onsager’s non-equilibrium thermodynamics (Verhas, 1997) in order to

obtain the evolution equation for the generalized force conjugated to the metric time rate.
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2 Material Interface with an Internal Variable

Let us consider a material interface at, separating two regular regions Ci” and C: of the point space E3.

We define a motion of Ce = 0: U C; and of 5* through the couple of vector functions

x = x(X,t), r = I'(R,t), (2.1)

where X and R are the vector position of a given point X of C... and a given point R of au, while x and

r mean the vector position of X and R in the actual configurations C; = Cf U Ct— and at. Let us denote

by n“, tr 2 1, 2, a system of curvilinear coordinates defined on of and by

a V

ad :: 61:0
(2'2)

 

the tangent vectors to the coordinate curves. The plane (a1, a2) is tangent to a, and the matrix

act/3 I: an 'aß

yields the coefficients of the first fundamental form

(1.3") : nflfgdu‘ldufl,

representing the infinitesimal lenght on (If. In (2.4) and in the following the conventional summation over

repeated indices is assumed. It results from (2.4) that (tag stands for the rionwEuclidean metric tensor.

Its determinant and inverse matrix will be denoted by a and «maß respectively. The unitary normal vector

on at is defined by

la] X a2)

Finally, the trihedron {a1,a2,n} will represent a basis for the three-dimensional vector space E3 (at).

Moreover, if for is a. regular function defined on at, the convected time derivative of ft7 is given by

fa:%+va cr'vT:

where V1- is the projection of v z on the interface and V0. is the gradient operator defined on at. The

following relation holds (Pergola and Romano, 1985)

Clan = 271mm:
(2-7)

where

_ l

Üaß == Tats — baßl' '11: maß) = Elves + man): (2-8)

bag :: act-11:5 is the second fundamental form (Romano, 1982) ‚ a comma stands for the partial derivative,

and a vertical bar denotes the covariant derivation. For a material interface we have (Rornano, 1982)

J'c+vn:1'"n:)'c"on
(2.9)

wl-lere f+ and f‘ mean a function f evaluated on both sides of the interface. Under the hypothesis

(2.9) the following balance equations for mass, linear momentum and energy are valid (Romano, 1982;

Moeckel, 1987)

{30' 'l‘ pang : O:
(2-10)

[T] - n+ pdi: — Wg - TU 7 pdbg = Ü= (2.11)

M), — [h] - n — icy-WWW e v.r - h, : 0. (2.12)
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In (2.10)-(2.12) a subscript 0' denotes the quantities defined on the interface. In particular, pg is the

surface mass density, 60 the surface specific internal energy, TU the surface stress tensor, h0. the surface

heat flux vector and b5 the surface body force. Moreover, h and T mean the heat flux vector and the

stress tensor in the bulk materials and [f] =: f+ — f‘. Here we restrict our attentiOn to non polar

continua, which have no intrinsic spin or couple. Consequently, the surface density of production of

moment of momentum vanishes. This is equivalent to

= 0, T5118 = TED:-

l\floreover, the Clausius—Duhem inequality is (Moeckel, 1987)

Z 07 (2.14)—[h]-n+pgä'„—'\7—h„— 9

with 9‘, the surface temperature and s, the interfacial Specific entropy. Once the Helmholtz free energy

\IJ'a =: aI — 60 so is introduced and, owing to (2.12), the divergence of ha is eliminated from (2.14), one

Obtains

. . ‚. 1

watt, — pasgfi'a — Tg‘dmafi, — Wage”, 3 0. (2.15)

inequality (2.15) may be exploited to restrict the constitutive equations for surface quantities in such a

way that all process directions in the state space are allowed (Muschik et al., 2001). Let us assume that

the space of the states of at is Spanned by the surface mass density pa, the surface temperature (it, and

its gradient Ellm together with the metric tensor (bag. The main difference between the present approach

and the classical ones (Moeckel, 1987; Fergola and Romano, 1985; Romano, 1982) is that am is no longer

a standard observable quantity but an internal state variable. We will show that such an assumption

leads to more general thermodynamic results including the classical ones as a particular case. Because

of (2.7), a kinetic equation for ring may be assigned through a suitable constitutive equation for maß).

Such a function can be defined on the state space but also on a wider thermodynamic space including the

gradient of the internal variable. These different hypotheses lead to different thermodynamic properties

of the system (Cimmelli and Rogolino, 2001). A discussion of both cases will be developed in the next

section.

3 Thermodynamics of the Interface

In our analysis we disregard the bulk materials and derive the consequences of (2.15) on the physical

properties of at. The following two cases will be discussed:

1. both the constitutive equations and the kinetic equation are local with respect to egg;

'2. the constitutive equations are local but the kinetic equation is non—local, i.e., it is a partial differ—

ential equation with respect to maß.

In case 1. the constitutive equations and the right hand side of the kinetic equation depend on the same

set of variables. We have therefore

(1)17 : (1);;(paaaa'aficrmaaafii):

“(0:13) : ftp/3(ch 60160305: maß);

where (1); stands for an element of the set {Em @mha, T1,}7 and fag is a symmetric smooth function of

the denoted arguments.

In case 2. instead we assume

(150' : ‘1);(paaaaaga'fiaa'afl):

Tim/3) : faß(Pa:60'79cr,aaaußaamßn)- {3-4)
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In the following we will show that if (3.1) and are valid then the material’s behaviour is viscoanelastic,

while it is thermoelastic if (3.3) and (3.4) hold true. Let us start by supposing Eq.S (3.1}(32) hold. Then

we may calculate the time derivative of ‘I’,I and rearrange (2.15) as follows

8‘110 - ölIlg -
“pa, (8—6” + ég)9g — [Jamgma +

at, Zara m, (H 1 _ _
_ — — _ a . _ 7 .n > . 3.5+( 2p, Same + p, 6pc a T, )fafi 901106“, _ 0 ( )

The inequality above must be satisfied whatever the values of 6.16, dam, fag, (9W, are. By applying the

Coleman—Gurtin technique (Coleman and Gurtin, 1967), we get the following thermodynamic restrictions

5‘11
= _—" 3-6so 66,0 ‚ ( )

‘Da = \D;(pa',60,ao:fi)7

Agßfnß — äiagam 2 0, (3-8)

where

ö“? . 8‘1’ 1
as Z _- „.0 2...: aß m are 3.91-1,, ZpU ganja 1),, 5p” a T,7 ( 1

As already observed in Cimmelli and Rogolino (2001) the Coleman—Gurtin technique does not allow to

put .435 = 0 since such a function depends on the same variables of the coefficient standing in front

of it, i.e. fag. Thus, Agfi contributes to the local entrepy production at the interface between the

bulk materials. Moreover, no relation between stress and deformation follows from the second law.

The relations (3.8) and (3.9) characterize the dissipative behaviour of the medium. By applying the

standard procedures of Onsager’s irreversible thermodynamics (Verhas, 1997'), we obtain the following

phenomenological evolution equations for A25 and hf,“

a - 1

A36 = 1.3%,, 7 ail/133179,,” (3.10)

. 1 4 ,_,
$13 = Lg; (1,3,, — ail/132,653, (3.11)

where the coefficients Log.) and J'va depend on the basic fields pg, 65,, 65,6, (135. Because the internal

variable is genuinely dissipative, the classical results do not apply in such a case. '

If, instead, (3.3)—(3.4) are valid, then fa); is independent of .425 so that, beside the equations (3.6) and

(3.7), we get

T35 z —2p,. + 10‘;er , (3.12)
305m5

1

H—hgem g 0. (3.13)

Inequality (3.13) proves that no dissipation is due to the interface deformation since, as showed by (3.12),

it behaves as an elastic fluid membrane. The classical theory is then recovered. In particular, if ‘IIU

depends only on a = det(aa,3), then, due to the derivation rule 32:, = a. (La/3, and after applying the

chain rule to (3.12), we obtain

 

T513 2 ,Yaflfi:

where

_7 _QW as, + ‚36%
‚Y -'" ‚(0' 6a {)5- 6,00

  

(3.15)

represents the surface tension of classical thermochemistry (Defay and Prigogine, 1951). In general, the
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stress tensor may be decoupled as follows (Kluitenberg and Ciancio, 1978)

ß _ wuß aß

To? _ 70(re1r) + TU (int) 7
(3'16)

where for the non-dissipative stress T338“) the restriction (3.12) holds. As a consequence the inequality

(3.8) reduces to

1

T:(j,-m)fcrfl _ {fl-Sacra 2 0: (3'17)

:7

i.e. the internal forces are responsible for the mechanical dissipation, and the intrinsic stress may be

regarded as the generalized force (affinity) conjugated to the time rate of the physical metric.

4 Conclusions

The classical theory of material interfaces (Moeckel, 1987; Müller, 1985), has been revisited in order to

model a dissipation of energy following from the surface deformation. The physical metric has been no

longer considered as a standard observable quantity, but as an internal state variable. Such an approach

applies to the material interfaces, which contain grains migrating and diffusing inside the interstitial

volume. This is the case for many detergent substances where the grains are necessary to remove the

surfacial impurities (Adamson, 1982). In such a case an energy dissipation due to the micromotion of the

grains must be taken into account. An additional entropy production takes also place as well in other

interfacial phenomena such as lubrication, flotation, and wetting (Adamson, 1982). All these applications

could be modeled by applying the present approach.
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