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A model of a heat conductor with on internal variable, describing tlierniodifinsion as well as thermal

woos propagation is developed. Boundary conditions for the obtained difinsioe-hyperbolic system are

derived from the second law of thermodynamics, Propagation of weal; and strong discontinuities for the

hyperbolic subsystem is analyzed.

1 Introduction

The Causality Principle states that two events which are causally correlated cannot happen at the same

time but the cause must precede the effect. From the mathematical point of view this implies that the

differential equations of nature should exclude instantaneous propagation, i. e. these should be cast in

the hyperbolic ferm. Yet, some equations of classical continuum mechanics and thermodynamics - those

of N avier-Stokes and Fourier - are parabolic. Despite their apparent contrast with the Causality Principle

these equations play a central role in thermodynamics. In fact:

- Fourier’s and N avier-Stokes’ theories are able to describe heat conduction and shear stress propagation

in a wide range of pressure and temperature;

7 in a fully Newtonian framework there is no limit for the admissible speeds of propagation of disturbances;

- in the linear case the thermomechanicai signals result from the superposition of different contributions,

propagating with finite and infinite speed, respectively. However, the second ones are strongly damped

and become neglegible after a short interval of time (Fichera, 1992).

On the other hand in some cases, such as second sound propagation at low temperature, the parabolic

theories are not in agreement with the experimental evidence (Narayanamurti and Dynes, 1972). In these

phenomena the hyperbolic regime is present only in the vicinity of some critical values of the physical

fields while outside that short interval the diffusive situation is restored. For instance, in dielectric

crystals heat waves appear only at a given critical temperature (3.8 K for bismuth) while outside a short

interval around the critical point the classical thermodiffusion takes place (Narayanamurti and Dynes,

1972). The latter example suggests that in non—equilibrium thermodynamics it would be desirable to

construct models which are controlled by systems of equations containing some free parameters whose

value determines the nature (parabolic or hyperbolic] of the system itself.

In the present paper we deve10p a nonlocal diffusive-hyperbolic model of a rigid heat conductor by

applying a gradient theory of internal variable. To acc0mplish that task we need a reformulation of

the causality requirement for the constitutive equations which is compatible with both hyperbolic and

parabolic models. Furthermore, gradient theories of internal variable, when applied to bounded domains,

require suitable boundary conditions. Such conditions, in turn, are difficult to assign since the internal

variables are not controllable, i.e. their value on the boundary cannot be adjusted through a direct action

of surface or body forces (Maugin and Muschik, 1994).

In what follows we provide a weak formulation of the Causality Constitutive Principle postulated in

modern noneequilibrium tl'iermodynainics (Muschik et al., 2001). Then we apply the aforesaid point of

view in the derivation of a diffusive—hyperbolic model of heat conductor. We also prove that, in such a

case, the boundary conditions follow from the set of the thermodynamic restrictions. In other words, the

value of the internal variable on the boundary is controlled by the second law ofthermodynamics. Further,

we provide an example of a diffusive-hyperbolic system of equations by considering a one—dimensional

heat conductor. We analyze the properties of the hyperbolic subsystem and calculate the speeds of

propagation of weak and strong discontinuities. The selection rules for physical shocks are derived as

well.
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2 Basic Laws and Constitutive Principles

Let B denote a. rigid body which occupies a compact and simply connected fixed region 0 of an Euclidean

point space E3. A vector x of the associated vector space E3 denotes the position of the points of

C. A thermodynamical process involving B is represented by a curve, regular almost everywhere, in

the thermodynamic state space 2 spanned by the absolute temperature 9, a scalar internal variable tr

together with their gradients g = gradbl and a : grada. Along with Muschik et a1. (2001), we call 8 and

a the wanted fields while 9, a, g, and a constitute the basic fields. The local balance of energy for a rigid

heat conductor reads

pé : —diuq + pr, (2.1)

where p is the mass density, 5 the specific internal energy, r the heat supply per unit of mass and q the

heat flux vector (Coleman and Owen, 1974).

Moreover, the Clausius-Duhem inequality takes the form

. . 1
.

-w@—mm—§qs20i (23

where S means the specific entropy and ‘I’ = E H 85' defines the Helmholtz free energy, (Coleman and

Owen, 1974). Finally, we postulate the following nonlocal evolution equation for or

fr 2 f(9,9, (r, a). (2.3)

Because of the presence of a as an argument of f, (2.3) is a partial differential equation, requiring thus

suitable boundary conditions. Additional memory effects are due to 8 appearing among the arguments of

f. Equations (2.1) and (2.3) allow, in principle, the determination of the wanted fields n9 and a, i.e. the

evolution of the system in 2, once a suitable set of constitutive equations for the functions (1', e, ‘11, q) and

a suitable set of initial and boundary conditions for 6 and or are assigned. Let us postulate the following

constitutive equations:

‘1’=‘1’*(9‚a‚g‚a)- (2-4)

Beside the material symmetry and suitable transformation properties by changing the observer (Muschik

et al., 2001) the equations above must satisfy the following constitutive principles:

Dissipation Principle Coleman and Owen, 1974)

The constitutive equations (2.4) must be assigned in a form such that the local entropy inequality (2.2) is

satisfied in any thermodynamic process.

Weak Causality Constitutive Principle (Cimmelli, 2001)

The constitutive equations (2.4) cannot enlarge the set of the admissible speeds following from the sym-

metry group of space-time transformations.

Let us append some short comments to the requirements above. The first one follows from the second law

of thermodynamics and it is used in the literature for a very long time (Coleman and Mizel, 1964; Cole-

man and Owen, 1974). However, only recently it received a rigorous theoretical justification by Muschik

and Ehrentraut (1996), as a censequence of the norreuersible direction axiom. The second principle refor-

mulates in a weak sense the strong causality requirement of extended non-equilibrium thermodynamics,

(Miiller and Ruggeri, 1998; Jou et al., 1996), proposed in the literature as a general material axiom of

continuum thermodynamics (Muschik et al., 2001). The present formulation forces the constitutive equa-

tions to conserve the upper limit for the admissible speeds, if any. For instance, in relativistic continuum

thermodynamics the symmetry group is that of the Minkowski space—time transformations and the hy—

perbolic property holds true inside the light cones. Such a property must be censerved by the constitutive

equations for the energy-momentum tensor Tm6 which is a material dependent property (Israel, 1976).

In other cases the constitutive equations may restrict the set of the admissible speeds, such as in the

extended theories (Miiller and Ruggeri, 1998; Jon et al., 1996), or may not, such as in the classical theory

of gravitation, which is elliptic, or in Fourier’s and Navier-Stokes’ theories, which are parabolic.
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3 Boundary Conditions as Thermodynamic Restrictions

Exploitation of (2.2), in order to restric the constitutive equations, may be performed by several pro—

cedures (Muschik et al., 2001). Here we apply a slight modification of the Coleman—Gurtin technique

(Coleman and Gurtin, 1967), which works in the presence of internal variables. To this end let us take

the gradient of (2.3) which yields

„_1 1. 1 öf 31

a—;g—;g+ua+öava’
( )

where

1* fl 1:...fl lchlf ‘ (3.2)
7* 6’11" 861311-80“.

Once (3.1) is introduced into (2.2) and the time derivative of ‘1? is calculated, one obtains

B-y+C-Va+D20, (3-3)

with

yT z; g), (3-4}

V a ö ö

fB [wt—3+5): —:‚ pest—hi <8»

C :: — (‚0% ® 35-), (3.6)

[5s~a~<§s+%)-gl <37)
As a result of the the Coleman-Gurtin procedure we may conclude that (3.3) is satisfied in any thermo-

dynamic process if the following restrictions hold true

B = 0, (3.8)

C = MUT, (39)

D 2 o. (3.10)

In particular, equation (3.9) may be trivially satisfied if either : 0 or : O. In both cases

it is easily seen that the evolution equation (2.3) reduces to an ordinary differential equatiori and no

boundary conditions are needed (Cimmelli, 2001). If instead (3.9) is not trivially satisfied the following

orthogonality condition ensues

as ü-E 8a _ 0.
(3.11)

A similar restriction has been obtained by Kosifiski and \Vojno in dealing with a hyperbolic theory of

heat conduction (Kosir’rski and VVojno, 1995). When evaluated on 50, equation (3.11) will result in a

boundary condition for o: and a, whose values on the boundary are in such a way controlled by the second

law of thermodynamics. As a worked example let us consider the following scalar functions:

f = 1‘109) + gnaw + do) - a, (3.12;

\I’ = ‘1'11+-ä1-‘l’-3(9)a2 + ‘ a.
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In (3.12)-(3.13) c and d are given vector fields and, as usual in the internal variable theory, both f and

\I! are splitted into a classical part, depending on the observable quantities only, and an intrinsic one,

depending also on the internal fields 0: and a. Then {3.11) leads to the orthogonality condition

d-c+ (egdwtzcwrgfga) .azo. (3.14)

By evaluating equation (3.14) on ('30 the following boundary conditions may be obtained:

1. Dirichlet’s type boundary condition:

lD-g : f3 : 0 on ÖC => d—c = O on, BC. (3.15)

Equation (3.15) allow to express the boundary value of o as a given function of the absolute temperature

6’. Hence it may be regarded as a Dirichlet’s boundary condition.

‘2. Neurnann‘s type boundary condition:

(d = 0, KIJQ : 0) on (90 => c v a = O 01160. (3.16)

Equation above yields the component of the gradient of a along the direction of the vector c. Since such

a vector is a controllable quantity its value on the boundary may be conditioned, through the action

of external forces, in such a way that c = c(6)n. Then the classical Neumann’s boundary condition is

recovered.

3. Mixed boundary condition:

W2=Oon80=>d-c+fgc—a=UO'rLÖC. (3.17)

Finally, let us draw again the attention of the reader to the main difficulty in determining the boundary

conditions for internal variables. It consists in the lack of their controllability through the direct action of

surface or body forces. Thence we need boundary conditions which are necessarily satisfied by virtue of

some general physical laws. According to the present approach the value of the internal variable on the

boundary is controlled by the second law of thermodynamics. A similar point of view has been applied

by Valanis (1996), Waldman (1967) and Drouot and Maugin (2001).

4 Shock Wave Formation in the Hyperbolic Regime

In order to better point out the transition from the parabolic to the hyperbolic regime let us consider a

oneudirnensional rigid heat conductor and let us postulate the following constitutive equations:

E : 6(6), (41)

'r = fillet-)1
(4'2)

q==—Xi8m-X2am, (43)

with F :: while )0 and x2 are constant. Finally, let us postulate for on the linear evolution equation:

Rad; + lat-206; —— 6304m 2 TB + Ja, (4.4)

where1 again, the material functions it], kg, 7', cr and :53 take constant values. By writing

X1 2'561 "i- 51.. = 162 + 52, (4-5)

we get

mfl+n=ma so
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qt + 7—01: + 0-041: = _610wt _ 6205135 _ 6305:0507

[619,5 + ‚6204,: — 63045,,- = 7'0 + 004, (4.8)

where c„(0) = g > 0 is the specific heat. Due to the presence of the operator of diffusion

6(m,t) =: #510” — 62am — 6304“ the system above results to be parabolic. However, as 61, 62 and 63

tend to zero, it yields the hyperbolic sub-system

m%+%=m‚ um

qt + 7055 + 0'041: = 07

[619,5 + ‚6204,: = 7'9 + 004. (4.11)

Such a system admits the characteristic speeds U = 0 and

(pcv (9) + k1) i (pcv(0) + k1)2 + 410011 (0)191

U(0)=’ 2 2 ‚

 

um)

which depend only on 0 and take real values if k1 > 0. Because of the nonlinear constitutive equations

for e and r the system above is non-linear, allowing thus shock wave formation after a finite time.

Such waves are represented by a plane of equation ¢(m,t) = 0, the shock front, across which the fields

(0,04, q) are discontinuous. Let us denote by (00,040, qo) the unperturbed state ahead of the shock and

by (01,041, ql) the perturbed state behind the shock. The Rankine-Hugoniot compatibility conditions

read (Boillat, 1965)

—mM+M=Q MB)

—s[q] + [7'0 + 004] = 0, (4.14)

—S[k19 + [6204] = 0, (4.15)

where s means the velocity of the shock and =: F1 — F0. Let us observe that, although both functions

0 and a are discontinuous across the shock, their linear combination 1610 + kga is not. Moreover, if

one assumes 6(0) = 6004, which represents the Debye’s internal energy of crystals at low temperature

(Narayanamurti and Dynes, 1972), then the characteristic and shock velocities read

2

U(0) = —2p6003 — g + V 4,026396 + % + 6k1p6003, (4.16)

Tkg — akl

peokg (0% + 93) (91 + 90) l

   

 

3(01) = j: (4.17)

Equation (4.17) proves that, once the unperturbed state is known, s depends only on the temperature

behind the shock and vanishes if Tkg — akl = 0 (characteristic shock), (Boillat, 1965). The physically

meaningful shocks among the solutions which are compatible with (4.13)-(4.15) are selected by the Lax

condition (Lax, 1973), traducing the physical requirement of non-decreasing entropy across the shock

front. It reads

U(01) > 3(91) > U(00). (4.18)

When applied to the present case, the condition above yields
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.‚ k:

92,9508," — __1 + (4.19)

 

. . k2 s

$03559? + if + 6klpem9‘f >

  

peak; + 88) (191 + 60)

o k ‚l . . R72 o
—2p6065 - 31 + 4p36ä93 + I] + 6k1p6095

>

for waves propagating in the positive direction and an analogous inequality for waves propagating in the

negative direction.
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