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Viscomagnetoelastic Interactions in a Vortex Array in the Type–II
Superconductor 1
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The paper develops considerations on viscomagnetoelastic interactions in a vortex array in a type–II
superconductor. It is well known that a magnetic field penetrates such a material along lines called vortices of a
special structure. Each of them consists of a core of material in the normal state, i.e. a material in which Ohm’s
law works and a surrounding where the supercurrent flows. The mean diameter of a core is called the coherence
length. The penetration of the supercurrent outside the core exists in the London penetration depth. Since
interactions among the vortices run with the help of the Lorenz force, the vortex field has elastic properties.
Moreover, because of the normal state inside the vortex core also the viscosity of that field has been observed.
The above situation occurs only between upper and lower magnetic field limits below the critical temperature
regarding the phase diagram. The vortex field has a very interesting feature. In the vicinity of the lower
magnetic field curve it possesses an ordered (quadratic or triangular) structure. Then going to the upper
magnetic field limit that structure is losing its configuration behaving as a fluid. We assume smooth transition
from ordered to disordered state althought it is much more complicated in nature. Following the above
statements all the “material” coefficients characteristic for the vortex field are also dependent on the magnetic
field and temperature. The main aim of the paper is a formulation of the stress – strain constitutive law
consisting of the following features:

•  a coexistence of the ordered and disordered states,
•  the viscosity of the vortex field,
•  the dependence of the “material” coefficients related to the vortex field on the magnetic field.

An application for YBCO ceramics that deals with the use of the proposed constitutive law in vortex field
equations and results coming from that are presented. Numerical calculations concern wave propagation in
depinned parallel vortex line field versus magnitude of the applied magnetic field.

1 Introduction

The paper develops the mechanics of the vortex lattice as a certain state and geometry in a medium  (Tilley and
Tilley, 1974; Tinkham, 1975; Orlando and Delin, 1991; Cyrot and Pavuna, 1992; Blatter et al., 1994; Brandt,
1998).
Magnetic flux can penetrate a type–II superconductor in the form of Abrikosov vortices (also called flux lines,
flux tubes, or fluxons) each carrying a quantum of magnetic flux. These tiny vortices of supercurrent tend to
arrange themselves in a triangular and/or quadratic flux–line lattice, which is more or less perturbed by material
inhomogeneities that pin the flux lines. Pinning is caused by imperfections of the crystal lattice, such as
dislocations, point defects, grain boundaries, etc. Hence, a honeycomb pattern of the vortex array presents some
mechanical properties. The latter ones come mainly from the elastic properties of the superconducting body.
However, since the vortices are formed from the applied magnetic field and around of each of them the
supercurrent flows, there exist also some Lorentz force interactions among them. These interactions form an
origin of an additional mechanical (stress) field occuring in the type–II superconductor. This field near the lower
critical magnetic intensity limit HC1 is also of elastic character. However, if the density of the supercurrent is
above its critical value and/or the temperature is sufficiently high, there occurs a flow of vortex lines in the
superconducting body. Within such situation vortices behave rather as a fluid than as an elastic lattice. The
“fluidity” of the vortex array is also observed when the applied magnetic field tends to its upper critical limit
HC2. So, there coexist two mechanical fields: one of them of a pure elastic character coming from the crystal
lattice and the Lorentz interactions between vortices, and the second one that transfers smoothly into “fluid”
form towards the upper magnetic field strenght limit HC2. However, if the Lorentz force of interactions between
_________________________________
1 Contribution to the sixth conference “Current Ideas in Mechanics, Thermodynamics, and Related Fields (CIMRF 2001)”,
Sept. 3-6, 2001, TU Berlin



168

the vortices is much bigger than the pinning force, the vortex lattice behaves elastically (Cyrot and Pavuna,1992;
Blatter et al., 1994). Such a situation occurs if an external current density is applied to the vortex and is bigger
than its critical value. So we assume following (Cyrot and Pavuna, 1992) that the pinning force is negligible in
the sequel and we deal with soft vortices. The vortex motion (creep) is accompanied by an energy dissipation.
Their motion is damped by a force proportional to the vortex velocity. Hence, except for the elastic properties,
the vortex field is also of a viscous character. The resistivity in area of vortex creep is the same as the resistivity
of the current, which would flow inside the vortex core. Hence the viscosity coefficient reads (Cyrot and Pavuna,
1992)

n

Coo H

ρ
µ

η 2= ,       (1)

where o is the magnetic flux, o denotes the permeability of vacuum, and n is the resistivity in the normal state.

Assuming, for the sake of simplicity, that the vortex lines are parallel to each other we have considered waves
that can propagate across such defined vortex field in a continuous model. Both dispersion and damping have
been calculated.

2 Thermodynamical Foundations

Following the above properties the extended thermodynamical model for the viscoelastic field of vortices in the
type–II superconductor is presented below. We have assumed that the mass density  of the vortex field concerns
the density of the material in the normal state as the counterpart in the mixed type–II superconductor (i.e. the
mass of the normal part of the body related to the total volume of the material), and the energy dissipation occurs
only because of the viscosity of the vortex field caused by the ohmic–like resistivity (normal–state resistivity)
inside the vortex core (Blatter et al., 1994). Hence the general form of the state vector (the set of independent
variables) reads (cf. Maruszewski, 1997, 1998)
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where ij denotes the strain tensor, its time derivative in (2) indicates the viscoelasticity of the vortex field,  and
Ai are the scalar and vector potentials, respectively, T is the absolute temperature,  is the order parameter (the
wave function of a Cooper pair) and *

  is its complex conjugate, jS
i is the supercurrent density. The fundamental

laws, which govern the set (2) are the follows
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vk denotes the velocity of the vortex field point, ik is the viscoelastic stress tensor, jN
k is the normal current, Bj is

the magnetic induction, fk  is the body force, e is the internal energy density, �
�i is the electromotive intensity, r is

the heat source distribution. The set (3) to (10) consists of:

•  the equation for vortex field whose form ensures the conservation of the vortex mass in the sense indicated
above,

•  the momentum balance of the vortex field where elastic interactions are due to the Lorentz force,
•  the internal energy balance of the vortex field where the only dissipation occurs because of the Joule-like

heat produced by the total current,
•  the electromagnetic vector potential equation,
•  the evolution equations for heat flux and supercurrent  because of the extended thermodynamical model (2),
•  the evolution equations for the Cooper pairs wave function as the order parameter (internal variable)

evolution equations.

The extended thermodynamical description has been chosen here since all the interactions run within low
temperatures. Moreover, the electromagnetic field quantities satisfy the Maxwell equations, and the following
relations hold

kBjvkjieiEi +=�     (11)

t

A
E i

ii ∂
∂

−−= ,ϕ      (12)

jkkjii AeB ,=      (13)

ioi HB µ=  ,     (14)

where Hk is the magnetic field strength. In the sequel we follow the assumption that ϕ vanishes by gauging
(Orlando and Delin, 1991).

The use of the second law of thermodynamics in the form of the entropy inequality

0, ≥−+
T

r
s kk

ρρ �  ,     (15)

where s is the entropy density and k denotes the entropy flux, gives us a possibility to determine all the
constitutive functions which, in our case form the set
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As we have mentioned before, we are mostly interested in the mechanical properties of the vortex field vs.
magnetic field HC1 < H < HC2 . Having several possibilities to create a proper constitutive law for the stress
tensor σij whose form should consists both of terms related to the solid viscoelastic state of the vortex field and
the viscous fluidity of the vortices vs. the magnitude of the applied magnetic field following (Maruszewski and
Restuccia, 1999), its required form (p denotes the pressure of the vortex fluid) reads

jijijikkkkji GpGK εηβαεαδβεηαεαασ �� )(22
3

2

3

2

3

1 +++







−−





 −= ,     (17)

where





<<
==

=+
21

21

if)(

orif0

CC

CC

HHHHf

HHHH
βα      (18)



170

2

12

2












−
−

=
CC

C

HH

HH
α ,         





=
=

=
1

2

if1

if0

C

C

HH

HH
α      (19)

2

12

1












−
−

=
CC

C

HH

HH
β ,         





=
=

=
2

1

if1

if0

C

C

HH

HH
β                    (20)

µλµ =+= GK ,323  .     (21)

λ , µ are the Lamé constants.

3 Field Equations

On using now (17) in the momentum balance (4) and modelling the first London equation (10) with the help of
the relation (11) and confining only to magnetoelastic interactions in the considered superconductor, we arrive at
the following nonlinear field equations
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Being, however, conscious of the fact that the amplitude of the magnetic field inside the material can not exceed
the limiting values HC1 and HC2 to keep the superconductor within the vortex state, we assume that amplitude of
the form

,, rorrror HhhHH <<+=     (24)

where Hor is constant and hr is a small perturbation of the magnetic field Hor . That idea allows us to linearize the
equations (22) and (23).

4 Waves in the Vortex Lattice

Let us assume now, that the applied magnetic field is taken as Ho = [ 0, 0, HO3 ].
Supposing that the superconducting body occupies the whole space and that vortices are parallel one to another
being in x3 direction we consider a propagation of magnetomechanical waves along the x1-direction. If we use
(24) in (22), (23), the linear field equations can be rewritten to the form
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We see that only a “magnetic” displacement uk can propagate as a wave. So, it is responsible both for dynamics
of the magnetic field  and the perturbation of its geometry. Following the above assumption concerning the
geometry of the applied magnetic field, the solutions of (25) are looked in the form

( )[ ]tvxkiuu o −= 111 exp

( )[ ]tvxkiuu o −= 122 exp      (26)

( )[ ]tvxkihh o −= 133 exp  .
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Hence the final form of the field equations is the following
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So we can observe two waves: the longitudinal magnetomechanical u1 and the viscoelastic transverse wave u2

which is independent of the magnetic perturbation h3 . The dispersion for the magnetomechanical u1 wave is the
following
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Solving (28) we obtain
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Then for the u2 mode the dispersion problem is the following
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The analysis of the relations (28) to (32) shows that for the case of a long wave approximation the u1 mode is not
damped and dispersed, and the shortest possible u1 wave can propagate only if k = 2 ���λo . Then the mode u2

behaves differently. There is no case of long wave form for that. For the short wave approximation, the u2 –
wave propagates with the velocity cT and is not damped.
The numerical analysis for the dispersion and damping related to u1 and u2 modes have been done for YBCO
ceramics. The proper data are collected in the Table 1.

Quantity Value References
o Ho3 120 T Cyrot and Pavuna (1992)

λo 4 ��� – 7 m Cyrot and Pavuna (1992)
10 – 9 m Cyrot and Pavuna (1992)

To ≤ 92 K Cyrot and Pavuna (1992)
ρn 6 �10 – 5 Ω �� Cyrot and Pavuna (1992)

ρo 5 ��� 3 kg / m 3 Cyrot and Pavuna (1992)

o 4 � ��� – 7 T ������
o 2.07 ��� – 15 T �� 2 Cyrot and Pavuna (1992)

c11 o H
2

o3 Brandt (1998)
Ho3 0.955 ��� 8 A / m

       Table 1. The Data for YBCO Ceramics
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We remark that the density ρo of the vortex field must be calculated as follows: ρo = ρ YBCO �w , where

                                                
material  theof  volumetotal

statenormaltheinmaterialtheofvolume=w  .

For the triangular structure 
32

π=w  .

The results are shown on Figs. 1 to 4.
(I - Ho3 = 3.17 ���7 A/m, II – Ho3 = 4.76 ���7 A/m, III – Ho3 = 6.35 ���7 A/m, IV – Ho3 = 7.94 ���7 A/m)

           Figure 1. The Dispersion of the u1 Mode                         Figure 2. The Damping of the u1 Mode

          Figure 3. The Dispersion of the u2 Mode                             Figure 4. The Damping of the u2 Mode

A simple look at the above curves shows that for the value of  k < 105 m-1 (  = 10-9 m, λo = 4 ���-7 m) u1 and u2

modes are nondispersive and undamped, so they can carry any information on a long distance and at a long time.
Moreover, the transverse u2 wave does not depend on the magnitude of the applied magnetic field.

5 Magnetoacoustic Waves in a Vortex Fluid

Confining now only to the fluid state of the vortex array and assuming the applied magnetic field also as
Ho = [0, 0, Ho3] the basic set of wave equations coming from (22) to (24) read
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Assuming now that the propagation direction is x1 and the magnetic field direction is x3, we take that

( )[ ]tcxkivv −= 1101 exp

( )[ ]tcxki −= 100 expρρ      (34)

( )[ ]tcxkihh −= 1303 exp .

Since we know only a general form of the vortex fluid pressure with respect of the vortex density, i.e.
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But the relation (36) makes equation (33)2 nonlinear. So, to linearize (31) we expand 
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which means that the pure acoustic wave speed for the fluid is equal to the longitudinal elastic wave velocity (no
shear phenomenon occurs). On using now (34) in (37) we arrive at the following dispersion relation for the
vortex fluid
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The numerical results coming from the relation (39) for YBCO ceramics are collected on Figs. 5, 6.

(I - Ho3 = 3.17 ���7 A/m, II – Ho3 = 4.76 ���7 A/m, III – Ho3 = 6.35 ���7 A/m, IV – Ho3 = 9.52 ���7 A/m)

Figure 5. The Dispersion of the Magnetoacoustic          Figure 6. The Damping of the Magnetoacoustic Wave
 Wave in the Fluid           in the Fluid
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We see that neither for the lattice, nor for the vortex fluid for k < 105 m-1, the magnetoacoustic wave is not
dispersed or damped.

6 Conclusions

The complicated magnetomechanical structure of vortices in the type-II superconductor can be described within
a continuum model. It is possible to show that both the magnetoelastic and the magnetoacoustic waves can
propagate along such vortex field. The analysis of their dispersion and damping proves that propagation is
possible up to k = 105 m-1 (cf. Figs.1 to 6). It means that such waves can be modulated and carry signals
superposed on them. This is a very interesting result. It shows that a vortex field might serve as a medium able to
do a communication at low temperatures in a quite new way.
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