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A Finite Element Procedure for Three-dimensional Analyses of

Thermopiezoelectric Structures in Static Applications

Fulin Shang, M. Kuna, M. Scherzer

The development and application ofsmart structures and smart composite materials require eflicient numerical

tools to evaluate the thermopiezoelectric behavior and stress state. In this paper, finite element techniques are

suggested for three-dimensional coupled thermo-electromechanical static analyses. The actual thermo—

piezoelectric responses subjected to thermal loadings can be determined by adopting a procedure TPESAP. The

detailed implementation is presented with emphasis on the integration with software ABAQUS. Several

verification example problems are discussed, including the benchmarkproblem ofafive-layer hybrid plate.

1 Introduction

With the growing application of smart material systems in innovative technical areas, the analysis of

piezoelectric elements has received considerable attention in recent years. Thermal effects have been

demonstrated to be crucial in several applications, see for examples Hilczer and Malecki (1986), Rao and Sun

(1994), Tzou and Tseng (1990). It has also been recognized that thermally induced deformation/stress is an

essential consideration in the distributed sensing and control of laminated structures with integrated piezoelectric

actuators or sensors. Thermal effects, such as, temperature—induced deformation effect and pyroelectric effect,

are especially important for many smart ceramic materials. As a result, it may be impossible to predict the

electromechanical behavior without considering these effects.

Several finite element formulations of thermopiezoelectric materials have been developed, taking into account

the thermal effects for different purposes, such as precision control of piezoelectric laminates subject to a steady—

state temperature field (Tzou and Ye, 1994), distributed dynamic measurement and active Vibration control of

intelligent structures (Tzou and Tseng, 1990). A weak form of finite element formulations of fully coupled

thermopiezoelectricity has been presented for determining the static and dynamic responses under combined

thermal, electric and mechanical excitation (Gornandt and Gabbert, 2000).

These efforts seem to be strenuous, especially when noting that great benefit could be provided by commercial

finite element analysis software. For instance, efficient numerical tools for fracture mechanics analysis have

been supplied by some of commercial software. Therefore, it would be a wiser choice to develop only pre- or

post-processing procedures based on them, when analyzing the crack problems of thermo—piezoelectric

materials. The starting point of this work is to follow the above approach.

A three-dimensional (3D) formulation of thermopiezoelectric problems is presented for general purpose, making

use of the weak form of thermo-electromechanical equilibrium. The detailed numerical implementation is

outlined with emphasis on the integration with commercial software ABAQUS. Verification examples are

discussed afterwards, including a benchmark problem.

2 Finite Element Formulation of Thermopiezoelectricity

The constitutive relations for a thermopiezoelectric continuum are given by

at; = Ci/klgkl “eta/Etc “ ’111'9
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where cijk[,ekif,li,~,e,~i,pi arc the elastic constants, piezoelectric modules, temperature stress coefficients,

dielectric constants, pyroelectric constants, respectively; O'ii,8if,Di,E,~ denote the stress, strain, electric

displacement, and electric field, respectively; 6 is the temperature change.
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The governing equations for thermopiezoelectricity include three fundamental equations: (1) the equations of

stress equilibrium, (2) the equation‘ of the quasi stationary electric field, and (3) the heat conduction equation.

For a stationary case, the system of differential equations is given by

where K17 are the heat conduction coefficients. A complete description of the field problem includes mechanical,

electric and thermal boundary conditions as well, prescribed at corresponding parts of the boundary 5

u,- =ü‚- an S” O'finj =t_‚- an SJ

(0:? an Sq, Dini=—§ an SD (3)
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where u,- is the mechanical displacement vector, (p is the scalar electric potential, ni is the direction cosine

component, (‘) denotes a prescribed value, hv is the convective heat transfer coefficient, a, and a], mean heat

fluxes, 80 is a stress free reference temperature and 8,, is the environmental temperature.

Adopting the weak form of the thermo-eleetromechanical equilibrium developed by Görnandt and Gabbert

(2000), an appropriate formulation of finite element method (FEM) is developed below based upon ABAQUS

20-node quadratic brick piezoelectric elements C3D20E.

By assuming the shape functions NWNWNQ, all independent field variables agave, within a finite element

(subscript e) can be defined as

ue =Nuuk goe =Nq‚(0k 0,, = NQOk (4)

ge : Buuk Ee z—Bmgok ge = _Beek

where uk,(pk,0k are the unknown nodal displacement vector, nodal electric potential vector, and nodal

temperature vector, respectively; ge denotes the temperature gradient vector. BuzLuNu, B¢=L¢N¢,

B9 =L8N9 and the symbols Lu‚Lq„Le are the differential operators with respect to a global Cartesian

coordinates x, y, z as

Ö/ax O 0 8/8); 0 8/82

LT = 0 a/öy 0 a/öx 8/81 O

0 O 8/32 0 8/3)) d/Bx

LT = LT6 : {B/Bx ö/öy 8/823} (5)

Specifically, for the elements C3D20E, we have

u? = {a u, <6)

T—luk _ uxl My] uzl ”x2 u_\'2 uz2 ' ' ' ”x20 ux'ZO ”120L

(PT =i¢1 €02 (Dzoie (8)

9T = {(91 92 0,0}, (9)

where uxi,u_\.,-,uz,-,(0i,t9,- are the nodal unknowns of node i (=1 to 20) of the element e, and the superscript T

denotes the matrix/vector transpose.
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Then, the finite element approximation of the differential equations for each element can be obtained as

Kfluuk + wagpk _K:90k =

Kämuk —Kf„gak +K:‚06k = f; (10)

Käeek = f9e

The element matrices and vectors are
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Assembling all the element matrices, the global system equations are derived as

Kuu Kuga _ Kufl u fu

Kw —KW Kw (p = fq, (12)

0 0 K99 e f0

One can see from equation (12) that the temperature field could be evaluated firstly and separately under a given

thermal excitation, as

As a second step, the piezoelectric response under combined mechanical, electric and thermal loadings can be

determined by solving the following equations

K (au T KW (0 ftp _ Kwe fa

In equation (14), fl; ‚f; are defined as the generalized external mechanical and electric forces, which include the

influence of temperature stress effect and pyroelectric effects, respectively.

3 The Detailed Implementation of Programming

The programming implementation based upon ABAQUS is presented in this section. Recalling that ABAQUS

provides the capabilities of piezoelectric analysis and thermal analysis, i.e. the static response under combined

mechanical and electric loading as well as temperature field under thermal conditions can be determined. To

obtain the thermopiezoelectric response under thermal excitations, we need only insert the influence of

temperature field into the standard modular of ABAQUS as external forces, as indicated in equation (14).

An example of implementation is illustrated using Gaussian numerical integration scheme of 3X 3X 3 order. The

element matrices in equation (14) can be evaluated as

R1 53r V 73

K39 = j BjiNedv : 2 ZZ (13fo6 detle la W wiijk)
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(15)
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where Ri,Si,T- and w, (i = 1, 2, 3) are the location of integration points and the weights, and det[J] is the
l

determinant of the Jacobian matrix.

Secondly, the matrices K39 and KEG of each element are assembled into global system matrices as

Kue = 2K:e

e

(16)

K„‚6 =2ng

Finally, multiplying these two global matrices by the nodal temperature field yields the external forces due to

thermal effects as

ff. Knee

fq) = KWG
(17)

where the nodal temperature field is the standard output of ABAQUS heat analysis. The calculated nodal

external forces can be inserted into ABAQUS as a standard input. A complete description of the integration

aspects with ABAQUS Version 5.8 is outlined here. A procedure TPESAP (ThermoPiezoElectric Static Analysis

Program) is developed for this purpose, which comprises the following six steps:

Step 1. Perform ABAQUS heat transfer analysis and output the temperature field at nodal points and at Gaussian

integration points.

Step 2. Read the nodal data from Step 1 results file by utilizing ABAQUS/Make execution procedure. ABAQUS

results file is written as a sequential file, and each record has regular format that can be accessed with the utility

routines. Due to this excellent feature, user—written postprocessing programs can be compiled to use the analysis

results file for specific purposes.

Step 3. Calculate the additional external forces in equation (17)

Step 4. Perform the piezoelectric analysis. The piezoelectric elements without thermal options are used. The

calculated forces in Step 3 are included into the ABAQUS input file as concentrated mechanical and electric

forces. Specifically, we use the input commands *CLOAD and *CECHARGE to prescribe concentrated nodal

mechanical forces and electric charges, respectively. The output variables are displacements, electric potential,

stresses, and electric displacements at Gaussian integration points.

Step 5. Calculate the thermopiezoelectric responses. The results of displacements and electric potential in Step 4

are the actual responses under thermal excitations. However, the stresses and electric displacements are not

correct because of the piezoelectric constitutive relations assumed by ABAQUS. Therefore, these values should

be determined from the real constitutive equation of thermopiezoelectricity, i.e. equation (1). To this end, the

results files obtained in Step 1 and Step 4 are postprocessed by using ABAQUS/Make procedure. The actual

thermopiezoelectric responses of the considered FEM model are determined.

Step 6. Perform a second piezoelectric analysis. This step serves for verification purpose. The results of stresses

and electric displacements for the same model as that in step 4 but with thermal options are outputted. The

thermal options include: (1) thermal expansion coefficients of materials, (2) initial temperature field of stress

free state, and (3) current temperature field, which was derived in Step 1.

To achieve a higher numerical precision, the values of output variables at Gaussian integration points are

utilized. However, the nodal averaged values can also be evaluated provided that the related result files are

written in the required format.
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4 Verification Examples

4.1 General Verifications

ABAQUS provides the capabilities of piezoelectric analysis and regular piezoelectric elements with thermal

options. but without pyroelectric consideration. Therefore, the procedure presented in this work can be verified

by ABAQUS to some extent in general. As explained in Section 3, the results of thermal stresses from Step 5

and Step 6 should be identical for any cases. However, the electric responses cannot be checked in the same

manner. This will be illustrated by two examples, specifically.

a) One-element model

A one-element model is considered, where all degrees of freedom (Linux ‚(0) are constrained. The model is

instantaneously heated up to 100°C from initial temperature 0°C. Due to the strong constraint, thermal stresses

and electric displacements are induced. The numerical results of thermal stresses and electric displacements are

found to be identical to the analytical solution, which is known for this special example problem.

Moreover, the results of electric displacements confirm that ABAQUS is unable to deal with pyroelectric effects.

Hence, the postprocessing in Step 5 is necessary to determine the actual thermopiezoelectric responses.

b) Multi—element model

A multi—element model of a cube with partial constraints is developed as a second general test. Firstly, the model

is subjected to a linear temperature field. But, under the selected constraints of degrees of freedom, a non-zero

piezoelectric response is introduced. Secondly, an arbitrary temperature field is applied to this model. The

numerical results of both considered problems show that thermal stresses can be computed correctly.

4.2 A Benchmark Example

A benchmark problem was proposed by Tauchert (1997) for assessing the validity of the plate—theory solution

for piezothermoelastic behavior of hybrid laminates. The displacement and stress distributions of a five—layer

plate subject to specified thermal loading, using the higher-order and classical bending theories, were compared.

This problem has been investigated numerically by Görnandt and Gabbert (2000) and the electric potential and

temperature distributions were presented there. Based upon these results, the procedure proposed in this work

can be examined.

The laminate shown in Figure 1 consists of an isotropic middle layer, two adjacent orthotropic layers (00 and 900

ply-angles) and piezoelectric outer layers. Material properties of each layer used by both investigations are listed

in Table I. Here, aü = cfi, Äkl denotes the coefficients of linear thermal expansion. The five-layer plate has a

length-to-thickness ratio of b/t = 5, each layer is of thickness 0.2t. The laminate is subjected to a sudden

sinusoidal temperature rise 6 = 60 sin(7ry/ b) on the surface 1 : —t/ 2 , while the temperature at the ends (y : O,

b) and on the surface z = t/ 2 were assumed to be constant at 0"C.

    

A

b

Figure l. Laminate Configuration of the Benchmark Problem
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The plate is simply supported at its ends and bounded in the x-direction along its edges to impose plane strain

conditions. The electric potential at' the ends of the piezoelectric layers as well as at the inner surfaces were taken

to be zero, whereas arbitrary distribution of electric potential could occur on the outer surfaces.

Table 1. Material Properties (Görnandt (2001))

isotropic layer: E = E0, v : v0, 06 = 050, K 2 K0

orthotropic layer, 90°: E =90E0, E2 :153 =5E), G12 2G13:4E)a Gz3 =15E)

v12 =vI3 =v23 =v0, or, 200002050, (22 =a3 =0.2a0

K1] =100K‘0, K22 =K33 = K0

Piezoelectric layer: E = E0, v = v0, a = a0, K = K0, 611:622260, 633:1060

P3 = Poad31 26132 =d24 =dos dm =1-4d0

 

Reference values of material constants selected for computations:

E0 : 2000Nmm‘2, v0 = 0.25, do =10“5K", K0 :1.0WK"m"

60:10_8 Fm_1, d0 = 2><1o“°mV“,p0 = 0.25><10'3Cm‘2K‘l

 

The plate with length b = 501nm and thickness t = 10mm was discretized with 20x10><1 C3D20E elements. At

first, the steady—state temperature distribution was obtained. As shown in Figure 2, the present numerical results

agree very well to those by Go'rnandt and Gabbert (2000), G'ornandt (2001), and the analytical solution by

Tauchert (1997) (which is labeled as ‘Magdeburg’ in the figure).
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Figure 2. The Steady-State Temperature Distribution at [0.519, zit]

Secondly, thermopiezoelectric analyses were performed including the derived external forces. The distribution of

the non—dimensional displacement ( w* = wt/aoäobz) in the thickness direction ( 1* = z/t ) at the center section

of the plate = y/b =05) is shown in Figure 3, The analytical solution developed by Tauchert (1997)

neglected piezoelectric effects and pyroelectric effects, thus is an uncoupled one. The numerical solutions for

this case were obtained in Gornandt and Gabbert (2000) (‘uncoupled, Magdeburg’), and by the present procedure

(‘uncoupled, present’). Comparison of these results revealed a very good agreement. A comparison of coupled

results, which include both piezoelectric effects and pyroelectric effects, is shown in Figure 3. The coupled

results by the present procedure are rather close to those by Gornandt and Gabbert (2000). From a point of View

of numerical approximation, these two predictions agree well. Further comparisons of coupled solutions and

uncoupled solutions revealed the importance of considering thermal effects when determining thermov

piezoelectric responses.
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Figure 3. Non-dimensional Transverse Deflection w*[0.5b, z*]

The calculated induced electric potential over the lower piezoelectric layer is shown in Figure 4, where three

piezoelectric analysis results (the dash line, circle symbols) were derived by including piezoelectric effect but

neglecting pyroelectric effect, and two thermo—piezoelectric analysis results (the solid lines) by including both

piezoelectric effect and pyroelectric effect. The standard ABAQUS piezoelectric analysis results agree exactly

with the present piezoelectric results (open circles), while the results by Görnandt and Gabbert (2000) (filled

circles) agree with them as well except the converse sign. The reason might be that a different polarization

direction had been used in Gornandt and Gabbert (2000) and that the zero potential was not unambiguously fixed

in Tauchert (1997). To verify the present numerical procedure, the electric potential difference between the

thermopiezoelectric and piezoelectric analysis results are re-plotted in Figure 5. The excellent agreement implied

the validity of the present procedure. Moreover, the big difference between thermopiezoelectric and piezoelectric

analysis results indicate that the inclusion of pyroelectric effect is extremely important when evaluating the

behavior of thermopiezoelectric structures.

 

250

150 """"""""""" “

   50

 

  

 

e
l
e
c
t
r
i
c
p
o
t
e
n
t
i
a
l

[
V
]

maegfl ‘ r .
(EGGOQGGQ-e-e-e-eeeeo000436-000

 

—50 """""""""""" """""""""""""" ------ -- O piezoelectric, present

’ i ----- -- piezoelectric, ABAQUS

<>—<> thermopiezoelectric, present

0 piezoelectric, Magdeburg

Hthermopiezoelectric, Magdeburg

      

—150 ' - i
O 0.2 0.4 0.6 0.8 1

Iength, y*

Figure 4. The electric potential at [y’k ,—0.5t]

One can see from the above verifications that the procedure TPESAP is well suited and accurate for determining

the static response of thermopiezoelectric structures. The procedure is quite general and can be used for various

other piezoelectric problems. For illustration purpose, a steady-state heat transfer analysis was conducted here.

However, a transient heat analysis and the subsequent thermopiezoelectric analysis, which have been calculated

and checked in Görnandt and Gabbert (2000), can be performed in a similar manner.
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Figure 5. Electric potential difference between thermopiezoelectric and piezoelectric analyses at [32* ,——0.51]

5 Concluding Remarks

The development and application of smart structures and smart composite materials require efficient numerical

tools to evaluate the thermopiezoelectric behavior and stress state. Without loss of benefit provided by

commercial analysis software, a finite element procedure is developed based on ABAQUS in this work. The

actual thermopiezoelectric responses of three-dimensional structures subjected to thermal loadings can be

determined by adopting the proposed procedure TPESAP. Its capability has been demonstrated by various

verification problems. The numerical results for the benchmark problem of a five-layer hybrid plate, which was

proposed by Tauchert (1997) as a yardstick for assessing the thermopiezoelectric analysis, are discussed

extensively. The efficiency and accuracy of this procedure are proved to analyze thermopiezoelectric problems.

Thus, many complicated problems of thermo-piezoelectric structures may be addressed. The advantages of this

procedure have been demonstrated for 3D crack analyses of thermopiezoelectric materials, see Shang (2001).

Moreover, the benchmark example confirmed that the pyroelectric effect could have a significant influence on

the thermopiezoelectric behavior of piezoelectric structures.
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