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A Lagrangian Approach to Electromagnetic Bodies  1

C. Trimarco

A Lagrangian formulation for a deformable and moving electromagnetic body is here proposed in the
framework of the Galilean approximation. As the proper choice of the independent electromagnetic fields for
such a Lagrangian seems to be of basic importance, the first concern is with this choice. In this respect, a
preliminary transformation of the electromagnetic fields in the referential frame of the solid body is suitably
introduced. The resulting fields, which combine with the motion and with the deformation, enter into the
proposed Lagrangian. Eventually, one shows that the related Lagrange equations provide both, the generalised
equations of mechanics and the Maxwell equations, in the material form. Interesting quantities, such as
canonical momenta and stresses, stem naturally from the adopted procedure and are commented hereby. These
quantities are very helpful in describing the behaviour of defective materials.

1    Introduction

A Lagrangian description for electromagnetic fields in vacuum, such as found in several textbooks, is based on a
specific expression, from which the Maxwell equations stem as Lagrange equations (Becker, 1964; Jackson,
1962). In the presence of matter, one can invoke Lorentz and introduce two additional quantities: the polarisation
P and the magnetisation M. These two fields typically pertain to the material body and are specified either by
macroscopic constitutive equations or through a microscopic atomic model. Here, they are viewed as primary
fields that identically vanish outside the region occupied by the body (Becker, 1964; Jackson, 1962; Toupin,
1956; Trimarco, 1994). Based on these quantities, one can assemble a Lagrangian density for a deformable body
at rest as a result of different contributions. Specifically, the resulting Lagrangian can be written as the
superposition of essentially two terms: the Lagrangian of the ‘pure’ fields E and B, such as in a vacuum, with a
term that is due to the presence of the material. The contribution of the Lagrangian due to the presence of the
material splits, in turn, in two additional terms. A first one accounts for the interaction of the polarisation P with
the electric field E at the material point and of the magnetic induction B with the magnetisation M; a second one,
which only includes fields that are identically vanishing outside the body, accounts for the material response
(Eringen and Maugin, 1990; Maugin, 1993; Mindlin, 1972; Toupin, 1956; Trimarco, 1994; Trimarco and
Maugin, 2001). It is worth remarking that such a Lagrangian reduces to the electric enthalpy in a dielectric
material (apart from an unimportant minus sign), if magnetic effects are disregarded (Mindlin, 1972; Toupin,
1956; Trimarco, 1994).
The case of a deformable and moving body needs to be treated with due care. In fact, the Maxwell equations do
not preserve their form in moving bodies. As is known, Maxwell equations are invariant in form with respect to
the Lorentz transformations. Therefore, the natural framework for these equations seems to be the 4-dimensional
Minkowski space, in which the Lorentz transformations are naturally defined (Becker, 1964; Jackson, 1962;
Penfield and Haus, 1967; Sommerfeld, 1952). However, there are cases in which the behaviour of an
electromagnetic body is better understood in the three-dimensional physical space. This is the case for univocally
defined macroscopic quantities such as stresses.
Having this in mind, we first note that in finite deformations a reference configuration has to be introduced. A
corresponding energy density for the material can also be introduced. Thus, it may be convenient to express the
possible Lagrangian as a density per unit volume of the reference configuration. The additional proposal is that
all spatial fields should be transformed in the material referential frame in such a way that the Maxwell equations
are preserved in form in this frame. By assuming that the Lagrangian depends on these transformed fields, its
density per unit volume of the reference configuration is consistently introduced. This being assumed, one
derives the complete set of the Lagrange equations, which include the Maxwell-Lorentz equations in material
form and the constitutive relationships as well. Of course, all equations are coupled to one another as the
electromagnetic fields also depend on the deformation and on the motion. In this context, one of the Lagrange
equations can be interpreted as the balance of the physical momentum, as it stands as a generalisation of the
Cauchy equation for the mechanical momentum.
The  Lagrangian  approach  also  drives  the  attention  to  the  canonical  momenta  that  naturally stem form the
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proposed treatment. These momenta are usually disregarded in the classical description, but can be of interest for
introducing additional quantities, which are physically meaningful: the material (or configurational) forces and
the material momentum (Maugin and Trimarco, 2001; Trimarco and Maugin, 2001). The latter turns out  to
correspond to the crystal momentum in solids (Nelson, 1979; Peierls, 1985). These quantities play a fundamental
role in the description of defective materials (Maugin, 1993; Maugin and Trimarco, 2001; Trimarco and Maugin,
2001).

2    Preliminary Recalls

The Maxwell-Lorentz equations consist of the Maxwell-Faraday equations, which are supplemented by
additional relationships. In a frame at rest and in S.I. units they are (Trimarco and Maugin, 2001)

div D  =  ρe

div B  =  0                   (2.1)
curl E  =  – ∂B/∂ t
curl H  =  je + ∂D/∂ t

D  =  ε0E                           in �3  - �
D  =  ε0E  + P  in �
H  =  (µ0)

-1B in �3 - �
H  =  (µ0)

- 1B – M in �.

ρe and je are the free charge density and the free current density, respectively. �3 represents the Euclidean
physical space, � the region occupied by the body. All fields and physical constants are such as currently
introduced in textbooks (Becker, 1964; Jackson, 1962; Sommerfeld, 1952). Boundary conditions and initial
conditions depend on the specific problem.
Within this framework, the fundamental fields are E, B, P and M, whereas the fields D and H are conceived as a
combination of the former ones.
A further step could be that of reducing the number of the fundamental fields. By taking into account the
equations (2.1)2 and (2.1)3, one can introduce the fields Φ and A instead of E and B

curl A  =  B, (2.2)
(E + ∂A/∂ t) = –∇  Φ.

As the two equations (2.2) do not specify univocally the fields A and Φ, additional conditions are needed. The
gauge conditions solve this indeterminacy (Jackson, 1962; Stratton, 1941; Trimarco and Maugin, 2001).
A possible Lagrangian approach can be based on the following expression

Lc  =  ½ [εo E
2  –  (µ0)

-1 B2]  +  E.P  +  B.M – w, (2.3)

in which the dependence of Lc on E and B is to be understood through Φ and A.
The name of Lagrangian for Lc is justified a posteriori, in the sense that the two remaining Maxwell equations
(2.1)1 and (2.1)4  can be identified with the Lagrange equations such as derived from (2.3), in the absence of
charges and currents. The term w represents the response of the material. As mentioned, should the magnetic
phenomena be disregarded Lc would reduce to the electric enthalpy (Mindlin, 1972; Toupin, 1956).

3    In Moving Frames

For moving bodies, one could be tempted to re-adapt the expression (2.3) by judiciously introducing the
following co-moving fields (Becker, 1964; Eringen and Maugin, 1990; Jackson, 1962; Maugin, 1993; Nelson,
1979; Penfield and Haus, 1967; Schoeller and Thellung, 1992; Sommerfeld, 1952; Stratton, 1941)

�  =  E  +  v ∧  B  and �  =  M  +  v ∧  P, (3.1)

 which are the fields that interact with the material. Eventually one can write

Lc  =  ½ [εo E
2 – (µ0)

-1B2]  +  �.P + �.B  +  ½ρ v2 – w. (3.2)



177

ρ and v are the material density and the physical velocity, respectively. The term w represents the energy due to
the material response.
Unfortunately, this extension is not enough for a consistent description of the deformable and moving body such
as presented in the previous section. One of the difficulties is that the Maxwell equations in moving frames differ
from the classical Maxwell equation. In the Galilean approximation, they are

div D  =  ρe

div B  =  0 (3.3)
curl �. + (∂B /∂ t )conv   =  0

curl �  – (∂D /∂ t )conv   =  je + ρev,

where the time convected derivative (∂a/∂t)conv of a field a, accounts for the time-derivative of its flux across a
moving surface (Becker, 1964; Trimarco and Maugin, 2001)

(∂a/∂ t )conv  =  (∂a/∂ t)  +  curl (a∧ v)  +  v div a. (3.4)

Although the set of equations (3.3) slightly differs from the set of equations (2.1), they are consistent with the
classical Maxwell equations written in the global form.
However, care is needed in the constitutive relationships, even in the trivial case of a vacuum. In fact, the set of
relationships (2.2) is not consistent with the set of equations (3.3). The consistency can be recovered by
introducing the following additional fields and relationships

�  =  εo��, �� =  (µ0)
-1��. (3.5)

� and � are defined as follows:

�  =  D  +  (1/c2) v ∧  H; �  =  B  –  (1/c2) v ∧ E, (3.6)

where (1/c2) ≡ ε0µ0. � and � turn out to represent the electric and the magnetic induction, respectively, in the
moving frame. In addition, the relations (3.6), along with the relations (3.1), represent the full Lorentz
transformations for the fields of interest, in the first order approximation for low velocities with respect to that of
light.
This being remarked, difficulties may arise in developing the variational procedure, such as proposed in the
previous section, basing on the expression (3.2). Nonetheless, the expression (3.2) will be useful for proposing a
possible variational approach in the 3-dimensional space, as we shall see in the subsequent sections.

4    The Material Transformations

The expression (3.2) can still be thought as the proper candidate to represent a Lagrangian. In this respect, one
regards Lc as a density per unit volume of the current configuration of a body �, as the electromagnetic fields are
naturally defined in �. For bodies that suffer finite deformations, a reference configuration V is also introduced,

with respect to which the deformation gradient F = ∇ Rχ is measured. χ: (X, t) → x; X∈ V, x∈ �.  V, � ⊂  E3 ≡
{ Euclidean space} . det F ≡ J >0. As the energy density w depends on F, among the other possible fields, it seems
a natural choice to introduce an energy density W per unit volume of the reference configuration.  If the
deformation is regular enough, the classical relationship W = J w holds true. These remarks suggest to transfer
the spatial Lagrangian Lc in a referential frame and write

L  =  J Lc. (4.1)

In addition, L is required to depend on fields, which have been properly transformed in the referential frame. The
suggested transformation rules are the following

�   =  FT E ; �*  =  FT E   ≡  � + V ∧ �;
���=�JF-1 D ; ���= JF-1 P; (4.2)
��=  JF-1 B ; ��= FT �   ≡  FTH +V∧ �;

�� =  FT M ;� �*  =  FT �   ≡  ��– (V∧ �),
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V = – F-1 v, where v is the physical velocity. Basing on these transformed fields, the Maxwell equations turn out
to preserve their form in the reference frame and read

divR ���= Jρe

divR ���=��0 (4.3)
curlR �   +  (∂�/∂ t) X  =  0
curlR �  –  (∂�/∂ t) X  =  �e.

The electromagnetic potentials φ and A can now be introduced as in the classical treatment, based on the
equations (4.3)2 and (4.3)3. These potentials satisfy the following equations

curlR A = ��� and ��= – φ•  – ∇ R A (4.4)

where  φ• ≡ (∂φ/∂ t) X. Details are found in (Maugin and Trimarco, 2001; Nelson, 1979; Trimarco and Maugin,
2001).

5    The Material Lagrangian

In terms of the material fields φ, A, �, �* and x, such as introduced in the previous section, the expression
(3.2) transforms as follows (Trimarco and Maugin, 2001)

L  =  ½ { �εo J��*.C-1
�*�– (µ0 J)-1

�.C�}����� + �*.�  +                (5.1)
+  ½ρov

2 – W (F, F�, JF-1T
�*, X),

where C ≡ FTF.
The quantities in the expression (5.1) are per unit volume of the reference configuration and represent a specific
form of the following more general Lagrangian L

L (φ, φ•,∇ Rφ, A, A•,∇ R A, �, ��•,∇ R�, �*, �*•,∇ R �*, x, x•, F, X). (5.2)

Accordingly, the related Lagrange equations are

(∂/∂ t) X [∂L /∂φ•] – ∂L /∂φ + divR [∂L /∂ ∇ Rφ]  =  0
(∂/∂ t) X [∂L /∂A•] – ∂L /∂A + divR [∂L /∂ ∇ RA]  =  0
(∂/∂ t) X [∂L /∂ 

��•] – ∂L /∂� + divR [∂L /∂ ∇ R�]  =  0 (5.3)
(∂/∂ t) X [∂L /∂�*•] – ∂L /∂ �* + divR [∂L /∂ ∇ R�*]  =  0
(∂/∂ t) X [∂L /∂x•] – ∂L /∂x + divR [∂L /∂F]  =  0.

As the dependence on ��•,∇ R��, �*•,∇ R�*�is disregarded in the expression of interest (5.1), equations (5.3)3

and (5.3)4 turn out to play the role of the constitutive equations for a large class of classical materials. The
equations (5.3)1 and (5.3)2  correspond to the equations (3.3)1 and (3.3)4. The details are omitted here and can be
found in references (Maugin and Trimarco, 2001; Trimarco, 1994). We only remark that the relationship (2.2),2

slightly changes in the present description, as one of the results is the following:

�  =  εo C
-���* + �. (5.4)

Notice that the inverse deformation tensor C-1 plays the role of a metric tensor in the formula (4.4). In the
presence of a material, this tensor unexpectedly affects a relationship, such as (2.2)1, that typically pertain to a
vacuum. Of course, it is tacitly understood that the expression (4.4) reduces to (2.2)1 in the absence of a material,
as a notion such as deformation of a vacuum is meaningless in this context. A similar remark is concerned with
the field � (Trimarco and Maugin, 2001).
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6    Stresses and Momenta

The equation (5.3)5 can be interpreted as a generalisation of the mechanical balance of momentum. Thus, the
physical momentum is identified with the quantity (∂L /∂x•), which is a density per unit volume V. Accordingly,
the quantity [– (∂L /∂F)] is identified with a Piola-Kirchhoff (like) stress (Eringen and Maugin, 1990; Maugin,
1993; Nelson, 1979; Toupin, 1956; Trimarco and Maugin, 2001; Truesdell and Toupin, 1960). Hence, the actual
electromagnetic stress is a Cauchy-like stress that is given by

tM

em = – J-1 (∂L/∂F)FT  =   –½ [εoE
2 +  (µ0

–1)B2 +  2(M + v∧ P).B] I +
(6.1)

+ [εoE⊗ E + (µ0

–1)B⊗ B] – εoE∧ B⊗ v  +  J-1(∂W/∂F)FT +  (E+ v∧ B)⊗ P  – (M + v∧ P) ⊗ B.

The corresponding physical momentum is

p = J-1 (∂L /∂x•) = J-1(∂L/∂v) = ρ v + εoE ∧  B. (6.2)

It is worth noting that the quantity (∂L /∂x•) also represents one of the canonical momenta that are introduced by
the Lagrangian (6.1) or (6.2). With specific reference to the expression (6.1), a second canonical momentum
appears, namely the quantity (∂L /∂A •). Along with these canonical momenta one can envisage other canonical
quantities, which are the argument of the divergence terms in the set of equations (6.3). A proper combination of
these quantities can be shown to play a role in the theory of material inhomogeneities. In fact, they provide the
form for the material momentum and of the material or configurational stress. Here below we only report the
final formulas for these two quantities, which are discussed in (Trimarco and Maugin, 2001).
The configurational stress, or material stress, or also Eshelby stress is governed by the following formula:

b  =  – L  I + FT (∂L/∂F)  +  (∇ Rφ)⊗ (∂L /∂∇ Rφ) + (∇ RA)T(∂L /∂∇ RA), (6.3)

The corresponding material momentum is settled through a similar procedure and is expressed by the following
formula:

�  =  – F T (∂L /∂v)  –  [(∇ R A)] T  (∂L /∂A�•). (6.4)

In the present case, this formula leads to the following result:

�  =  ρ C V + P ∧  B. (6.5)

7    Final Comment

The Lagrangian approach not only provides in a natural way the stress and the momentum, whose form is
otherwise controversial. It also naturally introduces canonical momenta and stresses. These, in turn, address to
the notion of material stress and material momentum. These quantities account for the behaviour of
inhomogeneous materials. In fact, they enter a material balance law, which extends the Eshelby balance law for
material forces in defective elastic materials (Maugin, 1993; Maugin and Trimarco, 2001; Trimarco and Maugin,
2001). Isolated or distributed defects in a material can be regarded as inhomogeneities of the material. In this
view, one can say that the inhomogeneous material response generates a material force. This force does not
explicitly appear in the classical balance equations. It does appear explicitly if one appeals to a non-classical
variational procedure. In this procedure x is conceived as the ‘domain variable’, whereas X = X (x, t) (i.e. the
inverse motion) represents the varying field, along with the electromagnetic fields. Hence, the explicit
dependence of the Lagrangian on X, which expresses the presence of the inhomogeneity, affects the proposed
non-classical variation, contrary to the case of the classical variational approach. The notion of material
momentum and material stress, along with the related balance law, stem straightforwardly in this non-classical
framework. Details on this novel variational procedure can be found in the references (Maugin, 1993; Maugin
and Trimarco, 2001; Trimarco and Maugin, 2001). It is worth remarking that the material momentum is also
known as quasi-momentum, crystal momentum or pseudomomentum in the physics literature. In this context, the
term P∧ B, in the formula (6.5), is candidate to represent the pseudomomentum of light in a dielectric material.
The discussion of this topic, though very appealing, is beyond the aim of the present paper. The interested reader
is referred to the proper literature (Nelson, 1979; Peierls, 1985; Schoeller and Thellung, 1992).
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