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Short Communication 
The "Rail-Unloading" Problem 

F.D. Fischer* ,W. Schreiner 

The "Rail-Unloading" Problem deals with a heavy beam of infinite or semi-infinite length, which is placed on 
both sides of a supporting point on planes with different levels. Analytical expressions for the contact lengths on 
both sides of the supporting point as well as for the maximum bending moment are presented. 

1  Introduction 

More than ten years ago the group of authors published a paper, Fischer et al. (1989), dealing with the uplift of a 
heavy, flexible and extensionable strip from the ground related to the problem of the uplift of a bottom plate of a 
container exerted by an earthquake. Recently another fine example appeared which allows for the application of 
the concept from Fischer et al. (1989), namely the unloading of a very long rail from a wagon, represented by a 
beam with stiffness EJ, E Young's modulus, J moment of inertia, and the weight q  per unit length. Let us 
consider the following configuration, see Fig. 1. 

 
Figure 1: Schematic Representation of the "Mounting" Condition and the Definitions. 

 
The rail is lifted from a wagon platform by an amount of 

�
h  on the left side. On the right side the rail is placed 

on the ground for later mounting by lowering it by an amount of rh . The main goal is to be safe from 
plastification of the rail, which makes it necessary to know the maximum bending moment in the rail. The rail 
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itself can be assumed as an infinitely long, heavy beam. Since finally an analytical expression can be presented 
for the maximum bending moment and its location, this solution is of interest for other mechanical applications, 
too. The authors are not aware of any similar solution in the open literature. 
 
Defining the system as a two span bending beam with the left span length 

�
L  and the right span rL , the 

integration of the differential equations for beam bending 
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makes it necessary to determine two sets of four integration constants, one for the left span and one for the right 
span. The following geometrical boundary conditions are available 
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Since no jump in the moment ( )xM  must occur at 0xx r ==

�
, a dynamic boundary condition follows as 
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These eight boundary conditions allow for the determination of the eigth integration constants. However, two 
unknown quantities exist, the span lengths 

�
L , rL . Therefore, two further boundary conditions, the contact 

conditions, must be employed, being 
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Relation (2.6) means that the rail is placed on the platform to the left and on the ground to the rigth without any 
jump in the curvature. Therefore, no bending moment does exist in the contact points, ( ) ( ) 0LMLM rr ==

��
. 

Applying the equilibrium equations leads to 
 

 
L

M
2
LqV o−= ,     (3.1) 

 ( ) 2qxMVxxM 2
o −+= .     (3.2) 

 
Relations (3.1), (3.2) are valid for the left span (label " � ") and the right span (label "r"). 

2  Problem Solution 

Integration of the differential equation (1) with boundary conditions (2.1), (2.2) yields, for the right side, 
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Equation (4) is valid also for the left part substituting the label " r " by " � ". Insertion of (4) together with (3) into 
the boundary condition (2.4) yields 
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Now the remaining boundary condition (2.3) can be verified from (4) by inserting (3) and (5) yielding finally 
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By introducing rhh

�
=χ , 10 ≤χ≤ , as a known quantity, and rLL

�
=λ  as an unknown quantity, equating 

(6.1) and (6.2) delivers due to the homogeneity in h and L 
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Some analysis allows to solve this nonlinear polynomial relation as 
 
 ( ) 10,21038.047833.013 2 ≤χ≤χ−χ+−=λ .     (7.2) 
 
Note that 1=λ  for 1=χ . 
 
Reformulating (6.1) with λ  allows to express rL  as 
 
 ( ) ( )( )[ ] 4141

rr 12172qhEJL λ−λ+= ,     (8.1) 
 rLL λ=

�
.     (8.2) 

 

The condition for the local maximum bending moment max,rM , 0
dx
dM

r

r = , delivers with (3.1), (3.2) 
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and with (5), (8.1) 
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The suffix "m" in m

max,rM  refers to the mounting condition. 
 
Comparing m

max,rM  with m
oM , which follows from (5) and (8.1) as 
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yields that the maximum absolute value of the bending moment m

oM  at the support position is always larger than 

the field moment m
max,rM . 

 
A further bending problem may occur at the beginning of the unloading process. The left part of the rail remains 
as depicted in Figure 1. However, the right part of the rail bends down just before touching the ground. This 
situation is denoted as unloading condition with a suffix "u". At rr Lx =  the contact condition (2.6) remains due 
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to no bending moment at the right end. However, the boundary condition 0
dx
dw
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 is no longer valid and 

must be replaced by the condition for no supporting force, 0
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The right part of the rail is a beam, clamped at 0xr =  with the rotation 
0xr

r

r
dx
dw

=

 at 0xr =  and free at rr Lx = , 

yielding 
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Considering the left half of the rail, differentiation of (4) and inserting of (3.1) yield 
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Engaging the transition condition (2.4) after inserting of (11) and (12.2) we obtain again a relation for 

ru LL
�

=λ  in the unloading case similar to (7.1), namely 
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Some analysis allows again to solve this nonlinear polynomial relation as 
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u
oM  follows as 
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Figure 2: Dimensionless Moments m
o

u
o M~,M~  as a Function of the Ratio of the Unloading Levels rhh

�
=χ . 

3  Numerical Check 

One may ask the question wether the application of the technical bending theory of beams, assuming small 
strains and small curvatures, can be justified. Since we look only for an elastic solution, small strains are assured. 
Therefore, a numerical check was run by applying COSMOS/M contact facilities (www.cosmosm.com), and 
using finite beam elements allowing for large displacements and rotations. 
 

We check the case for 1=λ  yielding ( ) 21
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2
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This solution free rL~  was verified by finite element studies. Accurate results for the concept at hand can be 

found for values of rh
~

 up to 0.1. For a UIC 60 rail ( ) 3/1q/EJ  amounts to 21.791 mm. In conclusion, the concept 
at hand can be used for rh  up to 2,200 mm, which means for any practical configuration. 
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