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Large axisyinmetric deflections ofthih elastic ninth-layered shells of revolution are studied. By using a variational

principle for the three—dimensional non-linearly elastic body, the constitutive relationsfor a two-dimensional shell

theory are derived. By using asymptotic expansions the problem of the shell deformations under axialforce is

solved. The dependence of the limiting point on the shell geometry and on the elastic parameters is obtained. As

an example the two—layered shell is examined.

1 Introduction

The system of equations of the two-dimensional shell theory of Kirchhoff—Love type contains three kinds of

relations: the geometrical relations, the equilibrium equations, and the constitutive relations between the reference

shell surface deformations and the stress resultants and the stress couples. The relations of the first and of the

second kind may be written in the exact form although often their approximate (for example linear) versions are

used. Only the constitutive relations introduce an error in the shell theory.

The commonly used constitutive relations of the KirchhoftLLove type for the axisymmetric deformations of shells

of revolution are

T,- : K(i—:,- + uej) ill/I,- = D074 + um) with i,j = 1, 2, i 7€ j (I)

where T5 and My are the stress reSultants and the stress couples, er and it,- are the stretching and the bending

deformations of the midsurface, K and D are the stiffness coefficients.

For most linear problems the relative error Ö of relations (1) is of the order of the relative shell thickness h:

6 : 0(li) (see Novozhilov and Finkelshtcin, 1943). The following investigations (Goldenweizer, 1976) support

this estimation for the stress states if their variation is not very large. In nonlinear problems the error c5 depends on

the deformation level a = max{|e,-jj}, where am. are the components of the deformation Green tensor. Analysis

shows that for e = 0(h) the estimation ö : 0(h) is valid. If the deformation level 5 is larger, then the

more general estimation 5 N max{h,e} for the error of relations (1) is obtained. (see Pietraszkiewicz, 1989:

Axelrad, 2000). Tovstik (1997b) described the problem of the axial compression of a shell of revolution with the

comparativelylargedeformation 5 ~ For this problem relations (1) lead to the error 6 ~ In further papers

Tovstik (1996), Tovstik (1997a) presented more general constitutive relations than (1) for which in this problem

the estimation 6 w It holds. In these papers the constitutive relations are feund for an isotropic homogeneous

non-linearly elastic material.

The main objective of this paper is to derive constitutive relations for a two-dimensional theory of thin multi—

layered shells made of a non-linearly elastic material. By these relations the stress resultants and the stress couples

are expressed through deformations of the shell reference surface. Here the material is again supposed to be

isotropic, but its elastic properties depend on the normal to the reference surface coordinate. In partial cases

we get niulti-layered shells. By asymptotic simplification of the three-dimensional elastic potential energy, a

two-dimensional expression is constructed, and the stress resultants and the stress couples are found as partial

derivatives of this two-dimensional elastic energy.

The compression of a shell with non-negative Gaussian curvature under axial load applied to the shell edges

is studied. lithe shell edge is free in radial direction then it loses stability by axisymmetric deformation and the

critical load may be found as a limitpoint of the curve “force— axial deflection” (see Tovstik, 1997' a; Tovstik, 1999).

The same type of the stability loss under axial compression takes place for shells of revolution, the generatrix of
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which has an angle (see Tovstik, 1999). In these cases, a large stretching and bending axisymmetric deformations

are localized near the shell edge or near the angle. The method of asymptotic expansions of the solution of the

singularly perturbed system of ordinary differential equations into powers of a small parameter ‚u connected with

the relative shell thickness is used. For the homogeneous shell this problem was solved by Tovstik (1997a, 1999').

Here the approximate expression of the critical force for the multi-layered shell is found, and its dependence on

the shell geometry and on the elastic parameters is examined. As an example a two-layered shell of revolution

consisting of two conic shells is studied.

2 The Axisymmetric Deformation of the Shell

For the non-homogeneous shell the neutral surface does not exist in all cases, and we introduce some surface of

revolution as a reference surface. Let this surface be described by the following relations (see Figure l)

f d

To : 713(80} Ho = 90(80) t6 : COS90 U E E. (2)

Here .90 is the length of generatrix, 1-0 is the distance between the current point of the reference surface and the

axis of symmetry, 60 is the angle between the shell normal and the axis. The main radii of curvature R10 and R20

of the neutral surface before the deformation are obtained from

  

   

l 1 511190

—-— = 6’ and —~ : —.
3

R10 0 R20 To ( )

We denote the same values after the deformation as r, 6, R1, R2. Formulas similar to (2) and (3) are valid.

Figure 1. Shell of Revolution before Deformation Figure 2. Displacements after Deformation

The stretching deformations of the reference surface 51 and a; and the changes of its curvature rel and 5-3 are.

7.

512.5" — l and 52 = — 1 with r’ = (1 +51)c059

o

'4

H _ 1 1 (9’ 6, h 1 1 sinG sin 90 [ )
1_———: e ‘iz—-——-= —

R1 Rio 1 + 81 0 2 Ra Rae T To

From relations (3) and (4) it follows that

(71352), = (1 + 51) cost? — cos 90 (5)

In the three-dimensional body occupied by the shell before the deformation, we introduce the orthogonal system of

curvilinear co-ordinates q1 = so, (12 = (,0, (13 = z, where (p is the angle in a circular direction, and z is the distance

from the current point to the reference surface. Let 51 S so g 52, 0 g (p 3 2a, —h1 g z S h2 (h1 + fig 2 It).

The square of the distance between infinitely close points is
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with2 = Hfaq; a ggidqidqj H1 = 1+ 29;, H2 : m + zsin so H3 = 1 (s)

where H,- are Lame’s coefficients, and 92.,- are the covariant componean of the metric tensor before the deformation.

To describe the position of the point (so, (p, 2) after the deformation, we use mobile Cartesian co-ordinates with

the unit vectors i1, i2, i3, which are connected to the deformed reference surface. The point (so, 99, 2) position

after the deformation is described by the vector (see Figure 2)

R = R0 + R1 with R1 =i1'tl.+i3(z + w) (7)

The functions u{so,z) and w(so, 2) describe the shear deformation and the stretching normal to the reference

surface correspondingly. If the Kirchhoff—Lovehypotheses are valid then u(sg, z) = w(su, z) E 0.

The covariant components of the metric tensor after the deformation, gij, are the following

(SFR

= R‘ - 'th R1 2gig, ,RJ W1 öqi

 

We find the components 5,-3- of the CauchyeGreen deformation tensor E from

o
— gij Z 2ifgl‘ljt‘5ij.

For an axisymmetric deformation €12 : 5-23 = O.

For convenience in the asymptotic analysis we go to dimensionless variables (with the sign ‘} by

{1"7 n), s, so, 2, h} : Rn {'f', 'Fo‚ 5', s0, 2', h} (9)

where R0 is the shell typical scale and h is the shot] thickness. Then we omit the sign ‘. We study the state of strong

shell bending, which is accompanied by comparatively large deformations, and accept the same assumptions about

the stress-strain state as in {Tovstik, 1996)

Z N M2 {5.5, 611} N ‚LL €13 N [12 ’11] N113 u N ‚Ltd

{13,}; 6'0, 9, e2} N 1 {8’,:;1}N if] {96, r5} = 0(1)

at! y (10)
—— ~ — with y = {5,- s;- 6’. u, w}
880 ‚u 7 J? t

at ' .

ö—J ~ With y = {El-j, u, w} ‚u, 2 CD h

z ‚u

where p, is a small parameter, and the constant (:0 N 1 will be chosen later. We put the sign ~ between the values

of the same asymptotic order, and the sign O(-) gives the upper estitnation. We remind that the strain a w p, is

comparatively large, because for example- strains 5 ~ ,a'z correspond to the critical stresses of the cylindrical shell

buckling under axial compression {Tovstik= and Smirnov, 2001).

In the following expressions for strains EM we keep the terms of the orders ‚u and ‚u? and omit the terms of the

order 0([13)
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51] = 51+(51 + wag/2 + (z + "um-1+ 0(tt3) with 71: 6’ f 66

613 = (u: + w')/2 + 0W3)

c039 e c0560 (11)

52-; 2 62 + 83/2 + (z + my"; + 0(u3) With T2 Z TD

633 * ”w: +wg/2 + 00153)

where n and 1-3 are the approximate expressions for changes of curvature.

3 The Asymptotic Simplification of the Potential Energy

The shell material is supposed to be elastic and isotropic. Let the potential energy density per unit volume be-

fore the deformation (1)01, [2, I3) be given as a function of invariants of the deformation tensor E. We use the

following invariants

f1 = 52-1- : 19+ €33 with I? = 511-5-522

I3=Eijeji:IS+E§3+0(pfi) with [325%14-632 (12)

[3 z EijEijki = [g + 833 + OULJ‘) with IE : 5?] + 532

Here we take into account that 512 = 523 z 0 and 513 N #2.

The stresses Uij are equal to

8‘1)

2 :3) : A151-3- + A2515 + Ägsikakj with AA. z k—. ‚k: = 1,2J 3 (13)

„ü

 

DU

81k

where 613; is the Kronecker’s symbol.

For the 5-constants Mindiin elasticity theory

EU E

G:— (14)
1 .

——_—
(I) _ [2 I. ‚I3 ‚II. *I A=2A1+G2+o11+a212+033 11 (1+y)(1—2z/) 2(].+y)

we get

‚.41 = Ä11+ 3ct'1f12—i— 05212 = 2G + 20:21] = 30:3 (15)

Here E is Young’s modulus and 0:3- are the additional elastic constants taking into account the non—linear depen~

dence of stresses on strains. For the aims of the asymptotic analysis we suppose that the order of the constants (13-

does not essentially exceed E. The potential (14) gives the general form of the square dependence of stresses on

strains. If m : Dig : a3 = Ü then relations (13) lead to Hooke’s law.

In contradistinction to Tovstik {1996), we suppose new that all elastic constants

(A, G, E, ‚v, a1, a2, a3) depend piecewise continuously on z.

The potential energy H of the elastic deformations is equal to

.52 ‚'52

H : 77/ (I) mum} dz deg (16)

"1 —ilr1
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T0 deliver the constitutive relations we suppose that body forces and external surface forces are absent. Then it is

possible to find the equilibrium state by minimizing the potential energy. After minimizing the potential density (I)

in we obtain

    

533 = —1 V I? + Übrig) and min O : (1)0(511, Egg) + 0(Eit4)

— 1/ 533

E 3 3 . 0 0 o

‘T’Ü 2 ((1 * V)JT-9+V(110) ) +51 ([10) +fi2 1112 +133 {3 (17}

1—2 3' 21——2 0—3“) 1w2

[31 = ( 1/) 611+” { 9 ma‘ y a“ fig = vom 53 = a3
(1 ~11)” 1— 1/

After integrating the relation ö‘w/ö‘z ä 533 + 0042) we find

w:_/ 1yy(81+52+z(1'1+712))dZ+O(‚LL4) (18)
Ü _

Now due to relations (10) and (18) the strains 511 and 52—; are the functions of 5 main arguments (51, 52, T1, 73, 2).

We introduce the function

I142

‘I’(E1,53‚T1‚'Tg)=/ (I30(51‚€g‚71‚m,z)dz (19)

—f?‚1

Calculations of integral (19) in z due to relations (17), (10} and (18) lead to the following relation

1 ‘J '1 <3 V n I

\I1 : ä [1(0(EI+E§+ 8:13+E§)+ KG (25152 + 5ng + 8153+

1(1((251+35'f)71 + (252+35§)Tg) + Kf’((252+5§+25152)n + (251+sf+25152)7"2)+

K2((I + 350712 + (1 + 352)T.22)+K§’(2717=3(1 + 51+ 52) + 5273 + 5173H

[(30-13 + + [1317-1722 + Tng)] _

[LÜÜ(E1T1+ £272) + [130(521'1 + 51713) + 1510(le + + 2L'f07'1'rg] (51+ 52)"

  

(20)
[1501(817'1 Jr 5-372) + L51 (527-1 + 511'2) + L11 (7'13 —t— + 2L'f07'17'2] (71 + 7-2)+

N10{€1 +82)3 + 3N11(€1+52)2(T1+ T2) + 3N12(E1+E2)(T1 +712)2 Jr N13(7‘1 + Ta)3+

N20(E1+ 62X6? + + N21((T1+ GEHE? + + 2(517‘1 + £3713)(E1 + €2))+

N32((81+ 52)(TE + + 2(51T1+ Eg7‘g)(T1 + 773)) Jr N23(7'1+ 77;)(7‘3 + T3}?

Made? + €53} + 3N31(8'f1'1 + 5313) + 31V32{51T12+ £273?) + N33(T13 + 7.3)

where die elastic coefficients are the following

‚’Lg hI
2 E H

A„—/ 2dz Kg: ”zde
—h,11—V fihllwl/

J‘Lg ‚ 2 It w NEzm 2/2" 2 bus” " Hz”
L:f—:—/ dzdz L"=/—-,—~/———dzd 21171'” —hl l _ ( D 1__. U j Tn'il l _hl _ 0 l __ V z (

hg

Nmn = ßm z" dz with m, n = O, l, 2, 3

—h1
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We remind that the elastic constants E, u, ßm depend on 2. If h1 = h2 = h/ 2 and all these constants are even

then we call it a shell with symmetric cross-section. For such a shell some of the coefficients (21) vanish

K1 = Kr 2 K3 = K; = Loo 2 L50 z Ln = Ln = Nm.i = : 0 with m = .1, 2,3 (22)

4 The Constitutive Relations

The stress resultants T1 and T2 and the stress couples maybe found as partial derivatives of the function @(51 , 53, in,

by its arguments

6‘11 at!

: — ’1':

8€]; ß j

= — with = 1,2 (23)

' (973
Tj

where the stress resultants and the stress couples are related to the unit length before deformation. We get from

equations (23) and (20) the following

T1 2 [(051 + [(552 + [(171 + 11/1111") + T; + (14,63)

T2 : 16059 + K551 + [(172 + Ki’n + T; + manna?)

(24)

N11 2 K151+ [(vng + [(27] + Itfg’f‘g + +O(EÜh-2‚LL3)

A12 : K152 + Kfel + K272 + K571 + M}; + O{th2‚u‚3)

where T; = 0(Eghp2) and M = 0(E0h3) (j : 1,2) depend non-linearly on the stretching and bending

deformations (5:,- and 13-) of the reference surface and are equal to

Tl" = 0,15? + (‚L-36‘182 + ugeä + 3451?] + (‚1’58ng + @5311 + (275273 + (Lng + (1,97172 + ((101532

, (25)
‚ ‘ ')

- l

341*: h15f + biz-€152 + (1355 + 546171 + 55517'2 + 555271 + 1175272 + (Jng + 597'173 + (31on

a1 = 3(11'0/2 + N10 + N30 + N30) (‚62 : 20.3 : Ifg + 6N10 + 2N20

a4 = 2151 z 3K1ä 21500 + 6(N11 + N21+N31) 0L5 Z 253 = Ki) -' 21159 + 6N11+ 2N21

as = Cl? = (52 = Ki; — Loo — L50 + 6N11+ 2Na1 Obs=b4/2=3K2/2—L10—Loi+3(N12+N22+N32)

rrg=b5=b7=I{§’e2L’fO—Lm —L51 + 6N12 + 2Ngg am = (JG/2 : {Cf/2 — L10 —— L51 + 3N12 + N22

b3 : 3(K3/‘2 — [111+ N13 + N23 + Nag) (Jg = 21310 = K3 — 2L11— all/{1+ 6N13 + 2N23

(26)

Function III is symmetric with respect to indices 1 and 2. So in order to find T; and M; in relations (24) it is

enough to replace in equations (25) 51 and r] by 52 and m; respectively and vice versa. In equations (24), E0 is

a scale of Young’s modulus, and the relative error of the constitutive relations (24) is of the order of p? or of the

order of the relative shell thickness Iii/R. Non-linear terms in equations (24) are of the order of ‚u compared to the

linear ones. Due to equations (21) the following estimations are valid

{K07 [(520512 G2: ü3}N th- {1(331(g7a87a938105b43 b5, b5, 67}~ E0113 (27)

{Ich Ki”, n.4, a5, a6, a7, b1, b2, b3} : 0(30112) {K3, Kg, {28, b9, am} : 0(E0h‘l) (28)
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For shells with symmetric cross-section the coefficients in the left sides of estimations (28) are equal to zero.

We choose the reference surface so that K1 2 0. If Poisson‘s ratio u =const, then simultaneously Kf’ : 0. In

this case as for the symmetric cross-section the reference surface is the neutral surface and according to (24) in the

linear approximation, stretching and bending deformations of the reference surface act independently.

Relations (24) were obtained by assuming that external surface and body forces are absent. As in Tovstik (1997a)

it can be verified that relations (2.4) are valid with the same residual terms also in the presence of external forces of

large enough magnitude. As a rule in the case of compression, the. shell buckling takes place earlier than relations

(24) become incorrect.

If all elastic constants in the potential energy (14) do not depend on 2: then relations (24) coincide exactly with

those obtained in Tovstik (1996).

5 The Case of Axial Compression

Two-dimensional equilibrium equations in projections on the tangent and on the normal to the reference surface

after deformation have the form

(71)le — T2 COS 9 + TUBIQl + T'g'p1 : 0

(7'0Q])’ — T2 Sim? — TOH’Tl + mpg = Ü (‘29)

(Tull/[1)" — Air-3 COSÜ -'i”o(1-I- €1)Q1 = O

where C21 is the shear stress resultant, and 331, pg are projections of the external body forces and surface loads per

unit area of the reference surface before deformation. We introduce the projections U and V of the stress resultants

on the radial and on the axial directions respectively

T1 = Ucoslfi»l +Vsir16 Q1 z Usintil — VcosßJ (30)

Then the first two equations (29) assume the form

{r-UV)' + 713(3)] sing — p3 cos Ei) : O (7'GUJ’ i T2 + r0(p1eosl9 — 3% Sim?) : 0

In the case of compression the estimation T1 = WEG/2.)?) is valid because the critical value of T1 (as a limit

point) is of the same order. From this estimation it follows that

_ K5

‘ K0

 

E] = —V[)E;] + Oma) with v0 (32)

Now taking into account relations (32), K1 : Ü and 72 : 0(1) we rewrite and simplify relations (24) with an

exactness which is sufficient for further expansions

T1 = Kg{81 + 1/052) + T1 + 0(E0hrr3) T1 : Kng + 0,1525 + 92527-1 + (337-12

T2 : Kgfl — 1238-; + Kle + T2 + 0(Eghp3) T2 = 110(T1 — Kf’T-g) + C483 + 655271 + car?

ill/{1 : Kfäg + 11'371 + M’l + 0(Egh2ß3) 1W1 = 1(ng + C753 + (585271 + C:ng (33)

M2 : _y0Kf52 + 1571+ Ml + 0(E0h2p3) 1171-3 2 K272 + (‚106% + 6115271 + 012712

297



C] : Väal — 1105.52 + a3 (:2 = aß 7 1/094 C3 = as

. '7

(1.; 2 (1— Ua)[r11(1 + 1/0 + Uä) f 1100552 + C15 21/5041" its — 1/0015 + at?) £55 I (‚L10 — 1/0653

(:7 = V5711 — VDbQ + 53 C3 = bis "- U054 Cg 2133

C310 Z Öl - 1/052 + Väbs L'111 2 be — 1/057 C12 = Z910

where and nfrj are the comparatively small terms containing geometrical as well as physical non-linearities.

6 The Asymptotic Expansions

Let the axial force P be applied to the shell edges and the external body forces and surface loads be absent

(p1 = pg 2 O). We introduce dimensionless variables by means of the following formuias

 

{81, 62} t 145?, 63} {T1‚ Q1, U, V} = Krill {T102 i: U”: V0} (34)

T2 : Kg;pr {Mh 11/12}: [{3p3{hff’, flag}

with

4. K2 4 2 a 2 —
p. : w = cuh KO = K0(l — 1/0) (3:1)

Kn

In this way the constant c0 in relation (10) for ‚u is chosen. By the symbol 0 the dimensionless variables are

marked. Substitutions (34) are introduced in such a manner that these. variables are of the order 1. Later we shall

omit the symbol 0 . Then the system of equations (5), {29), (31) for variables

 

V, U, 52, M1, 6' (36)

assumes the form

(7101/), = O)

J _ 2 „ 2 T?,u(1"0U) —(1—V1)82+V11L-[1+#f1+0(,u) f1: * 2

K011.

‚LL(7-053)’ = (1 w pit/082) (3059 — cos 90, (3T)

;.t(r'01ii'1)'= ro(1 — ;1‚V052)(Usin3 — V cos 6) + ‚uj'g + 0(1)?) f3 2 Mg cost},

I _ I) . I 11:11

‚ufi —]V[1—v152+‚u‚f4+0(;r) jLL:60g—f

2

Here f1, f3, f4 are functions of 7-1. After excluding T1 by the relation ‚an x M] — 12152 we express these functions

through variables (36) and obtain the following formulas

f1 = l'/0(U COSÜ + V Sin + (1515€ + dzé'gflrirl +

f3 = (VQJMH — U1 (1/0 + V2)Eg) C086

f4 = — 1/2773 i (178% — dSE‘lA/[l *
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o .

c4 1/1 C5 1/1“ij C5 2V1Cfi d) Ce

         

I : — l = — P b = _—

r] Kg K511} Kati“ (A Kgrr Baird Kati“

2 2 - .
‚u (:7 1/163 1/109 cs Zulco f co

L = — — d t — — q do -— , ‚

r: K2 K2 Kgp‘l S Kg [fa/r q Rng

"’ V K“ K)”

yo — A0 K] - H—l M3 = “ (40)

Kg

_ U :T _

K0 1 new «HQ; [(2

All functions fj- and constants dj and 1/1— are of the order of 1. For the shell with symmetric cross-section y-l z

do 2 d7 : do : 0.

7 Formulation of the Boundary Value Problem

As an example we study a compound shell of revolution consisting of two equal conic shells (see Figure 3 where

the shell generatrix is shown). For this shell 6o 2 const and

To = 1— Iso| cosä’o for |so| S 31 (41)

As the shell scale R in relations (9) we take the cone radius at so = 0. The shell edges so = $81 are supposed to

be clamped. Due to symmetry of the problem we will study only the part —31 g so g 0 of the shell and we will

satisfy the boundary conditions

 

52:0 6:80 at 50=—31

(42)
U : Ü 6? : Ho at so — 0

E _

S0 = 0

SI

Figure 3. Generatrix of the Compound Shell

The first of equations (37) gives

f C 2 r "

l : T— P : 22er Iroo‘C (43)

0

where P is the axial force (P < U for compression) and we look for its limit value. At ‚u —> 0 system (37) is a

singularly perturbed one. Far from the edges so = O and so = —51 the membrane stress state has

. 0 cos 90 LlopC .
Um : I Err; = _ A,nt 2 O C .3 m = 2 A

To 311190 2 ro sinGo 1 ( fl ) H 80 + 0(C'u ) L44)
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In the neighborhood of the generatrix angle so = 0 estimations (10) are valid and system (37) may he used. lt is

connected with the fact that the shell is free in the radial direction (U : 0). Near the other edge so : —.31 the edge

effect appears also but here due to the condition 52 = 0 the stresses are n times smaller than near the edge .50 = 0.

8 Asymptotic Solution of System (37)

We write system (37) in vector form

tux! = F(x1507 C: x : {U1 5'2: M17 6}:

perform the scale extension 5 = sG/‚u of the independent variable and seek its solution in the form

x = ‚(0(5) + „(1(5) + our?) C = C0 +ii01+ an?) (46)

The accuracy of System (37) enables us to find explicitly written terms of the series (46). Taking account of the fact

that ro(so) : 1 + pf cos 60 and equating coefficients of [to in system (37), we obtain in the zeroth approximation

the following nonlinear system

it” = F0 = F(x°‚ o, CO, 0) (47)

Or

U0 : (1 — Vf)53+111MP‚

s'g 2 cos 60 7 cos 90,

M10 = U0 sintSlO — CO c0360,

60 : A410— 1453

The boundary conditions at f —> —oo confirm the fact that solution (46) approaches the membrane solution (44).

For the zeroth approximation we get the following boundary conditions

00 9
Dow {52,1%}40 (SID—>90 at g—i—oo

smö’g

U020 90:90 at 5:0

Here a dot denotes a derivative with respect to E. If 1/1 : 0 system (48) coincides with that studied in Kriegsmann

and Lange (1980), Evkin and Korovaitsev (1992), and Tovstik (1997b).

In the first approximation we get the linear system

. . ÖFÜ 5F 8F 5F
1 : L 1 + .rtl L : — : — — 1 "-X (fix a M 1 3X0 g 8805+ öCC‘ + a” (

01‘
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U1 2(1 — Ullafié + 1/1 erll + 91

= —91 sin 60 + 9'2

M} : U1 sins” + (U0 cos 90 + CO sin now + {ja — C1 cos 60

91: MM] —1/1Eä+g4

gl : —(EÜÜ + U“) (305% + 110(17‘J cos 60 + CO siné’o) + 511(53)? + (1253M? + r13(M{])2

gg : 45:53 + 53) cos 80 — V053 cos 90

93 2 MPG/2 cos 90 — cos 90) —— 1435ng sin 60 — 00 cos 19°) + ECU cos 90 cos (90 — 121(120 + V2)53 COS 6“

 

94 = —Vg(sin€0 — Si1190)— d7(€3)2 — (13531111? w (19(M?)2

(52)

with the boundary conditions

Cl .19 CO 0529 1! CD . 1/12 CO
Ulsfl_# ab- ‚0 MgsJ—l 9‘ —>0 at Mm

312190 sin (90 811190 811160

Ul z 0 91 x 0 at E : 0

{53)

We introduce the shell shortening in the axial direction

0

2 = f ((l + Mal) sing —— sinfio) also (54)

-31

For post-buckling axisymmetrical states z = 0(1) (see Tovstik, 1996). Here we study the pre-bnckling state and

the state near the limit point. Then z : O(‚u) and we have the following expansion

2: = HZ] + ‚(L232 + 0W) (55)

with

o

21 = f (sin 90 — sin 90) d5

—OO

(55)

(|91 cos HD u 1/053 sinäü] (lg — _ i,

_m our 09 cos (90

32

f0 C0 log(l — 51 cos 90)

9 The Axial Force Calculation

We suppose that the value 2 : ‚uzg is given and solve numerically the problem in the zeroth approximation (48),

(49) with the additional condition 21 = 20. As a result we find the solution

xÜ : XÜ(50‚ 20) and CD = CO(ZU) (57)

The value CO [or which (ECO/(12:0 : 0 corresponds according to relation (43) to the limit force in the zeroth

approximation. To find the limit force more exactly we have two possibilities. Firstly we can numerically solve
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system (37) with the condition 2 2 p20. Secondary we can study the first approximation (51). (53) of system (37)

and find 0 : CD + ‚LLC1. This way enables us to investigate the dependency of C on the shell elastic parameters.

The homogeneous problem (51), (53) has a non-zero solution, and the compatibility condition for the inhomoge-

neous problem has the following form

0 U

/ gxc d5 = 01/ (9* cos 60 d5 with J'cc = u—LT x° (58)

—oo —oo

01'

0 -0

f (915; — 9211* + 936* 7 gram as = 0‘ j 9* cos a“ at: with = Lx* (59)

. -00
—00

Here T denotes transposition and x* = {U", 5:, MI“, 6*}. From relation (59) the value 01 may be found. As

follows from the system (48), (49) the limit value CU depends only on two parameters, 90 and 121. In Figure 4 the

dependency 00(60) for 121 = Ü and 1/1 : :|:0.3 is presented. The relation

Ü

with 0* : —2(1 + 1/1) singä’o (60)

 

77:0

is pictured. Here 0* due to relation (43) corresponds to the critical value of the force P. Indeed if we linearize

system (37) near the membrane solution (44), Km, and freeze the coefficients then we reduce the problem to the

equation

(126“ i
4 " A

d 6 ( 0 Jr 21/18in6'0) + 95h}? 8.3 = Ü With 6 : Ü — (90

'50
E _— Sill 80

Equation (61) has a solution é : asin(/\.90) for C = C". It is interesting to note that the value 0* depends on the

parameter m which takes into account the non-symmetry of the shell cross section. If we pull out the shell then

parameter 1/1 changes its sign and the critical load may also essentially change. The fact that n < 1 (see Figure 4)

marks the decreasing of the critical load due to the angle at so 2 [i (see Figure 3).

 

1,0 —Ü

0,8 '-

0.6—

0.4“ -

   

20 4a “ 60L 80 °

Figure 4. The Dependency n = CO /C* on the Angie 60

The limit force parameter Co depends only on the distribution of the elastic moduli E and 1/ through the shell

thickness and on the geometrical non-linearity of the problem. The correcting parameter 01 may be calculated

from equation (59) and it depends also on the nonlinear elastic moduli oil, rig. wg through the coefficients dj.
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10 The Two-layered Shell

Here we present some numerical results for the compound shell shown in Figure 3. The lower edge so : 51 is

clamped. The upper edge 5‘0 = —51 is attached to the rigid body which is under action of the axial compression

P. The other external forces are absent.

We study the two-layered shell. As scales we accept R = 7-0 (0) and the Young modulus E0 of the more stiffened

material. The dimensionless parameters are: the relative shell thickness 12. = 0.01, the angle 00 = 45°, the

generatrix length s] = 1/\/§ (see Figure 3), the layers thickness h“) : h/Ei, 1sz : Sit/6, the Young moduli

Em z 1370,13”) : Eo/ö, the Poisson ratios 12“) = 0.25, um) : 0.5. The material (1) is supposed to be linearly

elastic, therefore the nonlinear elastic coefficients are equal to zero 0:5“ : org” : “f,” : 0. The material (2) is

supposed to be incompressible and has the elastic potential

<1: = own + $01305?) with Gt?) = E13) /3 a?) = —sE<2l/9 (62)

the same as in the paper (Tovstik, 1999). As it was Show} in this paper the coefficients [33- in relations (17) for this

material are ‚652) = 445(23/9, 0&2) = —2E(2)/3‚ 03?) = “BEIM/9. Now by using relations (17), (21), (26)

and (33) we find the coefficients (39) and (40) in system (37). We find successively

K0 2 0400127010 K2 = 003819003 ‚u = 0.0578 120 : 0.38.9 V] = 0.109 Hg : 0.407

d1 : —O.776 (lg : —Ü.162 d3 : —l.449 d7 = 70.618 d3 : —l.539 d9 : 43.251

With these data system (37) was solved numerically. In Figure 5 in dimensionless variables the dependency of the

axial force, P, on the shell shortening in axial direction, 2, is presented. The limit point is marked by a dot. For

the limitpoint C = 70.562, z = —0.565. From the approximate system (37) we get CO = 70.58.1 which is a

good approximatiori for C.

-C

0.6

0. 4

0.2

 

I l I 1 I 1

0 0.04 0.08 0.12

Figure 5. The Dependency C(z)

11 Conclusions

The problem of deriving two-dimensional shell theories from the three—dimensional theory of elasticity is con-

stantly a point of attention of scientists. The first way which begins with Euler, Kirchhoff and Love consists in

the acceptance of some hypotheses about the distribution of strains and stresses in the thickness direction. The

second way consists of asymptotic expansions based on the small shell thickness. This way has two branches: the

direct asymptotic solution of the three-dimensional (linear or non-linear) equations of the theory of elasticity (see

Goldenveizer (1976), Goldenveizer et a1. (1993), Goldenveizer (1994), Tovstik (1996), Tovstik (1997a), Agalovian

(1997), Aslanyan et al. (2000) and others) and the variational approach based on the asymptotic simplification of

the three-dimensional elastic potential energy (see Berdichevski (1983), Ciarlet (1998), Lods and Miara (1998),

Miara (1998), this paper and others). Both these asymptotic approaches must give results of the same asymptotic
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exactness. It is verified for the problem studied in this paper. In the case when the elastic moduli do not depend on

the normal coordinate these methods give the same expressions for the stress resultants and the stress couples.

Asymptotic expansions are based on the small shell thickness and on the following scaling of the independent

variables. For linear problems the various scales lead to various two-dimensional shell models: membrane theory,

flexible theory, moment theory. For non-linear problems an additional parameter, which marks the level of strains

and stresses, appears. In this paper the space scaling is the same as in paper by Aslanyan et al. (2000) and

the assumptions (10) about the level of strains (5 sin x/H) are accepted. For the large strains (5 N 1) the strict

derivation of the constitutive relations from the three-dimensional theory of elasticity is apparently absent. There

are the elasticity relations (see Chernykh, 1986) obtained by using the hypothesis similar to the Kirchhoff—Love

one. For small (of the order of x/H) deformations the comparison with formulas (24) gives the difference in the

nonlinear summands depending on bending. The membrane part of the constitutive relations coincides with the

relative error of the order it.

For multi—layered shells with non-symmetric cross—section the neutral surface does not exist in the general case and

even in the linear approximation the constitutive relations (24) differ from relations (1). It is impossible to separate

stretching and bending deformations. For multi-layered (especially for three-layered) shells often the stiffness of

layers differs considerably. It is desirable in future to introduCe in the. asymptotic analysis an additional small

parameter equal to the relation of these thicknesses. Also it is interesting to study for the multi-layered shells the

large post-buckling deflections for which one part of the deformed shell is close to its mirror image reflected from

the plane perpendicular to the shell axis (see Tovstik, 1996).
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