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Large axisymmetric deflections of thin elastic multi-layered shells of revolution are studied. By using a variational
principle for the three-dimensional non-linearly elastic body, the constitutive relations for a two-dimensional shell
theory are derived. By using asymptotic expansions the problem of the shell deformations under axial force is
solved. The dependence of the limiting point on the shell geometry and on the elastic parameters is obtained. As
an example the two-layered shell is examined,

1 Introduction

The system of equations of the two-dimensional shell theory of Kirchhoff-Love type contains three Kinds of
relations: the geometrical relations, the equilibrium equations, and the constitutive relations between the reference
shell surface deformations and the stress resultants and the stress couples. The relations of the first and of the
second kind may be written in the exact form although often their approximate (for example linear) versions are
used. Only the constitutive relations introduce an error in the shell theory.

The commonly used constitutive relations of the Kirchhoff-Love type for the axisymmetric deformations of shells
of revolution are

T; = K(g; + vey) M; = D(k; + viy) with g =152, P #E (1

where 7; and M; are the stress resultants and the stress couples, g; and x; are the stretching and the bending
deformations of the midsurface, K and D are the stiffness coefficients.

For most linear problems the relative error ¢ of relations (1) is of the order of the relative shell thickness h:
§ = O(h) (see Novozhilov and Finkelshtein, 1943). The following investigations (Goldenweizer, 1976) support
this estimation for the stress states if their variation is not very large. In nonlinear problems the error § depends on
the deformation level £ = max{|e;;|}, where €;; are the components of the deformation Green tensor. Analysis
shows that for ¢ = O(h) the estimation 6 = O(h) is valid. If the deformation level e is larger, then the
more general estimation & ~ max{h,e} for the error of relations (1) is obtained (see Pietraszkiewicz, 198%;
Axelrad, 2000). Tovstik (1997b) described the problem of the axial compression of a shell of revolution with the
comparatively large deformation € ~ V/h. For this problem relations (1) lead to the error § ~ Vvh. In further papers
Tovstik (1996), Tovstik (1997a) presented more general constitutive relations than (1) for which in this problem
the estimation & ~ A holds. In these papers the constitutive relations are found for an isotropic homogeneous
non-linearly elastic material.

The main objective of this paper is to derive constitutive relations for a two-dimensional theory of thin multi-
layered shells made of a non-linearly elastic material. By these relations the stress resultants and the stress couples
are expressed through deformations of the shell reference surface. Here the material is again supposed to be
isotropic, but its elastic properties depend on the normal to the reference surface coordinate. In partial cases
we get multi-layered shells, By asymptotic simplification of the three-dimensional elastic potential energy, a
two-dimensional expression is constructed, and the stress resultants and the stress couples are found as partial
derivatives of this two-dimensional elastic energy.

The compression of a shell with non-negative Gaussian curvature under axial load applied to the shell edges
is studied. If the shell edge is free in radial direction then it loses stability by axisymmetric deformation and the
critical load may be found as a limit point of the curve “force— axial deflection” (see Tovstik, 1997a; Tovstik, 1999).
The same (ype of the stability loss under axial compression takes place for shells of revolution, the generatrix of
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which has an angle (see Tovstik, 1999). In these cases, a large stretching and bending axisymmetric deformations
are localized near the shell edge or near the angle. The method of asymptotic expansions of the solution of the
singularly perturbed system of ordinary differential equations into powers of a small parameter g connected with
the relative shell thickness is used. For the homogeneous shell this problem was solved by Tovstik (1997a, 1999).
Here the approximate expression of the critical force for the multi-layered shell is found, and its dependence on
the shell geometry and on the elastic parameters is examined. As an example a two-layered shell of revolution

consisting of two conic shells is studied.

2 The Axisymmetric Deformation of the Shell

For the non-homogeneous shell the neutral surface does not exist in all cases, and we introduce some surface of
revalution as a reference surface. Let this surface be described by the following relations (see Figure 1)

d

dSo ;

(2)

[l

Te = 7‘0(89} 90 = 90(80) ‘I'é = COSHQ ( )f

Here s is the length of generatrix, 7o is the distance between the current point of the reference surface and the
axis of symmetry, 8 is the angle between the shell normal and the axis. The main radii of curvature Ry and Rag
of the neutral surface before the deformaltion are obtained from

1 1 iné
— =6, and ARl o (3)
Rip Rag TQ
We denote the same values after the deformation as s, r, 8, Ry, R». Formulas similar to (2) and (3) are valid.
Sty
Figure 1. Shell of Revolution before Deformation Figure 2. Displacements after Deformation
The stretching deformations of the reference surface £, and €5 and the changes of its curvature 1 and ka are
”
e1=8—1 and ey = y 1 with ' =(14+¢1)cosd
0
4
s 1 1 9 o = 1 1 sinf  sinfp )
e e e o ) = — —_
Ry Rip 14¢e; a SRS TTY T T o
From relations (3) and (4) it follows that
(roga) = (1 +€1) cosf — cosby (5)

In the three-dimensional body occupied by the shell before the deformation, we introduce the orthogonal system of
curvilinear co-ordinates g1 = sg, g2 = , g3 = 2z, where i is the angle in a circular direction, and z is the distance
from the current point to the reference surface. Let 51 < 50 < 52, 0 < 0 < 2w, —hy <z < ho (hy + ha = h).
The square of the distance between infinitely close points is
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dR®)? = H}dg} = ¢};daida; Hy=1+20 Hy=ro+zsinf Hy=1 (6)
i 1 Ja_,‘ J

where H; are Lamé’s coefficients, and g,?.j are the covariant components of the metric tensor before the deformation.
To describe the position of the point (so, ¢, z) after the deformation, we use mobile Cartesian co-ordinates with
the unit vectors i1, i, i3, which are connected to the deformed reference surface. The point {sp, ¢, z) position
after the deformation is described by the vector (see Figure 2)

R =R’ +R! with R' =iju+i3(z + w) (7)

The functions «(sp,z) and w(sp, z) describe the shear deformation and the stretching normal to the reference
surface correspondingly. If the Kirchhoff-Love hypotheses are valid then u(sg, z) = w(so, z) =0.

The covariant components of the metric tensor after the deformation, g;;, are the following

IR

iy = RiR; with R; = o

We find the components €;; of the Cauchy-Green deformation tensor E from

0
i — 835 = 2H;H e (8)
For an axisymmetric deformation g1 = €23 = 0.
For convenience in the asymptotic analysis we go to dimensionless variables (with the sign ") by
{r, ro; 8, 39; 2; i} = Ro {F, fuo, 8, &, 2, A} (9)

where Ry is the shell typical scale and £ is the shell thickness. Then we omit the sign ", We study the state of strong
shell bending, which is accompanied by comparatively large deformations, and accept the same assumptions about
the stress-strain state as in (Tovstik, 1996)

2 e Ex}~p e~ wept u~pt
{ro, 7, 00, 8, K2} ~ 1 {05k ket {66, rp} = O(1)
dycs sy (10)
— ~ = with y = {&i, €45, 0, u, w}
83[) ,LL ? g3 ¥
s 1 ;
5_J ~ % with y = {&ij, u, w} w=coyvVh
el

where g is a small parameter, and the constant ¢p ~ 1 will be chosen later, We put the sign ~ between the values
of the same asymptotic order, and the sign O(-) gives the upper estimation. We remind that the strain & ~ g is
comparatively large, because for example strains € ~ u? correspond to the critical stresses of the cylindrical shell
buckling under axial compression (Tovstik, and Smirnov, 2001).

In the following expressions for strains ;; we keep the terms of the orders p and 2 and omit the terms of the
order O(p?)
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e = &1 + (g1 + 211)2 /2 + (z + w)n + O(p°) with 7 =6'— 6

g1 = (uz +w')/2+ O(1?)

! 5 , cosf — cosfly (11)
er+€3/2+ (z +w)m + O(p°) with m»n=-"———

I

£92
22 =

£33 = w; + wl/2 + O(4?)

where 7, and T, are the approximate expressions for changes of curvature.

3 The Asymptotic Simplification of the Potential Energy

The shell material is supposed to be elastic and isotropic. Let the potential energy density per unit volume be-
fore the deformation ® (11, 5, [3) be given as a function of invariants of the deformation tensor 5. 'We use the
following invariants

I =¢4 = I? + £33 with I? =£11 &2
fgIEijEji:IS+E§3 JrO([J.d) with ISZE%I —i—EgQ (12)
Is = eijenen = I9 + 35 + O(u?) with D=zl te}

Here we take into account that £15 = g93 = 0 and £13 ~ ,u,Q.

The stresses o;; are equal to

ad
= 88(1) = Aléij + AgEij + AgEikEkj with Ap = k— k=1,2;3 (13)
54

T

aly,

where é;; is the Kronecker’s symbol.

For the 5-constants Mindlin elasticity theory

Ev E

G= )

] e,
=AM+ GhL+ oI} +aoli I + asl: it} A= o————
o 2A1+G2+0.11+Cl{211r3+033 with ) (T2 21 +7)

we gel

A = A+ 3&'11? + asls Ay =2G + 2any A = 3ag (15)

Here F is Young’s modulus and «; are the additional elastic constants taking into account the non-linear depen-
dence of stresses on strains, For the aims of the asymptotic analysis we suppose that the order of the constants a;
does not essentially exceed E. The potential (14) gives the general form of the square dependence of stresses on
strains. If a; = ay = ay = 0 then relations (13) lead to Hooke’s law.

In  contradistinction  to  Tovstik  (1996), we  suppose now that all  elastic  constants
(\, G, E, v, a1, az, az) depend piecewise continuously on z.

The potential energy I of the elastic deformations is equal to

$a ho
Tl="r. / D rq(so) dz dsg (16)

51 —h1
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To deliver the constitutive relations we suppose that body forces and external surface forces are absent. Then it is
possible to find the equilibrium state by minimizing the potential energy. After minimizing the potential density ®
in £33 we obtain

£33 = —ﬁ 1Y+ O(p?) and rgl;ﬂ ¢ = %1, e2) + O(E p*)
B0 — 2{1_:27 (=) + v (1)) + 81 (19)" + B 1915 + 5 1S (17)
s (1-2v)%m -F—(;’i{ly)—fzz)ag - 1%q; el 1112;/@2 e
After integrating the relation 8w /dz = 33 + O(u*) we find
uﬂz—'/:l_y(81+52+z(n+’rg))rlerO(,u‘l) (18)

Now due to relations (10) and (18) the strains £1; and £22 are the functions of 5 main arguments (g1, g2, 71, T, 2).
We introduce the function

ha

®°(e1, €9, T1, T2, 2) dz (19)

U{er, €9, 11, T2) = /

—I

Calculations of integral (19) in z due to relations (17), (10) and (18) lead to the following relation

1
= =
P 2

Ki((2e143e1)71 + (2e2+3e3) 1) + KV (250 +e3+2e160)m1 + (261 +224+26162)70)+

[Ko(el + &3 + € +€3) + K& (26162 + 30 + £10)+

Ko ((L+3e1)7? + (14 3e)78) + K§2rima (1l + &1 + &2) + ear? +e178)+
K3(t? + 78) + K¥ (118 + 7-]'37-2)} -

[Loo(erms +e2m) + Lig (€271 + £1m) + Luo(n® + 73) + 2Lt 7] (o1 + &2) - (20)
[Lor(erms + e2m) + Ly (e2m1 + €170) + Lua (78 + 72) + 2LYgmim] (m1 + o)+

Nig(e1 +€2)® + 3N11(e1 +£2) (11 + 72) + 3N1a(e1 + €3) (11 + 72)2 + Npa(ri + 1)+

Nao(e1 + €2)(1 + €5) + Noa (11 + 72) (€3 + €3) + 2(e171 + e2ma) (61 + £2))+

Naa((e1 +€2)(18 4+ 73) 4 2(e171 + e2m) (11 + T2)) + Nog(m + ) (i + 12+

N3p (E'l3 + Ez} + 3Nz (E‘%’ﬁ + E%’T‘g) + 3]\132{6‘1‘7'12 -+ Eg‘."sf) + N_gg(?'l‘g + ’Tg)

where the elastic coefficients are the following

h;z h
= E Zn 2 E 7
e — / — _dz KV = bR v

—hy

fl.z E Zm,
Lnn :f 1 3
—h =L

(

B 2™ dz

—h1

N, mn —

B2
Iz Eyzm

Li’/ £ i A
mi ; _h'l l % 1/2

m,n=10,1,2,3

(21)

e
(fo 1_.de) dz
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We remind that the elastic constants E, v, 8, depend on z. If by = ho = h/2 and all these constants are even
then we call it a shell with symmetric cross-section. For such a shell some of the coefficients (21) vanish

Ki=K{=K;=K} =Loo=Lgg=L11 = L{; = Nypg = Nppz =0 with m=1,2,3 (22)

4 The Constitutive Relations

The stress resultants 73 and 7% and the stress couples may be found as partial derivatives of the function ¥ (e1, €2, 71,
by its arguments

ov v
=— 1;
65_,; . 4

= 5_7', with 4="1,2 (23)

T;

where the stress resultants and the stress couples are related to the unit length before deformation. We get from
equations (23) and (20) the following

T1 = [{051 + 1(6/&'2 + 1(1 1 + I{{}TQ + Tl* + O(Egh,ﬁ)

Ty = Kgea + [(6’&"1 + K+ I{i’ﬁ + 75+ O(Egh,u-g)
(24)
A/fl = Klfl + I(i/EQ + I(ng -+ I(g’n"g + ﬂ/[l* +O(EU}?.2,‘,L3)

Ms = Kiea + KVey + Kame + K¥11 + M5 + O(Eoh*1®)

where T7 = O(Eohu®) and M} = O(Eoh®) (j = 1,2) depend non-linearly on the stretching and bending
deformations (5 and 7;) of the reference surface and are equal to

T = als'f + aserEn + ageg + 146171 + Q51T + gE2TT + 7E9Ty + agrf + aoTi Ty + alo'r.'_f
, 7 25)
7 . 2 : 2
M = blaf + bagr€a + bges + bye1 T + bse1 T + bgeam + breamy + b + by + bioT

a1 = 3(Ko/2 4+ Nig + Nog + Nyg) we = 23 = K +6N1g +2Ngp
gy = 2()1 = 3[(1 — 2L00 -+ G(Arll + Nop + f\rgl) a5 — ng = ]{i) — QLSU -+ GN“ -+ 2N21

ag =y = by = K{ — Lypg — Ly + 6N11 + 2Ny ag=by/2=3K0/2— L1p— Lo1 +3(N12+ Noa + N3a)
@o=bs =by = K§¥—2L% — Loy — L& + 6N12 +2Nay  asg = be/2 = K& /2 — Lyg — L%, + 3Nys + Nay
hg = 3(K3/2 — L1 + N1z + Noz + Nag) by = 2big = K3 — 2Ly — 4L, + 6Nz + 2Nog

(26)

Function ¥ is symmetric with respect to indices 1 and 2, So in order to find 7% and Mj in relations (24) it is
enough to replace in equations (25) £; and 7; by £+ and 7» respectively and vice versa. In equations (24), Fy is
a scale of Young’s modulus, and the relative error of the constitutive relations (24) is of the order of pu? or of the
order of the relative shell thickness h/R. Non-linear terms in equations (24) are of the order of g compared to the
linear ones, Due to equations (21) the following estimations are valid

{#o, Kg, a1, as, ag} ~ Eoh {Ks, K, as, ag, a10, ba, bs, bg, by} ~ Eoh® (27)

{K1, KY, aa, as, ag, ar, b1, by, b3} = O(Eph?) {Ks, KY, bg, by, bio} = O(Eoh?) (28)
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For shells with symmetric cross-section the coefficients in the left sides of estimations (28) are equal to zero.

We choose the reference surface so that X; = 0. If Poisson’s ratio v = const, then simultancously K7 = 0. In
this case as for the symmetric cross-section the reference surface is the neutral surface and according to (24) in the
linear approximation, stretching and bending deformations cf the reference surface act independently.

Relations (24) were obtained by assuming that external surface and body forces are absent. As in Tovstik (1997a)
it can be verified that relations (24) are valid with the same residual terms also in the presence of external forces of
large enough magnitude. As a rule in the case of compression, the shell buckling takes place earlier than relations
(24) become incorrect.

If all elastic constants in the potential energy (14) do not depend on z then relations (24) coincide exactly with
those obtained in Tovstik (1996).
5 The Case of Axial Compression
Two-dimensional equilibrium equations in projections on the tangent and on the normal (0 the reference surface
after deformation have the form

(T‘DTl)" —Thcosf + 7‘08’@1 + 1o = 0

(ro@1) — Ty sinf — ro8'T) + rop; =0 (29)

(7'0.&’[1 )’ — Mscos — ‘i"o(l + 61)Q1 =0

where ()4 is the shear stress resultant, and p;, p3 are projections of the external body forces and surface loads per
unit area of the reference surface before deformation. We introduce the projections U and V' of the stress resultants
on the radial and on the axial directions respectively

Ty = Ucosf + Vsind (1 =Usinf — Vcosf (30)

Then the first two equations (29) assume the form

(roV) + ro(p1 8in8 — pa cosf) =0 (roU) — T +ro(p1 cosf — pzsinf) =0 (31)

In the case of compression the estimation Ty = O(Eghpu?) is valid because the critical value of 7% (as a limit
point) is of the same order. From this estimation it follows that

_ K¢

£1 = —wges + O(p?) with vy = 7 (32)
0

Now taking into account relations (32), K; = 0 and m» = O(1) we rewrite and simplify relations (24) with an
exactness which is sufficient for further expansions

T = Ko(e1 + voe2) + Ty + O(Ephpd) Ty = K'Ty + c163 + caeamy + ca7d

To = Ko{l — vd)ea + K¥m + Ty + O(Ephp?) Ty = vo(Ty — K¥7) + cagl + cseamy + coi

My = Ktes + Ko + My + O(Boh??) My = K7y + cred + caeamy + co72 20
My = —vgKVes + K¥11 + My + O(Eoh? 1) My = Komy + cio83 + c116071 + c1272
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¢ = vda; — way + as ca = ag — Yoy c3 = ag

: 2
cg =1 —vo)ar (1 + 1 + ?/51) —p(as + az)] Cs = Vg + a5 — vol{ag + ay) Cg = w19 — Vodsg
c; = Vg’bl — by + b3 cg = bg — by cg = bg

clo = by — voba + 13 bs c11 = bs — by c12 = big

where T, and M. ; are the comparatively small terms containing geometrical as well as physical non-linearities.

6 The Asymptotic Expansions

Let the axial force P be applied to the shell edges and the external body forces and surface loads be absent
(p1 = ps = 0). We introduce dimensionless variables by means of the following formulas

{Ela EE} — #{E?: 53} {Tla Ql} L]! I/} = Kﬁk#‘ {Tloi ?7 UO!' VO} ({;4)
Ty = KjpuTy? {My, My} = KGp?{MP, M$}
with
TG x 2 :
0= —==csh K§ = Ko(l—14) (35)
K;

In this way the constant cg in relation (10) for 4 is chosen. By the symbol © the dimensionless variables are
marked. Substitutions (34) are introduced in such a manner that these variables are of the order 1. Later we shall
omit the symbol °. Then the system of equations (3), (29), (31) for variables

Vil e My 8 (36)
assumes the form
(T‘(ﬂ/)r = O,
s 2 y 2 T‘?-
w(rolU) = (1 —vi)es + 1 My + pufy + O(p?) fi=—==
K
p{rogs)’ = (1 — pges) cos@ — cos by, (37)
w(roM1)" = ro(1 — proes) (U sin® — V cos8) + pufs + O(pu?) fa = Msycos8,
i 9 : . 1‘.1:1{1
po' = My — ey + pfa + O(1?) f‘lzao"f
2

Here f1, fa, fa are functions of . After excluding 7 by the relation pr, = M) —vies we express these functions
through variables (36) and obtain the following formulas

fi=vo(Ucosf + Vsin@) + die} + daea My + dy M}
fz = (vaMy — vy (v + v2)22) cos 6 (38)

f4 = 96 — o'y CZ*(E:‘; e Clg&gﬂ/[l = dgﬁ.flz

298



o ;
Cq 11C5 Vi Cg C5 2V1 Cg =7 Cg

di = — - e dy = T e g =

U= Ry T EyE T Kol = Ran . W Kyt =
3 2 o
pecy vicg vicy cs 2v1cq ci. AED
dy = — ds = — — - dy = —
i Ky Ky 25 Kop? S i Kop? 2 R o2
K Ky Ky Ky

= — = Va = — 40
S s T B e o o)

All functions f; and constants d; and v; are of the order of 1. For the shell with symmetric cross-section vy =
dy = dy = dy = 0.
7 Formulation of the Boundary Value Problem

As an example we study a compound shell of revolution consisting of two equal conic shells (see Figure 3 where
the shell generatrix is shown). For this shell 8y = const and

To = 1-— |SU| COS!{)Q for |50| S 51 (41)

As the shell scale R in relations (9) we take the cone radius at sg = 0. The shell edges so = £s; are supposed to
be clamped. Due to symmetry of the problem we will study only the part —s; < s < 0 of the shell and we will
satisfy the boundary conditions

gy =10 = 6q at 5 = —5;
(42)
U=0 =8, at 50 =10
- S]
s
Sy
Figure 3. Generatrix of the Compound Shell
The first of equations (37) gives
T C 2 5o 2
= o= P=2rsR"Kou°C (43)
0

where P is the axial force (P < 0 for compression) and we look for its limit value. At g — 0 system (37) is a

singularly perturbed one. Far from the edges so = 0 and s; = —s; the membrane stress state has
., Ccoséy vl :
m o _ : M — _ M= O(0 12 me= 2 /
PrT— 3 AT 1 (Cp?) 0™ = 6o + O(Cp?) (44)
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In the neighborhood of the generatrix angle s = 0 estimations (10) are valid and system (37) may be used. It is
connected with the fact that the shell is free in the radial direction (I/ = 0). Near the other edge s = —s; the edge
effect appears also but here due to the condition g2 = 0 the stresses are p times smaller than near the edge sg = 0.

8 Asymptotic Solution of System (37)
We write system (37) in vector form
T =F(x 50, G0 x={l eay My 0), (45)

perform the scale extension & = sg /¢ of the independent variable and seek its solution in the form

x = x°(8) + px (&) + O(12) C=C°%+uC' + 0(p*) (46)

The accuracy of system (37) enables us to find explicitly written terms of the series (46). Taking account of the fact
that 79 (so) = 1 + pg cos by and equating coefficients of ¥ in system (37), we obtain in the zeroth approximation
the following nonlinear system

xR R (XO 0. CE D) (47)
or

U9 = (1 — v2)e? + 1y MY,
&3 = cos6° — cos b,

MP =U9%in8° — C° cos 6P,
8° = M? — 11£9

The boundary conditions at £ — —oo confirm the fact that solution (46) approaches the membrane solution (44).
For the zeroth approximation we get the following boundary conditions

C° cos 8
s R e e Bk e

SlH@Q (49)
po g s e =T

Here a dot denotes a derivative with respect to £, If »; = 0 system (48) coincides with that studied in Kriegsmann
and Lange (1980), Evkin and Korovaitsev (1992), and Tovstik (1997b).

In the first approximation we get the linear system

: . OF° OF IF oF
1 = L 1 el 1_ L T s Sl e
x (Ox +g with B0 g 8306 50 o (

or
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U= (1 -d)el + Ml + g
gl = —6,sin8 + g»
M} =U'sin#? + (U2 cos 8% + C%sin 8°)8" + g3 — C' cos @°

6! = M} — el + g

g1 = —(EU° + UY) cos by + vo(UP cos 89 + COsin 89) + d; (£9)? + doed M + ds(MP)?
ga = —(£€9 + €9) cos by — voe§ cos §°

g3 = MP(va cos 8° — cos ) — vl (Up sin 80 — CP cos8°) + £CP cos b cos 60 — vy (v + v2)€d cos §°

g1 = —v2(sin8° —sinfy) — dr(€3)? — dged M — dy (M?)*
(52)
with the boundary conditions
1 0720 0 _ v G0
e e S B S GRS G e LI O e at £ -
sin g sin” fg sin 8 sin 8
Ul =0 gt =0 at E=0
(33)
We introduce the shell shortening in the axial direction
0
zi= [ ((1 + pey)sind — sinflp) dsg (54)
=t

For post-buckling axisymmetrical states z = O(1) (see Tovstik, 1996). Here we study the pre-buckling state and
the state near the limit point. Then z = O(y) and we have the following expansion

z = pz + 1’z + O(u®) (55)
with
0
P / (sin 6° — sinfp) dé

—o

(56)

(6" cos 8 — vpel sin6°) de — =
s sin” @y cos 8y

<2

/D C%log(1 — 51 cosby)

9 The Axial Force Calculation

We suppose that the value z = pzg is given and solve numerically the problem in the zeroth approximation (48),
(49) with the additional condition z; = zp. As aresult we find the solution

X =% (55520) and C= 02(z) (57)

The value C° for which dC°/dzy = 0 corresponds according to relation (43) to the limit force in the zeroth
approximation. To find the limit force more exactly we have two possibilities. Firstly we can numerically solve
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system (37) with the condition z = pzg. Secondary we can study the first approximation (51), (53) of system (37)
and find C' = C° 4+ uC'. This way enables us to investigate the dependency of C on the shell elastic parameters.

The homogeneous problem (51), (53) has a non-zero solution, and the compatibility condition for the inhomoge-
neous problem has the following form

0 0
/ gxtde = C! / 8* cos 6° de with % = —LT x° (58)
-0 —o0
or
4] 0
[ (g165 — U™ + g20" — ga M) dé = C! / 0*cos®d¢  with  #* =Lx* (59)
— —00

Here T denotes transposition and x* = {U~, e3, M7, 8*}. From relation (59) the value C' may be found. As
follows from the system (48), (49) the limit value C° depends only on two parameters, 8y and v;. In Figure 4 the
dependency C°(8o) for v, = 0 and 14 = 40.3 is presented. The relation

n=zz  with  C"=-2(L+u)sin’ b (60)

is pictured. Here € due to relation (43) corresponds to the critical value of the force P. Indeed if we linearize
system (37) near the membrane solution (44), x™, and freeze the coefficients then we reduce the problem to the
equation

40 28 .
d—f = L + 214 sin By d—g +8sin®6, =0 with 8=8-0, (61)
dsg sin dsg

Equation (61) has a solution § = asin(Asg) for C = C~. It is interesting to note that the value C* depends on the
parameter ¥y which takes into account the non-symmetry of the shell cross section. If we pull out the shell then
parameter vy changes its sign and the critical load may also essentially change. The fact that 57 < 1 (see Figure 4)
marks the decreasing of the critical load due Lo the angle at s = 0 (see Figure 3).

0.8

0.6

0.4
b,

20° 40° 60° 80°

Figure 4, The Dependency n = C°/C™* on the Angle 6,

The limit force parameter Cp depends only on the distribution of the elastic moduli 5 and v through the shell
thickness and on the geometrical non-linearity of the problem. The correcting parameter C'! may be calculated
from equation (59) and it depends also on the nonlinear elastic moduli o1, i, g through the coefficients d;.
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10 The Two-layered Shell

Here we present some numerical results for the compound shell shown in Figure 3. The lower edge sg = s1 is
clamped. The upper edge sy = —s; is attached to the rigid body which is under action of the axial compression
P. The other external forces are absent,

We study the two-layered shell. As scales we accept B = 7¢(0) and the Young modulus Ey of the more stiffened
material. The dimensionless parameters are: the relative shell thickness k. = 0.01, the angle 83 = 45°, the
generatrix length s; = 1/+/2 (see Figure 3), the layers thickness h{!) = h/6, h{?) = 5h/6, the Young moduli
£ = By, E@) = Eqy/5, the Poisson ratios (1) = 0.25, »(?) = 0.5, The material (1) is supposed to be linearly
elastic, therefore the nonlinear elastic coefficients are equal to zero acg” = af.gl) = ug” = 0. The material (2) is
supposed to be incompressible and has the elastic potential

=GV + E¥Lal? with @ =g®3 o =-sE®/9 (62)

the same as in the paper (Tovstik, 1999). As it was shown in this paper the coefficients 4, in relations (17) for this
material are 8% = —14E® /9, {¥) = —21® /3, g2 = _8E® /9. Now by using relations (17), (21), (26)
and (33) we find the coefficients (39) and (40) in system (37). We find successively

Ko = 0.400Eph  K» = 0.038Egh® 1 =0.0578 1 =0389 1, =0.109  w = 0.407
dy = —0.776  dy = —0.162 d; =—1.449 d; = —0.618 ds=—1539 dy = —6.251

With these data system (37) was solved numerically. In Figure 5 in dimensionless variables the dependency of the
axial force, P, on the shell shortening in axial direction, z, is presented. The limit point is marked by a dot. For
the limit point ¢ = —0.562, z = —0.565. From (he approximate system (37) we get C° = —0.581 which is a
good approximation for C,

=C
0.6k
0.4
0.2
-
] A 1 . L I
0 0.04 0.08 0.12

Figure 5. The Dependency C(z)

11 Conclusions

The problem of deriving two-dimensional shell theories from the three-dimensional theory of elasticity is con-
stantly a point of attention of scientists. The first way which begins with Euler, Kirchhoff and Love consists in
the acceptance of some hypotheses about the distribution of strains and stresses in the thickness direction. The
second way consists of asymptotic expansions based on the small shell thickness. This way has two branches: the
direct asymptotic solution of the three-dimensional (linear or non-linear) equations of the theory of elasticity (see
Goldenveizer (1976), Goldenveizer et al. (1993), Goldenveizer (1994), Tovstik (1996), Tovstik (1997a), Agalovian
(1997), Aslanyan et al. (2000) and others) and the variational approach based on the asymptotic simplification of
the three-dimensional elastic potential energy (see Berdichevski (1983), Ciarlet (1998), Lods and Miara (1998),
Miara (1998), this paper and others). Both these asymptotic approaches must give results of the same asymptotic
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exactness. It is verified for the problem studied in this paper. In the case when the elastic moduli do not depend on
the normal coordinate these methods give the same expressions for the stress resultants and the stress couples.

Asymptotic expansions are based on the small shell thickness and on the following scaling of the independent
variables. For linear problems the various scales lead to various two-dimensional shell models: membrane theory,
flexible theory, moment theory. For non-linear problems an additional parameter, which marks the level of strains
and stresses, appears. In this paper the space scaling is the same as in paper by Aslanyan et al. (2000) and
the assumptions (10) about the level of strains (g sin \/ﬁ) are accepted. For the large strains (e ~ 1) the strict
derivation of the constitutive relations from the three-dimensional theory of elasticity is apparently absent. There
are the elasticity relations (see Chernykh, 1986) obtained by using the hypothesis similar to the Kirchhoff-Love
one. For small (of the order of v/h) deformations the comparison with formulas (24) gives the difference in the
nonlinear summands depending on bending. The membrane part of the constitutive relations coincides with the
relative error of the order fi.

For multi-layered shells with non-symmetric cross-section the neutral surface does not exist in the general case and
even in the linear approximation the constitutive relations (24) differ from relations (1). It is impossible to separate
stretching and bending deformations. For multi-layered (especially for three-layered) shells often the stiffness of
layers differs considerably. It is desirable in future to introduce in the asymptotic analysis an additional small
parameter equal to the relation of these thicknesses. Also it is interesting to study for the multi-layered shells the
large post-buckling deflections for which one part of the deformed shell is close to its mirror image reflected from
the plane perpendicular to the shell axis (see Tovstik, 1996).
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