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Transverse Vibrations of a Continuous Beam on Rigid and Elastic

Supports under the Action of Moving Bodies

Nguyen Van Khang, Nguyen Minh Phuong

In the present paper the method of substructures is used to derive transverse vibration equations ofa continuous

beam on rigid and elastic supports under the action ofmoving bodies. An algorithm for calculating the solutions

ofvibration equations of a continuous beam is presented. From this algorithm, a computer program is created

using C++ language.

1 Introduction

The transverse vibration of a simple beam and of a continuous beam on elastic supports under the action of

moving bodies has been mentioned in works such as (Filippov et al., 1974; Popp and Schiehlen, 1993; Nguyen

Van Khang et al., 1999; Nguyen Van Khang et a1., 2000). Currently transverse vibrations of the beam on many

rigid and elastic supports are attracting increased attention in cable stayed bridges. In this work, we use the

method of substructures to derive transverse vibration equations of a continuous beam on rigid and elastic

supports under the action of moving bodies. An algorithm is suggested to solve the received vibration equations.

From this algorithm, a computer program is created using C++ language.

2 Derivation of Vibration Equations Using the Method of Substructures
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Figure 1. Vibration Model of a Continuous Beam on Elastic and Rigid Supports

Consider a continuous Euler—Bernoulli beam with length l on J elastic, and K rigid supports (Figure 1). Suppose

that its mass per unit length is u (tt 2 pA), and the bending stiffness EI is constant along of its length where p is

the mass density, A the cross sectional area, E the Young’s modulus, I the centroidal moment of inertia. c/ and b/

(j:1‚...‚f) respectively represent the rigidity and the coordinate of the intermediate elastic support j and at.

(k:1‚„.,10 the coordinate of the intermediate rigid support k. The i—th body (i=1,...,N) consists of the mass m,

attached to the spring system with rigidity k, and damping d,- directly proportional to the velocity. The i—th body

moves with the velocity v,- and is subjected to the action of a force G, sin(Q,-t+y,-) caused by an unbalanced mass

which rotates with angular velocity 9,. Here G, is the amplitude of the force.
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Figure 2. Substructures

Using the method of substructures in order to derive vibration equations of the beam and the bodies, we divide

the system into N+l substructures: beam and N bodies (Figure 2). Here the intermediate rigid supports are

replaced by the reaction forces Nk(t).

The position of the i—th body can be determined by (1)

Th 2 Vi (1-11), I 2 Ti (1)

where 1:, denotes the time when the i—th body starts moving along the beam with the constant velocity v,-.

Additionally it is supposed that during the motion, the i—th body is not separated from the beam and its velocity v,

satisfies the condition of non impact as following

n,- > TL (i<j)

The following loads are applied to the substructure beam:

— pressure load p1(x,z,t) of bodies on the beam

N

[91(X’ZJ) = 2141' (Ulmig + Gi Sin (Pi -m,-'Z',-l5(x—m) (2)

i=1

with (pi : Q; I + y;

— reaction load of elastic supports

J

p2(x‚z‚t)2—2cjw(bj,t)ö(x—bj) (3)

F1

- reaction load of rigid supports

K

p3<x,z,r>=—2Nk<r>6<x—ak> <4>
k=I

Within this we apply the Dirac—function 5(x—a) and the logic signal—function L‚v(t)‚ which are determined by the

following relations

L () 1 when TiSl‘STi+Ti

I 0 when t< Ti or t > T, +13,

with T,- = i
. vi

and 6 (x-a) : lim 6€(x—a)

s—>0

1

I — when lx—alSs

With 5€ (x—a) = 2€

0 when |x~a| > E
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Vibration differential equations of substructures can be obtained by applying the basic principles of dynamics.

The equation describing transverse-vibration of a beam including internal friction is (Hagedorn, 1989; Petersen,

1996)

84w 85w 82w 8w

EI ——+oc—— + —+ — = (x‚z‚l) (5)

fax“ Max] ”[azz Bar] p

190%!) = p1(x‚z‚t) + p2 (x‚z‚t) + p3 (MI) (6)

in which or and ß are damping constants.

The equation describing the Vibration of the i-th body has the following form

L,- (0011,72,- +d,-Z',~ +kizi)= Li(t-)(n1,~g +G‚- sin (0,- +64% +19)le (i z LMN)
(7)

in which wn : won’t); WW = ÖWÜL’J)

' ’ a:

The constraints at the rigid supports are given in the form

w(a‚„t) = O, (k=l,...,K) (9)

The equations of motion (5), (7) and the constraints (9) form a mixed system of partial differential equations, an

ordinary differential equation and nonlinear algebraic equations. Four boundary conditions, two at x20, two at

x21, and initial conditions must be specified for the solution of the equations.

The boundary conditions have the following form

2

x20: w(0‚t):MgiQ:0 (10)

öx‘

ö2w(l‚t)

x21: wl,t =————————-=0 (11)( ) 3x2

The initial conditions are expressions of the form

i=1]: w(x‚r1):f“)(x)‚ Q‘Ääm:f<2)(x) (12)

t

z: r,» am = 50%), zips,» = amen, (i 21,...‚N> <13)

From the constraints (9) we have

filial) = 0, feta/a = 0 (14)

3 Transformation of the Mixed Equation System into Ordinary Differential Equations

Using the mode superposition principle a solution of equations (5) and (7) with the boundary conditions (10) and

(l l) is assumed in the form

w(x,r) = iqrnmnfllu— (15)
1:]

in which q‚(t) (r:1‚...‚n) are generalized coordinates to be determined. From the relation (15) we can calculate

the particular derivation
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wn’ z Li(t)w(x7t)|x:ni :1fi(t)äq‚1(t)siann’l

I r=l

 

l
1:1

11 . . m _ n m _ m ,

WU : Li(t)l:2qr51n n1 + qu +COS—i]

r=l

By substituting the relation (15) into the equation

1:1 1:1

l

(5) we obtain

4 4

qr sin%X—+ (X2[~rl£] {7,5111%}

u[2ijr sin$+ß 2q‚ sin = p(x, z,1)

r:l r:l

4 ‚

n ‚. E101 m . E1 m

z q1+ i a +ß q‚.+— —
r:l H l H l

Multiplying equation (18) by sm—l—‚ integrating from 0 to l, and ustng the orthogonallty condition

l 0 when ris

. rTcx _ snx

Jsm—sm—dx= 1

0 l — when r=s

we obtain the ordinary differential equations

1

1461,}sinilLE-fi p(x, LI)

111

‚ 4 . 4 1 .

ét+ £0: E +ß éfifl 2 qt =liptx,z,t)sinfldx

H H 0 ll

Using the characteristics of the Dirac—function,

I V 1 1 1

'[p(x,z,1)sinfldx=f p1(x,z,1)sin¥dx+f p2(X$Z>[)Sin¥dx+I P3(X»Zvl)51n¥dx

0 0 0 0

N

= 2Li(t)[m‚-g + Gl- sin (pl- —ml-'z’,-]sin

[:1

we have

 

Substituting the relation (20) into equations (19) we obtain

.. [E101 (571T ] . El[s1t]4

qx+ — — +ß qr +_ —

u l ‘ u l

K n J

_ÄENk(t)Sini7m_k_32 EC],

[ll k:1 l ‘ 'l“ r=l i=1

2 N .. .

qx = l— ZLi(t)(m,~g + Gi sin (p,- —m‚-z‚- )s1n

ll 1:]

  

. m19. snb’

sm 1" sin l" q‚.‚ (s=l,...,n)

Substituting the relations (16) and (17) into equation (7) we have

L1 (Ulmr'zi + (115-1 + kizi l = L,“ (ulna-g + G1“ Si“ (Pi1+ L1 (02

” . mm mv.
+L-t k-sm——’+d-—~’-cos1 it ‚ ‚ ‚

r21

’ „ I'TCTII- .

d,- stnT q).

1"]

(i:1‚...‚N)

Substituting the relation (15) into the constraints (9) we obtain

w(ak,z) = Zq,.(l)sin%= 0,

r=l

(k =1,...,1<)

309

. n l STCb- K

STm’ — c-sin——]sin—" q.— N (t)sinfl

’ 1 1 ’ k , " 1:1 j:l Z

mm ,-

 

(16)

(17)

(18)

('19)

(20)

(21)
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The second derivative with respect to time of the equations (23) reads

iämsinmlak = ‚ (k:1,...‚K)
(24)

r=l

 

We can prove that the equation system (23) is equivalent to equation system (24) when the initial values of the

generalized coordinates q, (1'1) and of the generalized velocities q'r (Tl ) satisfy the conditions

mak

  

f1

= 0, Z q'‚. ('l:1 ) sinZ q‚«(T1)Sin

r:l l r=1

mlak = 0, (k =1,...,K) (25)

Therewith the mixed equation system (5), (7), and (9) describing the transverse vibration of a continuous beam

on J elastic, and K rigid supports under the action of moving bodies is transformed into the ordinary differential

equations (21), (22) and (24). Thus we have (n+N+K) equations with (n+N+K) unknowns which are

q„(s = 1,...,n), zi(i : and Nk (k =

4 Numerical Computation of the Transverse Vibrations of the Continuous Beam

For the integration of the ordinary differential equations (21), (22), and (24) we rewrite the equations (22) in the

form

 

,A:1 z mi

._ ” d- . mn- _ d. _ n k. „ rrm d. mv- mm}

L,- t zi =Li t ——’sm ’ ‚.——’ ,,-+ —" —’+—’—’ ‘os—’ *.
( ) ( l jg mi Z :{Emi 5m l I L l q]

    

(26)

k» GA

——’z‚-+g+—Lsincp‚} (i:1,...,N)

m,- m,-

Substituting the relation (26) into the equation (21) we obtain

11 4 N N

„ Y EIoc 1t 4 2 ‚ snn- . rnn- . 2 „ snn .

qsz— 5‘, — — s +ß +— Li(t)di51n ’sm—’ ‚„+——— L,(t) dis1n—’ Zi—

Ä [u[1) in; 1 1 q In; 1

"I El 7: 4 2 N mv mm mm mm 2 N 51m
— s4+— L‚(t)d‚- icos i+k-sin i sin‘ i .+— L-r k-sin—i— z- 27„(J I”; l 1,1 1q,m;,<>, 1m)

2 K sTca 2 n J mb- sch‘

——— N, t sin—"——— -' ’ ' I . =1...Zug; k() l I“; [go/Sin l s1n l q„ (s „n)

inwhich

6S_ 1 when r=s

r O when r¢s

(Pizgit'l‘ai ? niZViÜ—Ti)

Using the vectors

61:16]] (22 qm

z=[z1 z2 leT (28)

N=[N1 N2 WV
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the equations (27) can also be expressed in matrix form as

. . i 2
q=Uq+Szz+Vq+S3z——l—-S,N (29)

‚u

In this new expression the matrices Sl, 83, 53 ‚ U, and V are defined as

S] = {sf/12}, 55,]? =sin%, (r =1,...,n; k =1,...,K) (30)

s2 :{sf_‚.2> s53) 2%Li(t)di sinI—flln—i, (r=1,...,n; i=1,...,N) (31)
u

s2 ={s,‘3) 55.?) =%L‚-(t)k‚- smmli, (r=1,...,n; i:1‚...,N) (32)

‘ H

 

4 N 4 4

U : {MAT}? “Ar = S4 + _——2— di Sin snnl Sinfl

H

   

l [LL [:1 l l (33)

(5,)” =1,...,n)

4

N _ ‚ . . ‚ EI

V={vw. =—3 gen) (1,. ”W’ cosfl+lgsinfi sins—"n—l—öj— E s4
> * zu ‚-:‚ z z 1 z n l (34)

2 J _ Huh, I snb/

——zc/~s1n ’ s1n , (s,r=l,..,,n)

ll~L /=1 ’ l

Equation (29) is transformed into

slTslN =S]T%[-ij+Uq+SZi+Vq+S3z] (35)

Solving the equation (35) for N(t) and using the conditions (24) =0 we have the expression for the

reaction forces of the rigid supports

N:A"S?%[Uq+szi+vq+s3z] (36)

in which we put A = SlTSI.

Substituting the relation (36) into the equation (29) we obtain

'cj=H[Uq+S2i+Vq+S3z] (37)

In equation (37) the matrix H is defined by

H = I—slA‘lslT (38)

where I is the identity matrix. If we describe the new vector

y=i41 Q2 qn Z1 12 ZNlT (39)

then the differential equations (37) and (26) can be written in the following matrix form

r = B(I)Y+C(t)y+f(t) (40)
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The matrices B(t), C(t) and the vector f(t) are defined as

BU) =
b b b
n+l,1 n+1,11 n+l,n+1 n+l.n+N

[gm—NJ bn+NJz bl1+N‚n+l bn+N,n+N

where Bl = HU, B2 = H82

d. . _
bnfl. ,‘ = L‚.(t)—'sinflL‚ (r = l,...,n; i: 1,...,N)

‘ m. l
l

_ ./ I ' '_.

bn+i.n+j — —Li(t)öi —: (le —1aw-7N)
"1"

C1 C2

C0) =

C17+Ll Cn+l,n Cn+l.‚n+l C11+LH+N

Cn+N‚l CI7+NJT Cll+NJ1+1 Cn+N,n+N

where C1 = HV, C2 =HS3

d- . . k. .
[ml mn'+—'sin%] (r:1,...,n; i:1,...,N)

 

m‚- l m ~
Cn+i,r Z Li

Cn+i.,n+j : _Li _li (l7 J Z

I11i

f=[f] f2 fn+N]T

where fi.=0, (s:l‚„.,n)

f„„„ (r) = Li(t)[g +isin(Q‚-z+ yl. Ü, (i = N)

777»
l

The Runge—Kutta method is used for calculating the solutions of the ordinary differential equations (40). From

this algorithm, a computer program for calculating transverse vibrations of continuous beam (VIBEAM) is

created using C++ language at the Hanoi University of Technology.
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5 The Transverse Vibration of a Cable Stayed Bridge in Vietnam
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The model of a cable stayed bridge in Vietnam influenced by the action of moving bodies is drawn in Figure 3.

The data for calculating the model is given in Table l.

12173.9m [762133111 1713:6515 kg

pA : 3629.89 kg/m c6 : 10294933 N/m k3 : 716781.38 N/m

EI : 1928552021 Nm2 N = 4 d3 = 2871.74 Ns/m

Mku = 0.0162 111‘ m1 = 6515 kg v3 = 19.444 m/s

0120,0273 k} 271678138 N/m G3:0N

ß: 001 ]/s ([1 : 2871.74 Ns/m Q3 = 0 rad/s

K: 2 v, : 19.444 m/s y320rad

(11:22.5m G|=0N 13:45

11221514111 Q1:01'aC1/S 1714:6515 kg

J : 6 Y1: 0 rad k4 : 716781.38 N/m

bl = 40.9 m 1:1 = 0 s d4 : 2871.74 Ns/m

c] : 10294933 N/m mz : 6515 kg v4 = 19.444 m/s

[92:59.2m k2=7l678l.38 N/m G4:0N

c2 : 4344805 m ([2 2 2871.74 Ns/m 94 = 0 rad/S

193 = 77.5 in v2 = 19.444 m/s Y4 2 0 rad

c1; : 2409446 N/m 2 = O N T4 2 6 S

b4 Z 96-4111 Q2 : 0 rad/s g : 98] m/S2

c4 = 2409446 N/m Y2 = 0 rad n Z 15

12:25 12le5

C5 : 4344805 N/m

Table 1. Data for Calculating the Model of a Cable Stayed Bridge in Vietnam

Computational results are presented in Figures 4, 5, 6, and 7. In Figure 4 the transverse deflection of the

continuous beam at the time t = 7.5 s is demonstrated. In Figure 5, the curve of the dynamic stress of the cross

section at 86.95 m is plotted. Figures 6 and 7 show the transverse vibrations of the cross sections at 10.8 m and

86.95 m.

6 Conclusion

A system of vibration equations of a continuous beam on elastic and rigid supports under the action of moving

bodies has been determined by the application of the substructure method. Also an algorithm and the computer

program (VIBEAM) for the numerical calculation of vibrations of beams have been created at the Hanoi

University of Technology. The VIBEAM program can be used for analysing in the design of bridges that bear

moving bodies.

This paper was completed with the financial support of the Vietnam Basic Research Program in Natural Science.
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Figure 4. The Deflection of the Continuous Beam at the Time I = 7.5 (s) .
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Figure 5. The Dynamic Stress of the Cross Section 86.95 (m)
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Figure 6. TheTransverse Vibrations of the Cross Section 10.8 (m)
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Figure 7. The Transverse Vibrations of the Cross Section 8695 (m)
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