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Remarks on Raasch’s Hook

H. Schoop, J. Hornig, T. Wenzel

Finite Element’s designers have always been seeking for benchmarks to judge the capability and potentiality of
a numerical method. Considering shell elements many benchmark tests have been established over the years.
The Raasch challenge problem, a clamped curved hook with a tip in-plane shear load, acts as a very interesting
benchmark of shell elements. The structure consists of two cylindrical shells with different curvatures. In this
paper the problem is also modelled as a curved beam with a rectangular cross-section. The beam model is
investigated analytically. Thus an analytical expression for the tip deflection can be obtained. Further on
numerical calculations with 4-node-shell elements based on a director theory are carried out and verify the
elements applicability.

1 Introduction

One of the biggest difficulties in judging a numerical calculation method is finding a proper example to verify the
method. Therefore a benchmark test has to be carried out. In this paper it is done for small displacements. The
first basic tests are standard calculations of load cases, which can easily be solved analytically. Another method for
verification is analysing one problem with many different numerical process technics. In case of the finite element
method one should employ elements based on differing concepts. If more or less all of the methods in use reveal
the same results the applicability of a certain element becomes feasible. An arrangement of such examples can
be found in literature, e.g. MacNeal and Harder (1985). The example considered is Raasch’s Hook problem, for
example discussed by Knight (1996) or Kemp,Cho and Lee (1998). The structure is sketched in Figure (1). One
end is clamped and the opposite one is free and loaded as described in the foregoing. Geometric and material data
are provided in Section (2.1).
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Figure 1: Geometry of Raasch’s Hook

2 Preliminary Studies

An analytical solution for the shell model of the hook is not available. Accordingly the analytical solution is based
on the theory of curved beams. Firstly, for the sake of simplicity a semicircle arc is discussed. This investigation
will reveal the warping effects being outstanding and thus the solution for Raasch’s Hook as a curved beam will be
derived in Section (3).
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2.1 The Semicircle Arc without Warping

The arc is clamped and loaded by a tip load in z-direction. (see Figure (2)).
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Figure 2: Geometry of the Semicircle Arc

Conditions of Equilibrium Since the arc is borne in a statically determinate manner the balance of forces can
be analysed directly. The moment resultant Ms = −Mηeη − Mtet + Mzez and the stress resultant Fs =
Qηeη + Net + Qzez yield as

Qz = P (1)

Mη = −P b sin(β) (2)

Mt = −P b [1 + cos(β)] (3)

All other stress resultants equal zero.

Firstly, the beam shall be investigated with respect to the transverse shear deformation despite any warping effects.
At a ratio πb

t = 7.2, πb
h = 72, respectively, (see Figures (2) and (3)) it makes sense to utilise the beam model.

The stored complementary energy follows as
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and using Castigliano’s first theorem one obtains the tip deflection in the direction of the tip load
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Material and geometrical data are provided as

E = 3300 psi ν = 0.35
t = 20 in h = 2 in

The radius of the bigger arc equals

b = 46 in (see Figures (2) and (3))

and thus the tip deflection comes out to

w(π) = 7.075 in
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Obviously the dominating share of the deflection is the one part due to the torsion. It amounts 99.46 %, whereas
the bending has just a very small influence of 0.49 %. The share of the transverse shear is negligible (only
0.05%). Since the influence of the torsion has been outstanding, the ongoing investigation will focus on the torsion
problem. The warping effects will be taken into account and the deflection due to transverse shear deformation
will be neglected at first, but estimated afterwards.

2.2 The Semicircle Arc with Warping

The theory used to describe the problem in question in a proper manner leans on Wlassow (1964), because it takes
into account warping at a curved beam. Although the warping of narrow rectangular cross-sections is usually
neglected, since the beam axis remains straight, it will be outlined that the warping share of the total deflection will
be approximately 10%, due to the curvature of the beam.

Kinematics of the Curved Beam The coordinates used will be cylindrical ones (β, z) and in direction of the
thickness counts η (see Figures (2) and (3)).
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Figure 3: Coordinate System in Cross-section at β = const.

In order to describe the state of deformation variables are introduced as the following:

ϑ (β) angle of torsion

w (β) deflection in ez-direction

θ (β) slope angle about eη-axis

f (β) rate of twist

The displacement vector of a material point of the cross-section reads

u (β, η, z) = (z θ + f φ) et + ϑ (η ez − zeη) + wez (6)

Each share can be interpreted as:

(z θ + f φ) et displacement in tangential direction due to sloping and warping of the cross-section

ϑ (−z eη) displacement in radial direction due to torsion of the cross-section

θ (η ez) displacement in z-direction due to torsion of the cross-section

wez deflection in z-direction

Referring to the straight beam and using the hypothesis of Bernoulli the slope angle and the deflection connect
within

θ = −w′

b
(7)

where (. . .)′ = ∂
∂β (. . .). As noted in Section (2.1) at this stage of investigation the transverse shear deformation

is neglected, thus deflection and slope remain coupled. φ(η, z) denotes the warping function. For the sake of
simplicity the warping function of a rectangular cross-section shall be used. This reads φ(z, η) = z η.
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The function f(β) can be obtained considering the derivative of the rotation vector. The rotation vector consists of
two parts in t-, η−direction, respectively. Its derivative turns out as

∂

b ∂β
(ϑet + θeη) =

ϑ′ + θ

b
et +

θ − ϑ′

b
eη (8)

The share in et-direction can be identified as the rate of twist f(β). From equation (7) it ensues

f =
1
b

(
ϑ′ − w′

b

)
=

1
b

(ϑ′ + θ) (9)

In this case twisting and bending deformation are coupled due to the curvature. Conformingly f(β) includes the
derivative w′. The term ’rate of twist’ refers to Megson (1990).

Constitutive Equations Relating the moment resultants Mη and Mt to the deformation variables w and ϑ and
incorporating the kinetic equation according to Wlassow (1964) yields

Mη = −EIηη

(
w′′

b2
+

ϑ

b

)
(10)

Mt = −EIω

(
ϑ′′′
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b4

)
+ GIt

(
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b
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)
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Herein Iω =
∫

(A)

φ2dA represents the warping constant and EIω denotes the warping rigidity (see Timoshenko (1961)).

For a narrow rectangular strip that yields Iω = h3t3

144 . This share shall here be emphasised, because it is usually
neglected.

Determination of the State of Deformation Since the stress resultants have been calculated they are put into
equation (10) and equation (11) directly.(
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Equation (13) shows a differential equation for a certain variable
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)
. Its solution can be obtained as
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where the following abbreviation is used:

k2 =
GIt

EIω
b2

Supported by equation (14) the angle ϑ can be eliminated from equation (12). Finally a differential equation for
the deflection w(β) turns out

w′′ + w =
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Solving the differential equation (15) the deflection follows as

w = −
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The angle of torsion ϑ leads via equation (14) and equation (16) directly to

ϑ = −
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The integration constants C1 up to C5 have to be determined by boundary conditions. Where the beam is clamped
these are

w(0) = 0 w′(0) = 0
ϑ(0) = 0 ϑ′(0) = 0 (18)

At the opposite end boundary conditions are formulated for moments and forces. Because the conditions of equi-
librium are satisfied yet, these boundary conditions are satisfied too. Despite the fact that Mη equals zero at the tip
the normal stresses σtt (see equation (19)) in circumferential direction et at the end of the beam have to vanish

σtt =
Mη

Iηη
z + φ(η, z)

b2B(β)
Iω

(19)

To prevent the violation of this condition the bimoment B (see Wlassow (1964))

B =
EIω

b2

(
ϑ′′ − w′′

b

)
(20)

also has to vanish at the arc’s end (β = π). This yields

ϑ′′ =
w′′

b
(21)

Now the constants C1 up to C5 are determined from equations (18) and (21).
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Taking into account the warping effects the tip deflection turns out as

w(π) = 6.437 in

in contrast to 7.075 in without taking into account the warping effects. It becomes quite clear, that these effects
are not being negligible, because it makes a difference of approximately 10%. Re-introducing the deflection due
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to transverse shear load increases w(π). Via

w(π)shear = γl = 0.003547 in (27)

the total deflection w(π) yields 6.441 in. The γ in equation (27) equals the constant shear strain due to the constant
transverse shear force and l equals the arc length of the semicircle arc.

3 Raasch’s Hook as a Curved Beam

Modeling the hook as shown in Figure (4) the beam axis consists of two arcs with the radius a (a-arc) and the
radius b (b-arc). The geometrical data are also shown in Figure (4).
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All other data remain as shown in Section 2.1.
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Figure 4: Geometry of Raasch’s Hook

Kinematics See Section 2.1. The results outlined in this section shall be taken over.

Constitutive Equations For the a-arc turns out

Mη(α) = −EIηη

(
w˙˙
a2

− ϑ

a

)
(28)

Mt(α) = −EIω

(
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a3

+
w˙˙˙
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)
+ GIt
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ϑ˙
a

+
w˙
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)
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with w(α), ϑ(α) and (. . .)˙ = ∂
∂α (. . .) and for the b-arc

Mη(β) = −EIηη

(
w′′

b2
+

ϑ

b

)
(30)

Mt(β) = −EIω

(
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)
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(
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b
− w′
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)
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The variables and abbreviations w(β), ϑ(β), (. . .)′ = ∂
∂β (. . .) are used, respectively. The changing signs in several

terms indicate the change of curvature.
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Conditions of Equilibrium Since the problem still remains statically determinate, the stress resultants can di-
rectly be calculated. For the a-arc it adds up to

Mη(α) = P
a + b

2
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2
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3

2
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2
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and within the b-arc it adds up to

Mη(β) = −Pb sin(β) (34)

Mt(β) = −Pb [1 + cos(β)] (35)

Determination of the State of Deformation The equations (28) up to (31) are solved analogously to the semi-
circle arc. The deflection within the range 0 ≤ α ≤ α0 turns out as
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and within the range β0 ≤ β ≤ π it yields
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are used. The angles of torsion can be obtained as
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respectively.
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The constants C1 up to C10 have to be adapted to the boundary conditions and to the conditions at the crossover
from the a-arc to the b-arc

w(α = 0) = 0 w(α0) = w(β0) (41)

w˙(α = 0) = 0 w˙(α0) = w′(β0) (42)

ϑ(α = 0) = 0 ϑ(α0) = ϑ(β0) (43)

ϑ˙(α = 0) = 0 ϑ˙(α0) = ϑ′(β0) (44)

At the crossover the normal stresses have to stay equal. Consequently the bimoment at the crossover is

B(α0) = B(β0) ,
ϑ˙˙(α0)

a2
+

w˙˙(α0)
a3

=
ϑ′′(β0)

b2
− w′′(β0)

b3
respectively.

At the tip the bimoment must vanish.

0 = B(β = π) , 0 = ϑ′′(β = π) − w′′(β = π)
b

respectively

For the given data the integration constants follow as

C1 = −0.00045424 C2 = 0.00322712
C3 = 0.01762562 C4 = 0.24855690

C5 = −0.08721902 C6 = 0.0
C7 = 6.39958115 C8 = 0.02514000
C9 = 1.14462473 C10 = −0.58846092

The deflection at the tip turns out as

w(β = π) = 4.7457 in (45)

and the angle of torsion yields

ϑ(β = π) = 0.0263 (46)
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Figure 5: Deflection w over Arclength of the Hook

Incorporating the transverse shear (again as described in equation (27)) the tip displacement is slightly increased.
It results in

w(π) = 4.7561 in (47)

In comparison the answer is approximately 0.2% less stiff than the result neglecting transverse shear deformation.
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In order to compare the analytical solution in a proper way with numerical results taken from shell solutions other
data are used than cited by Knight (1996) and Kemp, Cho and Lee (1998). Surely the assumptions of the beam
theory are much better satisfied if a Hooke material with a Poisson ratio of ν = 0.0 is considered (in contrast to a
ratio of ν �= 0.0). Hence it is interesting to relate the finite element results to the analytical results for a Poisson
ratio ν = 0.0. Consequently the numerical analysis with shell elements is carried out for a Poisson ratio ν = 0.0.
Thus the element might be ”in tune ”. The results are compared with the analytical beam solution for the material
data E = 3300 psi, G = 1650 psi, respectively.

Afterwards the integration constants turn out as

C1 = −0.0002062 C2 = 0.00237771
C3 = 0.01360990 C4 = 0.1913650
C5 = −0.0650233 C6 = 0.0

C7 = 10.61720 C8 = 0.0180469
C9 = 0.827941 C10 = −0.448799

Hence the deflection at the free end equals

w(β = π) = 3.5754 in (48)

and the angle of torsion becomes

ϑ(β = π) = 0.0202 (49)

Incorporating the transverse shear (again as outlined in equation (27)) the tip displacement is slightly increased. It
adds up to

w(π) = 3.5831 in (50)

As well as for ν = 0.35 the result for ν = 0.0 is about 0.2% softer than the solution without transverse shear
predicts.

4 Numerical Studies with Shell Elements

The calculations are carried out by shell elements that were developed by the authors of this paper. The 4-node
elements Q1 and Q1/E4 (see Wenzel) are both based on an unit director theory with five degrees of freedom per
node. The elements do differ in modelling the membrane terms only: While Q1 is a pure bilinear displacement el-
ement, Q1/E4 is improved by the enhanced assumed strain method, which avoids, respectively alleviates in-plane
shear locking. The bending problem is solved according to the Discrete Kirchhoff Theory(DKT), which refers to
Batoz, Bathe and Ho (1980), Bathe and Ho (1981) or Schoop (1989). These elements neglect the transverse shear
deformation.

4.1 Application of Load

The unit Force P applied at the tip of the hook is distributed over all nodes at the edge.

4.2 Numerical Shell Solution and Beam Solution in Comparison

At first the beam solution and the shell solution for ν = 0.0 are compared. Table (1) shows the results of the
numerical studies. Additionally the deviations between analytical and numerical solution are given. To judge the
convergence the results are also sketched in Figure (6).
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mesh displacement wtip[in] deviation [%]

analy. Q1 Q1/E4 analy. Q1 Q1/E4
1x9 3.5831 3.664 3.673 - 2.3 2.5
3x17 3.5831 3.582 3.586 - 0.1 0.1
5x34 3.5831 3.569 3.570 - -0.4 -0.4

10x68 3.5831 3.567 3.567 - -0.4 -0.4
20x136 3.5831 3.566 3.566 - -0.5 -0.5

Table 1: Analytical and Numerical Solution in Comparison

Figure (6) shows the displacement w of the hook’s end, that is normalised by the analytical value 3.5831 in. The
x-direction indicates the number of elements per arclength.
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0.98

0.96

20 40 60 80 120100
Number of Elements in Direction of Arc

w

Q1

1

Q1/E4

analy.

Figure 6: Normalised Displacement w

Refining the mesh reveals the elements Q1 and Q1/E4 modelling the structure slightly stiffer than the analytical
solution predicts (no transverse shear deformation is taken into account). But this deviation is really small. In case
of the 20x136 mesh it amounts only to −0.5%. Both elements are approaching the extrapolated value 3.5661 in
(referring to Richardson’s method) from above.

4.3 Comparing Different Element Types

As cited by Knight (1996) the calculations are carried out for a Poisson ratio of ν = 0.35. Therefore, the same
meshes as presented by Knight (1996) were used. For the sake of comparison the elements Q1, Q1/E4 and the
abaqus elements S4 and S4R5 were used, too. The results are shown in Table (2). The value 4.7561 in acts as a
feasible benchmark, which follows from equation (45). It incorporates the material data G = 1222.22 psi, which
belongs to E = 3300 psi,ν = 0.35, respectively.

mesh displacement wtip [in]

Q1 Q1/E4 S4 S4R5 4STG 4HY P 3DKT

1x9 4.844 4.853 4.852 28.582 4.4718 5.7061 4.1855
3x17 4.750 4.753 4.867 4.799 4.6381 5.7633 4.6011
5x34 4.727 4.728 4.95 4.829 4.6944 6.8392 4.6776
10x68 4.721 4.721 5.009 4.889 4.7087 10.7424 4.7042

20x136 4.719 4.720 5.033 4.964 4.7121 24.2047 4.6781

Table 2: Different Elements in Comparison

For a better discussion the deviation between the analytical value 4.7561 in and the value calculated by the finest
mesh in use is given for all elements in Table (3).
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mesh deviation [%]

Q1 Q1/E4 S4 S4R5 4STG 4HY P 3DKT

20x136 -0.8 -0.8 5.8 4.4 -0.9 >100 -1.6

Table 3: Deviation from Analytical Solution

Both abaqus elements try approaching a significantly higher value than Q1 and Q1/E4 do. S4 and S4R5 model
the structure softer. The analytical value is quite closer to Q1 and Q1/E4. According to Hibbitt, Karlsson and
Sorensen (2001) the S4 is a general purpose shell element, whereas S4R5 comprises a quadrilateral small-strain,
thin shell element. S4R5 also imposes the discrete Kirchhoff constraint. S4 holds six degrees of freedom per
node, S4R5 uses five (as well as Q1 and Q1/E4 do). Both abaqus elements were integrated fully. All other data
and elements refer to Knight (1996). While the element 4STG is based on a displacement formulation, 4HY P is
based on an assumed stress hybrid formulation.

Additionally, the DKT-element 3DKT is taken into account. The results wtip are shown in Figure (7) all together.

4.6

4.7
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5.1

4.8

4.9

20 40 60 80 120100
Number of Elements in Direction of Arc

wtip

Q1, Q1/E4

3DKT

analytical

4STG

S4S4R5

Figure 7: Convergence Study

The first astonishing fact is, that the hybrid element 4HY P does not converge, what used to be reported by
Knight (1996). Thus its results are not presented inside (Figure 7). Further striking is the convergence of the
3DKT element being not quite clear: It firstly approaches convenient values with an increasing number of ele-
ments. In contrast to the other elements the deflections predicted by 3DKT decrease again. S4R5 and S4 are both
converging from below, but are approaching a softer value than Q1 and Q1/E4 do. Extrapolated in conformity
with Richardson Q1 and Q1/E4 do converge to 4.7189 in from above. In (Figure 7) the curves of Q1 and Q1/E4
are virtually congruent. The best correspondence with the elements Q1 and Q1/E4 at the mesh 20x136 shows
the element 4STG, which misses the extrapolated value about 0.1% only. The S4 is about 5.2% and the S4R5
is about 6.7% less stiff than the extrapolated value is, although S4R5 uses five degrees per node and comprises
DKT (as well as the elements Q1 and Q1/E4 do). In comparison to 4.7561 in Q1 and Q1/E4 are just slightly
stiffer (by about 0.8%). Generally the elements ”in tune” Q1 and Q1/E4 seem to predict a stiffer solution than
solutions obtained by continuum elements do. Knight (1996) cites a solution gathered by volume elements for the
element 8HY P with 4.9352 in, whereas abaqus reveals 5.035 in with its element C3D20R. In contrast stands
the value 4.7561 in based on Wlassow (1964), which indicates a stiffer solution for the deflection in direction of
the tip load.
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5 Conclusion

The benchmark ”Raasch challenge”, that is very often used to judge the applicability of finite elements has been
investigated and discussed. Therefore it was modelled as a curved beam. After previous studies for the curved semi-
circle arc were carried out, Raasch’s Hook was calculated analytically according to the theory of Wlassow (1964).
The solution obtained outlines that the key role is how to model the torsion problem. The influence of the warp-
ing to the deflection is significant and should not be neglected, although the cross-section is a narrow rectangle.
Depending upon this fact an analytical solution for a non trivial boundary value problem has been derived, that
is based on a reliable theory. Numerical studies have been carried out and a good accordance between analytical
solution and solutions obtained by the shell elements Q1/E4 and Q1 have been observed.
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