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Buckling Analysis of Non-orthotropic Laminates by Means of

B—Spline Functions

W. Becker, W. Hansel, M. Oehm

Whereas the buckling of rectangular laminate plates with symmetrical layup and an effectively orthotropic

behaviour is well understood, the situation gets more complicated when an arbitrary symmetrical layup

is admitted. Then twist coupling has to be taken into account. This can be accomplished in a consistent

way by an energetic variational approach. In doing so, the use of B-spline functions turns out to be very

appropriate for the deflection representation in connection with various kinds of boundary conditions.

Validating finite element analyses show the good efiiciency of B—spline functions for the buckling analy—

sis. The eflect of twist coupling on the resultant buckling loads turns out to be considerable. It can be

both conservative and non—conservative and should always be taken into account carefully.

1 Introduction

Within thin—walled light—weight laminate structures under inplane compressive and/ or shear forces buck—

ling is one of the undesired failure modes that should be considered already in early structural design

phases.

For the case of a rectangular plate of isotropic material the corresponding buckling behaviour has been

investigated in much detail and is well understood (Pfliiger', 1975, Brush et al., 1975). The buckling

analysis of plane laminates with symmetrical layup and effectively orthotropic behaviour is also available.

In that case an analogous displacement representation can be applied for the solution of the buckling

equation, at least for edges that are all simply supported.

The buckling problem of a rectangular laminate plate, however, gets more difficult when an arbitrary

symmetrical layup is admitted. Then, in general, twist coupling has to be taken into account in the

respective constitutive laminate behaviour and this makes the buckling equation more difficult to be

satisfied together with the given boundary conditions (Rohwer, 1991).

In the following this case is considered in a basic and systematic way by means of an energetic variational

approach. In doing so, for the buckling modes first a deflection representation is chosen in the form of

a trigonometric double sine series, as it is known from the case of effectively orthotropic laminates.

Furtheron, as an alternative a buckling mode representation is chosen by means of a double B—spline

series. In each case buckling loads and buckling modes can be determined through the principle of

minimum potential energy. In particular, this works also for arbitrary twist coupling and thus the

impact of twist coupling on the resultant buckling behaviour can be clearly assessed.

The presented buckling analysis approach in particular is studied in regard of its convergence charac—

teristics. For the validation of the obtained results comparative finite element buckling analyses have

been performed by means of a commerically available finite element code and a good correspondence is

obtained.

2 Basic Setting

A rectangular laminate plate is to be considered within the w—y—plane shown in Figure 1 with the

dimensions a in it—dir'ection and b in y—direction. The thickness of the laminate is denoted by h so that

the bottom and top surfaces of the laminate correspond to z : —h/2 and z : h/ 2, respectively. The

laminate is assumed to consist of K single plies with a symmetrical layup and the laminate midplane

at z = 0. Beyond this the layup may be arbitrary. In real technical applications the single ply material
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Figure 1: Considered Laminate Plate

quite often is a polymer matrix that is unidirectionally reinforced by carbon fibers (CFRP, carbon fiber

reinforced plastics).

Assuming linear elasticity the behaviour of the laminate is to be described by classical laminate theory

(Jones, 1975, Vinson et al., 1987, Leissa, 1995, Narita et al., 1990/1992). In doing so, the effective

constitutive laminate behaviour is represented by the so— called laminate stiffness matrix through which

the cross—sectional forces N“ Ny, N111/ and moments MI, My, My,y on the one hand and the laminate

midplane strains 52, 52, 72,1 and curvatures m, on the other hand are interrelated as

Nz A11 A12 A16 311 312 B16 52

N21 A12 A22 A425 312 B22 326 52

N“! — ‘416 A26 A466 316 B26 Bee 73y (1)
Mm — B11 B12 B16 D11 D12 D16

Ä/[y B12 B22 B26 D12 D22 D26

ill/[my Blß B26 B66 D16 D26 D66 Km;

The laminate stiffness matrix consists of the inplane stiffnesses A“, the coupling stiffnesses BÜ- and the

bending stiffnesses Dij. For symmetrical layups all coupling stiffnesses Bij vanish. Then the bending

and buckling behaviour mainly is given by the bending stiffnesses DU. The calculation of the laminate

stiflnesses from the basic single ply material properties is standard and can be found elsewhere (Jones,

1975). It is to be assumed that pure inplane forces NI, Ny, NW are applied on the considered laminate in

such a way that buckling occurs. Then the buckling deflection w in zodirection is dominant in comparison

to the inplane displacements u and ii. The consideration of equilibrium in z—direction in the deformed

state (geometrically nonlinear) then leads to the following buckling differential equation (N arita, 1995,

Baharlou et al., 1987, Dickinson et al., 1986):

Dllwmwmm + 4D16w,xzzy + 2(D1‘2 + 2D66)w‚xzyy + 4132671145111”; ‘l’ D22w‚yyyy

z Nylme + 2Nmywwy + Nywyyy (2)

Within this equation a comma denotes the partial derivative with respect to the given index arguments.

In some special cases when the twist coupling stiffnesses vanish, D16 2 Dgg = 0, this buckling equation

can be solved in a closed—form manner. For a laminate with all simply supported edges, for example,

under unidirectional compressive force N the buckling modes are given by

'rmrx ‚ mry

n—

 

w(;c, : wo sin

a

where m and n are positive integers. The corresponding buckling loads are

Nfivcrit 2 “772 (D11 + 2(D12 + 21366) (9)2 + D22 (ii-)4
(4

V

b b m
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3 RITZ Method for Buckling Analysis

An energetic approximate approach to the buckling problem is to choose a RITZ representation for the

displacements in accordance with all given geometrical boundary conditions and then to minimize the

second variation of the potential energy with respect to all introduced free constants. This is a very

classical kind of buckling analysis that in principle has proven its usefulness in innumberable cases.

For the considered laminate problem it means that the second variation of the potential energy has to

be minimized. In terms of the displacement variation in this second variation reads

(52H : /{(D11w;2m + 2D12’ugwwtyy + DggU/fiw + 4D1611Lw’u17zy +

A

Anggwlwiu‘yac + 4D66'u122y1) — (wain + Nwwwwyy + NywindA (5)

Generally speaking, according to the Ritz method, for the normal deflection w a series representation is

chosen that satisfies the geometrical boundary conditions. As a representation a product of a function

XWU?) of the single variable a: and a function of the single variable y is chosen as follows:

[VI AT

WWW) : Z ZamnX7n(m)Yn(y) (6)

m:1 71:1

The quantities am” are free constants to be determined.

When the buckling load case is represented as a scalar multiple A of a given initial load state N2, N5,

ny such that

Alvmcrit I Nymrif : jvaßrit Z

then the minimization of the second variation of the potential energy (5) with respect to the coefficients

am” leads to an eigenvalue problem where the quantity A plays the role of the eigenvalue and the

coefficients amn are the components of the corresponding eigenvector. In detail. the eigenvalue problem

can be stated as (Narita, 1995):

(K — ALM : 0

k1111 kMiNi liiii lMiNi an Ü

01' 5 E _ A 5 E 3. Z E (8)

kiMiN "' kMNMN liMiN "' ZMNMN aMN Ü

Herein the components of the matrices K and L are given as

M N

1 2200 2002 0‘7'70 0022

khmmfin : Z Z Dnl'fifmfin + D12([?n—.m'fin + 1777772371) + D‘ZQI'fimfin

m:l 5:1

. 2101 1‘210 : ‘ ‘

+2D16 [Wmfin + IHmHn) + 2D26([1F07ä117—1n + + 4D66[%7h%7i

M N

lfimfin : + 1V1] + +

m:l 5:1

where the quantities mean the following integrals over the laminate area:

  

n

. . z. . . b
W _/ arziXmame 3(k)yfia(liyn _ ’amxmamxm , 8(k)yfia(l)yn 11

Win— axm any) age) ago) " i am 5mm ‘1 aye) aye) y ( l

A 0 O

For simple functions Xm(a:), Y„(y) the integrals (11) can be calculated in a closed—form analytical manner.

For the solution of the eigenvalue problem (8) standard numerical algorithms can be used.
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For the case of all simply supported laminate edges an almost classical choice of the functions Xm and

Y‚1 are sine functions:
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Y„(y) I sing (12)
X ‚ : sin

mw) a 2

leading to simple closed-form expressions for the integrals (11). For other kinds of boundary conditions

the sine functions may be not appropriate. In the case of a clamped edge, for example, the geometrical

condition of vanishing inclinations öw/öw : 0, öw/öy : O can not be satisfied by this representation.

4 B—Spline Functions

A rather general and flexible representation of various kinds of functional behaviour is possible by means

of B—spline functions (De Boer, 1972). Within this notation B—spline stands for Basic—spline because

all splines can be represented through B—spline functions. If a real interval [m0,;1:M] is subdivided into

M subintervals of equal length Ax with the partition „7:0 < 41:1 < wg < < USA/[_1 < zuM a normalized

equidistant B~ spline NM. of order k is a polynomial of degree k — 1 which is non— zero within k adjacent

subintervals and which is continuously differentiable up to the derivative (k: — 2) at the segment interfaces

xi. zifl, , MM” Within each interval [3:j.mj+1], i g j S 71+ k: — 1 the B—spline Nil/9(55) allows the

representation

k—l

mm = z (13)
m:0

with appropriately defined constants am. Outside these intervals the spline vanishes:

NM : O for {c g 3;,- and m Z a:‚;+k (14)

Furtheron, at an arbitrary real argument the sum of all B—splines in total gives unity:

NI

ZNLHJÜ) I 1 (15)

1:0

which means a normalization. It can be shown that the B~spline functions allow the following recursive

definition:

1 for x— <a:<:1:‘
[. i :

l b.
2+]

Alum) { 0 otherwise

w _ In
.—- LBN17,.“ : _______1__N. ‘_ ‚ _‘ÄZL.„_ „ i 7

‚m (k: — 1mg; m 1(„c)+ (k _ 1)A;ch+1‚k-1(J) (16)

    

i i-l-l i+2 i+3 i+4

Figure 2: Normalized B—Splines of the Orders 1 to 4
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If within each subinterval of length Am the normalized variable g is used with

13-11%

5: EM”) Z 1T (17)

the following direct segmentwise representation can be given for the B— splines of order 1 to 4:

N w 1 for 0 S 6 < 1

"L _ 0 otherwise

N232 Z ENi,1+(1-€)Ni+1‚1

2 A 1 1 _ 2

= é—Ni, 1 + —€2 - 5 + 7‘ Ni+1‚1+ ”(”—E)‘Ni+2‚1 (18)
' 2 2 2

‘3 l ‚Q l g.) 1 1

NM : %N1‘‚1+<“5€U + 5%“ + 55 + ä) Ni+1‚1

1 .‚ A, 2 1—

+ — 6" + Ni+27l + %‘]Vi+3,l (19)

The respective functional behaviour is illustrated by Figure 2.

5 Buckling Analysis by Means of B-Spline Functions

For the representation of the laminate buckling deformations equidistant B- splines of order 4 are to be

employed leading to

M N M N

w(.22‚y) : Z ZumnXmUjYMy) : Z Z amnN7„‚4(w)N„74(y) (20)

m:1 n:1 m:1 71:1

The differentiation of the B—spline NmA with respect to the normalized variable f simply gives:

  

817i. 1 , 3 .> 1 3 2 _ 1 2 r
a£4 : 5621W}; + + + Ni+171 + — Ni+2‚1 — — ALF-3’1

asz . . . .

552 Z 5Ni+1‚1+(—3€+1)Ni+1‚1+(3€— ZlNi+2,1+(1_€)Ni+3,1 (21)

The derivatives with respect to the variable J: can be calculated as

 

.7' j . Ja M _ a Na < 1 > (22)

an _ agj E:

The B—splines N134 are very appropriate to approximate the laminate normal deflection away from the

edges. Directly at the edge wo : O the spline XOA : NM ensures

w = w’ : w” 2 O

however it is not optimally adapted to boundary conditions where e.g. w’ # 0 (simply supported edge)

or w” 75 U (clamped edge). It is advantageous to introduce an additional ”boundary spline” NL74 at the

“left” edge 17 : 2:0 as a linear combination of the splines N_3?4., N_274, N474 defined on the 7’noneinside”

intervals [27_3,x1], [zu-2,32], [m_1 ‚ in such a way that

NLA Z u_oN_3‚4 + CL_2N_2‚4 + a_1N„174 (24)

complies with the geometrically given boundary conditions. In the case of a simply supported edge with

w : w" : 0 w’ 7E O (25)



the conditions w = w” : 0 mean

+ 2 + 0_ _1, _ _.) —a_ :

6“ ° 3a “ 6 1

(1-3 — 2a_2 + (1-1 = 0 (26)

which gives

(1,2 : 0 and a_3 = -a_1 (27)

With that the boundary spline can be represented as

v 1 .‚ 1 9 1 2 1

N22 = (-36” +€)N0,1+<§€°—52 + §)N1,1+ En — «5) N21 <28)

Herein the superscript (S) means ”simply supported”. In an analogous manner the boundary spline

N123 at the right edge a: : a: M can be given as

(57—13 A -13 121 1N‚_ 13-2 EN 29
NRA — 6€ NM—u,1+< 2§ + 2€ + 25 + 6 M—2.‚1 + 3E f + 3 M—1,1 ( )

In the case of clamped edges with

w : ’w’ : O w” 75 0 (30)

the conditions w : w’ : 0 lead to the following boundary splines:

w 11 ‚ 3 . 7 i 5 1 l 7 l a
„7(0) : __<3 _«2 N _ 3___ l _ _ N _1__ 'uN‘

LA ( 12€ + 2€ 0,1 + 12€ 4€ + 454-12 1717L 6( é) 2,1

1 i 7 l . l 1

N”) : —3N _o —— —3 — — N -13:4 6€ M 071+ 12E + 2€ + 26+ 6 M 2,1

11 3 5 .‚ 1 7 .
— — — ~ — — — N ,/_ 31

‘l' (1.25 4€ 46+ 12) M 1,1 ( )

The calculation of the integrals (11) is relatively easy because it is just the segmentwise integration of

polynomials and thus can be done in a closed—form analytical manner.

6 Validation by Finite Element Analysis, Results and Discussion

For actual numerical examples first a quadratic laminate plate has been considered with the edge length

dimensions a = b =1000mm. The layup consists of 5 plies with alternating layup angles of i450, so that

a [450/ w 45”/450/ — 450/450l—laminate is given. The single ply thickness is assumed to be 1mm. The

engineering constants of the single ply material are given as

E1 : 138000MPu E2 : 8960MPa 1/12 : 0.3 G12 : 7100MPa (32)

Two different kinds of buckling loading have been considered (see Figure 3): a uniaxial compressive

loading N1. in Lit—direction and a (positive) shear loading by The edges of the laminate plate first
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M
“
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Figure 3: Considered Buckling Load Cases for Rectangular Laminate Plate
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M >< N double sine series double B—spline series

4x4 27.5354 27.7966

6X6 27.2446 27.4429

8X8 27.0849 27.2519

10X 10 26.9821 27.1281

12x 12 26.9099 27.0402

14x 14 26.8561 26.9741

16x 16 26.8143 26.9223

     

Table 1: Buckling Loads Nam-t (in N/mm) for Simply Supported [450/ — 45°/45°/ — 45°/45°] Plate

under Unidirectional Compressive Loading According to Double Sine Series Representation and B—Spline

Representation

  

layup angle 19 ABAQUS double sine series double B‘spline series

0° 19.649 18.673 18.674

15° 21.513 20.563 21.608

30° 25.404 24.820 24.944

45° 26.667 27.085 27.252

60° 23.892 23.926 24.055

75° 14.499 14.388 14.431

90° 10.950 10.749 10.751

      

Table 2: Critical Buckling Loads Nam.“ (in N/mm) for Unidirectional Compressive Loading of Simply

Supported — 19/19/ — 19/19] Plate

have been assumed to be all simply supported so that both the Ritz representation of the buckling

deformation by a double sine series and by a double B—spline series are applicable. In order to study the

convergence of the Ritz series approach the numbers M and N of included series terms have been varied

from M x N : 4 >< 4 to M >< N : 16 >< 16. ln Table 1 the predicted buckling loads are given according

to the double sine series and according to the double B—spline series with included boundary splines of

the kind (28) and (29). Obviously the convergence in all cases is rather good. Relating to the 16 >< 16

results the 8 >< 8 predictions do not deviate more than about 1 percent and thus will be employed in the

sequel. A comparison of the double sine series results with those of the B-spline series shows that the

sine series representation is slightly more appropriate for the considered boundary conditions (i.e. gives

lower buckling loads)7 but there is no serious difference of the corresponding results.

For validation comparative buckling analyses have been performed by means of the finite element code

ABAQUS (ABAQUS7 1997). In doing so, a finite element discretization with 20 X 20 4—node shell

elements with the respective laminate layup has been employed. First a simply supported laminate with

a [19/ — 19/10/ w 19 layup has been considered under unidirectional compressive loading Na; for a set of

varying layup angles 19. The angle 19 is given by rotation from the zit—axis towards the y—axis as indicated

in Figure 1. In Table 2 the buckling loads are given as they are predicted by finite element analysis and

the corresponding Ritz series approaches (with 8 x 8 series terms). The agreement of the Ritz approach

results with the finite element results is fairly good. It still can be somewhat improved with a finer finite

element meshing.

Next, the same set of plates under unidirectional compressive loading Nm has been considered for the

case of boundary conditions Where in addition to a vanishing deflection w the plate inclinations 6111/83?

and 811}/ Öy are suppressed (”clamped edges”). In this case the double sine series representation (12) can

no longer be used for the normal deflection in because this representation does not satisfy the geometrical

boundary conditions 8112/89: : Bin/By : 0. Nevertheless7 the B-spline representation (20) with respective

boundary splines of the kind can be employed in this case Without difficulty. As can be seen from

the results of Table 3 again a fairly good agreement can be stated between the finite element predictions

and the B’spline series results.

The buckling analysis presented so far takes into account arbitrary twist coupling. The impact of twist

coupling on buckling can be assessed by comparison of the predicted buckling loads for the cases with

and without twist coupling stiffnesses D16, D26. Such an assessment first is done for a simply supported
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---- without twist coupling

— with twist coupling

  

0 .

0° 15° 30° 45° 60° 75° 90°

Figure 4: Critical Buckling Load NLCM (in N/mm) for Simply Supported Single Layer Plate under

Uniaxial Compressive Loading

Nxy,crit

---- without twist coupling

— with twist coupling

  

0° 30° 60° 90° 120° 150° 180°

Figure 5: Critical Buckling Load NEW,“ (in N/mm) for Simply Supported Single Layer Plate under

Pure Shear Loading

plate consisting of a single unidirectional ply with orientation 19. For varying ply angle 19 Figure 4 shows

the resultant unidirectional compressive buckling load Nmm as it is predicted by the Ritz B—spline

approach taking into account twist coupling (solid line) and neglecting twist coupling (dashed line). In

the orthotropic cases 19 2 0° and 19 : 90° there is no twist coupling and, of course, there is no difference

between the two corresponding predictions. For intermediate angles, however, a significant difference

is possible. For the range of 19 : 30°...60° with neglected twist coupling a (non—conservative) buckling

load is obtained that is up to 65 percent too high. A respective comparison for a pure shear loading

is shown in Figure 5 for a variation of the layup angle 19 within the range 0°...180°. In this case

the error due to the neglect of twist coupling can become both conservative and non—conservative. The

buckling load prediction can become both, about 40 percent too small or about 300 percent too large.

This demonstrates well, that the twist coupling stiffnesses D16, D26 of a laminate should always be

taken into account carefully, at least when the twist coupling stifl'nesses are sufficiently large. With the

Ritz B—spline representation (20) this is possible for rather general combinations of boundary conditions.

In doing so, the involved numerical effort is clearly lower than in the case of a finite element buckling

analysis. The same kinds of buckling analyses can be performed for any specified symmetric laminate

layup without additional difficulties. As an example of a multilayered laminate this has been done for

a five ply layup of the kind [19, —19‚19‚ —19,19]. For the case of all simply supported edges Figure 6 shows

  

layup angle 19 ABAQUS double sine series double B—spline series

0° 69.319 69.353

15° 66.122 66.032

30° 60.039 wv 60.552

45° 53.750 A 56.953

60° 41.102 u 43.114

75° 29.309 ~ 30.367

90° 25.191 V 25.517

      

Table 3: Critical Buckling Loads Niven-f (in N/ mm) for Unidirectional Compressive Loading of Clamped

[19/ — 19/19/ — 19/19] Plate
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---- without twist coupling

— with twist coupling

  

0° 15° 30° 45° 60° 75° 90°

Figure 6: Critical Buckling Load Nzycm (in N/mm) for Simply Supported — 19/19/ — 19/19] Laminate

Plate under Uniaxial Compressive Loading

---- without twist coupling

— with twist coupling

  

0° 30° 60° 90° 120° 150° 180°

Figure 7: Critical Buckling Load NWiCM-t (in N/mm) for Simply Supported — 19/19/ — 19/19] Laminate

Plate under Pure Shear Loading

the critical compressive buckling loads Nur”. In the same way Figure 7 shows the critical pure shear

buckling loads XVII/$67.“.

7 Conclusions

Depending on the given laminate layup with its resultant bending stiffnesses DU, the prescribed boundary

conditions and the considered loads, in general, a laminate buckling problem can not be solved exactly

through the buckling differential equation. As an energetic approximate approach the Ritz method works

in very many cases. For all simply supported rectangular laminate plates a displacement representation

in form of a double sine series is well approved. It is easy to implement, shows good convergence and

gives sufficiently precise results. It can, however, not be applied for more general kinds of boundary

conditions.

For more general boundary conditions a buckling deformation representation in form of a double B—spline

series can be applied in a similar way as the double sine series. More general boundary conditions can

be taken into account through appropriately defined boundary splines. A numerical implementation

has been done successfully and shows also good convergence characteristics and gives sufficiently precise

results. The obtained buckling predictions could be validated by comparative finite element analyses. In

comparison with the finite element analyses, however, the implemented B—spline buckling analysis clearly

shows more computational efficiency, at least when finite elements with displacement representations of

low polynomial order are used. If a larger number of buckling analyses is required, as e.g. within

an iterative optimization procedure, the computational efficiency of the B—spline buckling analysis is a

decisive advantage.

By means of the B—spline buckling analysis the impact of twist coupling on the critical buckling load has

been investigated. In contrast to the case of pure uniaxial compressive load N95, where the neglect of

twist coupling leads to unrealistic high buckling loads, in the case of pure shear loading NM, it has been

observed that the proper consideration of twist coupling may lead to both, higher and lower buckling

loads, compared to the case where it is simply neglected.
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