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Identification of Rigid Body Parameters Using Experimental

Modal Analysis Data

A. M. Fareed, F. Wahl

A simple direct method is presented here to identify the rigid body parameters ofa structure under a free—free

condition using the measured vibration data and geometrical co-ordinates of the measurement points relative to

an arbitrarily selected general co—ordinate system. These parameters consist of mass, co—ordinates of mass

centre, mass—moment of inertia, and the corresponding required principal values and axes. The test structure

should be Weakly suspended or soft mounted to ground. The rigid body motion should be carefully selectedfrom

the measured transfer functions. Practical considerations like the selection of general co-ordinate system, the

measurement and excitation points, the minimum set of measurements etc, to be noted during performing the

vibration tests or evaluating the rigid body parameters are illustrated with the help of three practical examples.

The accuracy of the identified parameters depends, to a great extent, on these considerations. Comparisons

between identified and theoretical results are also given.

1 Introduction

The experimentally based procedures for identifying the rigid body parameters have attracted the attention of

vibration engineers during the last decade. These procedures, which are iterative or direct, are based on the

determination of the lower residual properties from measured, frequency response functions (FRFs). Due to the

vast development of measurement techniques and equipment in the past years the accurate identification of rigid

body parameters has become possible. This could overcome the difficulties in performing the traditional

pendulum tests for determining the rigid body inertia properties of a test structure, since these tests are often

liable to large experimental errors and can be time consuming, dangerous, and difficult to perform if large

structures are to investigate.

The identified parameters can be used to update the accuracy of a system model subjected to a simulation, to

optimise the dynamic properties of a structure, e.g. engine mounts, suspension of an automobile, and to simulate

the frequency response functions including the contribution of rigid body modes between any pair of

measurement points.

Several researchers have made different contributions in the field of identification of rigid body parameters using

rigid body modes and mode shapes from experimental data. Some papers contain procedures to identify the

inertia parameters of a rigid body and the damping and stiffness matrices of the supports using vibration data of

grounded structures (Pandit and Hu, 1994; Pandit, Yao and Hu, 1994).

Other papers use a direct method to obtain the mass properties from the lower residual characteristics of

experimental FRFs (Bretl and Conti, 1987; Fregolent and Sestieri, 1996). The non-linear problem is then divided

into a series of simpler linear problems. Artificial test data were used as input by Bretl and Conti (1987). In this

paper the mass of the body is assumed to be known, whilst a conditioning analysis of the solving equations is

missing. This problem was overcome by Fregolent and Sestieri (1996) by using experimental data and the

method does not require the prior knowledge of the mass value.

Niebergall and Hahn (1997) apply an algorithm for the simultaneous automatic experimental identification of the

ten inertia parameters of a rigid body using the complete information hidden in the non—linear model equations of

the test body.

In this paper a direct approach, based on the theory developed by Okuma and Shi (1996), has been extensively

investigated and important practical considerations have been discussed regarding the selection of general co—

ordinate system, determination of the excitation and measurement points, minimum sets of measurements

necessary for the evaluation of rigid body parameters, suspension of test structures, and correct determination of

rigid body motion or lower residuals from the measured FRFs. Three different practical examples have been

implemented to demonstrate the capability and validity of the identification method. The method does not
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require the knowledge of any of the rigid body parameters, since these parameters are directly obtained by

measuring the required information. The test results show that the method can be recommended because of its

simplicity even for complicated structures in practice.

2 Theory

2.1 Description of the Method

Consider a three-dimensional structure and let 0(x, y,z) be a general co-ordinate system with respect to which

the selected excitation and measurement points are determined.

An arbitrary rigid body motion of a point on the structure can be described in six independent degrees of

freedom. This point, which will be denoted later as "representative point" RP, is assumed as the origin of the

general co—ordinate system. For very small oscillations, the motion of the rigid body parts of the structure can be

described by the three amplitudes a am, and am of the linear accelerations of the representative point RP and
UX’

the three amplitudes 0t (x and 0t“Z of the rotational accelerations in the co—ordinate system 0(x, y, z).
0x ’ (1y ’

If Gx, G\. and G: are the co—ordinates of the mass centre in this co—ordinate system, then the equations of motion

of the structure under a free—free condition is given in linear form by:

m 0 0 0 m - G: - m ' Gv am, Fm.

O m 0 —m Ä Gz O m ‘ GK am Fm,

0 0 m m - G", — m Ä Gx 0 a“Z Z F„Z (I)

O — m ' GZ m - G), I(M — I’m. — 1m: aux M„x

m - GZ O —m > G_,. — I(m. 1W. — Im am M„y

—m a G y m - Gx 0 — 1m,Z — I„y: [UZZ at“z M „Z

or

[M o lexe { an }6><l z {Fa }6><I
(2)

[Mr/kx6 is the mass matrix whose elements are the rigid body parameters, which have to be determined. {a0 }6X]

is the acceleration vector of the representative point RP and the force vector {F„}6X1 results from transferring all

forces applied to the structure to the origin of the representative point RP.

The basic principle for the determination of the rigid body parameters is very simple: By a defined force

excitation of the structure, the acceleration vector of the representative point is measured. If now the vectors

{F„}6X1 and {a„}6x1 are known, then it is possible to determine the unknown rigid body parameters by

manipulation of equation (1).

However, the practical realisation of this idea is not so simple. The reason is that the acceleration vector

{aw}6X1 of the rigid body motion can not be measured directly, because all the measured values of accelerations

result from the superposition of the rigid body modes and the elastic modes of the structure. In order to avoid a

superposition of different modes, one attempts to select the frequency of the excitation force in such a way that

the rigid body motion lies far below the frequency range of the elastic modes. In doing so, problems arise always

concerning the accuracy of the measurement techniques.

A solution of this problem is possible with the help of experimental modal analysis. As will be shown below,

with this method the rigid body accelerations can be extracted from the measured total accelerations of the

elastic structure.

In performing the experimental modal analysis a co—ordinate system 0(x,y,z) with N measurement DOF’s is

generally determined (a measurement point on a three—dimensional structure consists of 3 measurement DOF’s).

The relation between the excitation forces and the response accelerations of the structure in a particular

frequency range is expressed by:

lalei : lHa(°3)leN ' {F}N><l (3)
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Here {61}le is the acceleration vector of the measured DOF’s in the coordinate system 0(x, y,z) , iH“(oo)JNX/V

is the inertance matrix (or accelerance matrix) and {[7}le is the vector of the excitation forces. The modal

identification enables us to approximate the experimentally determined inertance matrix, in a frequency interval

Am 2 (DmaX — (0mm , by the following expression:

M

lH “ W] = [LR] — w2 Z —[R"1M + —~—[R"1M — of [URJN N (4)
N><N N><N 1:] jw_ A”. jw+ ><

where

M number of modes of vibration data that contributes to the structure’s dynamic response within

the frequency range under consideration,

[RA/WA, residual matrix for mode r ,

7t, pole value for mode r ,

[LR‚.]NxN lower residual matrix (residual mass) used to approximate modes at frequencies below (0mm ,

[UerNX/V upper residual matrix (residual stiffness) used to approximate modes at frequencies above

wmax and

* designates complex conjugate.

The frequency to in the experimental modal analysis is selected in such a way that it lies below the first
min

eigenfrequency of the elastic modes of the structure. In this way it is possible to describe the inertance matrix

iH“ (0))ij of the rigid body motion of the structure for (0 —-> 0 by the following expression:

lH"(w)leN z [LRleN <5)

Therefore, the acceleration of the extracted rigid body motion can be computed using:

{‘1}in = [LR]N><N ' {F}le (6)

In the following it will be assumed that the structure is excited only by a single force {Fq }3X1 2 {El\„EI„F(/Z }T at

point Q(q\.,qr\ .513). Then equation (6) will be modified to:

{5‘}in Z [LRt/ N><3 ‘ {FC/km

(7)

where the matrix iLRqJNX3 is composed of 3 columns, which correspond to the measurement DOF’s of the point

Q respectively.

Equation (7) gives us the rigid body accelerations of all measured DOF’s by exciting the structure by the

force{E]}3X,. As an example the acceleration vectors{a}NX], using equation (7), of a rightrangled plate are

illustrated in Figure 1 by performing experimental modal analysis at three different excitation points.

 

.
n

    

Figure 1. Lower Residuals of Plate 1 at 60 HZ
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In order to calculate the required acceleration vector {(10th of equation (1), then the calculated acceleration

vector {61}le from equation (7) must be transformed relative to the origin of the coordinate system 0(x, y,z) of

the representative point. The transformation is executed as follows:

The vector {£1}le can be calculated from the vector {611,}6Xl by the relation:

{‘1le} = [711]ng "lao}6xi (8)

The matrix [Ta]‚vx6 consists only of the co—ordinates of the measurement points B(pl-A„pi).‚piz)‚

i:1‚2‚...,NP‚NP=N/3, relative to the RP and has the following form (each measurement point has 3

measurement DOF’S):

1 O 0 O plz — ph.

0 — plz O p“

0 1 p1 - ph 0

[TAM6 = . . . . . . (9)

1 0 0 0 PNF: — 1?pr

O 0 — Psz 0 pNPx

0 O 1 19pr — pNPr 0

Therefor the acceleration vector {a„}6xl of the RP can be obtained from equation (8) by the least square method

as:

an : [in .mm; [min - {an am

Using equations (7) and (10) the acceleration vector of the rigid body motion can be obtained, transformed

relative to the representative point RP, as:

{W = [inKW 12,1ng A m. tut, {a 1X, an

To get the force vector {F„}6X1 corresponding to equation (l) the force vector {FL/bx] must be transferred

relative to the RP with the geometrical transformation matrix [T FL)“ as:

{Palm = [TF 16x3 1E, LXI (12>

1 0 O

O l O

O O l

lTF 16x; = (13)
i O _ q q)‘

qz 0 - qr

_ q)" qx O

Therefore, using equations (11) and (12) the vectors {a„}6xl and {F„}6><l can be determined and they can be

used further to evaluate equation (1). It is to be noted that the vector of the excitation force {1711}M appears on

either sides of equation (1) whose magnitude can be cancelled out. For the numerical application of equations

(11) and (12) we substitute therefore qu =1.

 

2.2 Identification of the Rigid Body Mass Matrix

In order to apply the above theory and identify the rigid body parameters experimentally as none of these

parameters are generally known in advance, then equation (1) can be transformed into the following
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simultaneous equations with respect to the elements of the rigid body mass matrix as shown below (Okuma and

Shi, 1996):

[A()]6x10{MU}]Ox1 :{Fu}6x1 (14)

where {MUhOXl is the vector of the rigid body parameters formed from the rigid body mass matrix [MU]6x6 ‚ i.e.

{M„}„‚Xl:{m‚mG„mG‚.‚mGZJmJ 1.1 I 1 }T (15)
r}‘\'_\‘7 1); ’ at)" r/XZ’ (I)?

and the matrix

o mm 0cm. 0 0 o 0 0 0

am. or,Z 0 —cx'‚„‚ o 0 0 0 0 0

[Mam = wt“). o 0 0 0 0 o 0 (16)

O 0 (1„Z — am. 0gM 0 O — am. — 060z O

O — a„Z O am 0 0cm. O — 0cm. 0 — 0t“

0 a — a o 0 0' a 0 — cx — 0t
my 0.);

is the coefficient matrix resulted from the elements of the acceleration vector {au}6X1 by the transformation of

equation (I).

For a single excitation the number of equations and unknown parameters are 6 and l0 respectively (see equation

(14)). Then a second set of 6 equations, obtained by exciting the structure at a different point, seems to be

sufficient to make the system of 12 over—determined. However, Okuma and Shi (l996) exhibited that in this case

the set of equations is still under—determined and that at least three independent sets of equations with respect to

different excitation points are required.

If the structure is excited at In different points then equation (M) has the following form:

[Al {1%}1

[A„]2 {Eh

‚ {M„}10X1 = . (17)

[Ag 1,. {Fl}
6/1sz 0 m @7le

Then the vector of the rigid body parameters {MU }10Xl can be obtained from equation ( l7) by the least square

method.

The accuracy of the identified parameters depends strongly on the following points:

— Estimation of the rigid body motion or lower residuals from measured FRFs

— Effects of elastic modes on the rigid body motion

— Method of suspension of the structure

— Selection of excitation points

The identification method has been investigated thoroughly as will be seen in the following examples.

3 Practical Examples

The inertance matrix, which is a symmetric matrix, can be obtained by measuring a row or a column. In this

paper, a column has been measured by varying the excitation DOF’s and fixing the measurement DOF’s. For

conducting the experimental modal analysis, acceleration transducers of type 4393 Briiel & Kjaer, impact

hammer type 8202 Bru'el & szer, charge amplifier type 2635 Brijel & szer and the modal analysis system LMS

CADA-X have been used throughout this work.

67



Excitation points in the following tables denote points used for the evaluation of equation (11). Note that the

excitation points should be distributed over either sides of the selected representative point RP for the test

structure under investigation. Values shown in parentheses in the attached tables denote the corrected identified

rigid body parameters when the mass of the structure is known, while the numbers 1 and 2 in the legends of

Figures 5.2 and 5.3 represent the identified and the corrected identified parameters.

3.1 Beam Model

The simplest way to understand the theory demonstrated in section 2 is to apply it to a one—dimensional

structure, a beam model, as shown in Figure 2. In order to apply equation (14), which is reduced to a one-

dimensional case, two sets of measurements are required. These are obtained by fixing two accelerometers at

two different points, i.e. points 1 and 9 as shown in Figure 2. The FRFs are measured in a suitable frequency

range of interest including both rigid body modes and elastic modes. Consequently modal parameters are

extracted from the measured data and theoretical FRF curves are regenerated. Rigid body motion or lower

residuals are then extracted from the measured modal data to identify the inertia parameters of the beam model,

as will be discussed in detail in the next example.

Accelerometer 0.06 m Accelerometer

  

3,1„„"la„„ "is.„„„ „1,4 0 a is :7 {a {q x

    

\

Steel Beam Model 7 y Reference Centre

503.5X4OX12

Figure 2. Beam Model Suspended Laterally

Table 1.1 shows the average values of identified rigid body parameters when the general co—ordinate origin O is

taken at the mid-point of the beam model, whilst Table 1.2 indicates the same parameters when the origin O is

shifted backwards by 0.06m (see Figure 2). Values shown in parentheses in the attached tables denote the

corrected identified rigid body parameters when the mass of the structure is known. Results obtained in both

cases show that the above method can be used safely and with a good accuracy to identify the rigid body

parameters.

        

Parameters Identified data (with known mass) Theoretical data

Mass m , kg 1.9266 (1.880) 1.880

Centre distance GX , m 0.0002 (0.0002) 0.000

Principal moment of inertia Iyy ‚ kg.m2 0.0406 (0.0397) 0.0397

 

Table 1.1: Rigid Body Parameters of the Beam Model, Co—ordinate System’s Origin O(x‚y) at the Centre of the

Beam

     

Parameters Identified data (with known mass) Theoretical data

Mass m, kg 1.9266 (1.880) 1.880

Centre distance G, , m 0.0598 (0.0598) 0.060

Principal moment of inertia I”. , kg.mz 0.0406 (0.0397) 0.0397

    

Table 1.2: Rigid Body Parameters of the Beam Model, Co-ordinate System’s Origin 0(x,y) at 0.060 m away

from the Centre of the Beam, see Figure 2.
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3.2 Plate 1

The theory is extended now to a two-dimensional structure, for instance a plate of uniform thickness. The plate is

suspended laterally with two springs. In this case three sets of measurements are necessary to identify s1x rigid

body parameters. The points 1, 5, and 20 are considered as excitation points (see Figure 3).
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Figure 3. Plate 1 with Constant Thickness
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Figure 4. Frequency Response Function (Inertance) of Plate 1

Excitation at Point 1, Response at Point 1 1

At first the general co—ordinate system 0(x,y,z) is fixed at the geometrical centre of the plate as shown in

Figure 3. Following the same steps as in example 3.1, to obtain the lower residuals from measured modal data,

locate a single point at the lower frequency range where the curve exhibits a constant behaviour (see Figure 4).

The rigid body modes or lower residuals of the plate have been determined using modal analysis and are

illustrated in Figure 1. Theoretically, when the excitation frequency u) tends to zero, the FRFs curve has a

constant value equal to the contributions of the rigid body modes in the total FRFs function. Practically it is

difficult to obtain such a condition, since the suspension of the test structure using springs, accuracy of

measuring equipment, etc., affect the FRFs function in the lower frequency range. Therefore it is recommended

that a series of lower residuals to be estimated at different frequencies over a part of the lower frequency range.

These lower residuals are then used to identify the required inertia parameters using equations (1 1), (12) and (14)

respectively. An inspection of FRFs curve in Figure 4 shows that a possibility exists in estimating the lower

residuals in the lower frequency range from 10 HZ to 1 10 Hz. These estimations produce different values of rigid

body parameters over the selected frequencies. These variations are illustrated with different curves as shown in

Figures 5.1, 5.2 and 5.3, respectively. The question still remains, which parameters should be selected and at

what frequency.
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Proper inspection of Figures 5.1, 5.2 and 5.3 provides a means for selecting the required parameters. Below

40 Hz, the values are extremely affected by the suspensions, whilst the range above 80 HZ is influenced by the

elastic modes of the structure. Considering the frequency range 40 HZ to 80 Hz, the parameters show

approximately a constant trend and therefore average values of inertia parameters are calculated. The average

values of the identified parameters are listed in Table 2.1. If the general coordinate system is now shifted to the

new positions (0.0, 0.068m) and then to (0.165m, 0.068m), then the corresponding rigid body parameters are

given in Tables 2.2 and 2.3 respectively. Results of the identified parameters in all the three cases are

approximately the same and they are also in a good agreement with the theoretical data.

      

Parameters Identified data (with known mass) Theoretical data

Mass m, kg 22.3640 (22.345) 22.345

Centre distance G, , m -0.0029 (-0.0029) 0.0000

Centre distance G,., m -0.0013 (-0.0013) 0.0000

Principal moment of inertia I”, kg.m2 0.3454 (0.3422) 0.3445

Principal moment ofinertia I”, kg.m2 0.8576 (0.8525) 0.8600

     

Table 2.]: Rigid Body Parameters of Plate 1, 0(x,y) at Center of Plate, see Figure 3.

          

Parameters Identified data (with known dass) Theoretical data

Mass in, kg 22.3266 (22.345) 22.345

Centre distance GI, m -0.003l (-0.0031) 0.000

Centre distance Gy , m -0.0610 (-0.0610) -0.068

Principal moment of inertia I”, kg.m2 0.3685 (0.3688) 0.3445

Principal moment of inertia I”, , kg.m2 0.8590 (0.8595) 0.8600

 

Table 2.2: Rigid Body Parameters of Plate 1, Co—ordinate System Shifted to Position (0.0, 0.068m)

      

Parameters Identified data (with known mass) Theoretical data

Mass m, kg 22.3268 (22.345) 22.345

Centre distance Gx, m -0.1681 (-0.1681) -0.165

Centre distance Gy, m 00675 60.0675) -0.068

Principal moment of inertia In, kg.mz 0.2822 (0.3000) 0.3445

Principal moment of inertia I”. , kg.m2 0.9222 (0.9200) 0.8600

     

Table 2.3: Rigid Body Parameters of Plate 1, Co-ordinate System Shifted to Position (0.165m, 0.068m)

The next problem to be investigated is to use an oriented co—ordinate system O’(x’,y’) as shown in Figure 3.

Here the co-ordinate system is rotated 50° anti-clockwise. The identified rigid body parameters obtained by the

above method (see Table 2.4) are approximately the same as in Table 2.1. We note that the identified parameters
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are obtained with good accuracy only when the plate is suspended at two points along the x’—axis (see Figure 3).

This means that the suspension of a structure should be always parallel to or at points along one of the selected

co-ordinate axes.

       

Parameters Identified data (with known mass) Theoretical data

Mass m, kg 22.100 (22.345) 22.345

Centre distance G; ‚ m -0.034 (-0.034) -0.0336

Centre distance G’y , m 0.006 (0.006) 0.0058

Principal moment of inertia In ‚ kg.m2 0.3482 (0.3693) 0.3445

Principal moment of inertia I”, kg.m2 0.8468 (0.8980) 0.8600

Orientation angle, 9° -51.66° -50.0°

     

Table 2.4: Rigid Body Parameters of Plate l, Co-ordinate System 0’(x’,y’) Shifted to Position (0.026m,

0.022m) and Rotated 50° anti—clockwise, see Figure 3.

3.3 Plate 2

A further extension of applications is now made to an aluminium plate of variable thickness as shown in

Figure 6. Similar steps for the estimation of lower residuals and identification of rigid body parameters are also

applied in this case. Here the points 16, 20 and 25 are considered as excitation points and three sets of

measurements are needed to identify six inertia parameters. Average values of the identified parameters are

shown in Table 3 together with the measured data obtained by oscillating the plate and finite—element model data

(Zehn and Martin. 1997). The results in all the three cases are satisfactorily good.
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Locations

16

Figure 6. Plate 2 with Variable Thickness
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Parameters Identified data (with known mass) Measurement FEM-Analysis

Mass m, kg 5.3230 (5.237) 5.237 5.3805

Centre distance G, , m 0.0832 (0.0832) 0.085 0.0885

Centre distance G, , In -0.0120 (-0.0120) -0.010 -0.0094

Principal moment of inertia Ix, , 0.0637 (0.0626) 0.0740 0.0648

kg.m2

Principal moment of inertia I” , 0.1112 (0.1002) 0.1070 0.1096

kg.m2

Orientation angle, 6° 1,070 .. .. . . . ...

     

 

Table 3: Rigid Body Parameters of Plate 2, Co-ordinate system’s origin 0(x,y)— at an arbitrarily selected point,

see Figure 6.

4 Conclusions and Recommendations

The method of identification of rigid body parameters of a structure under a free—free condition has been proved

in reference to the above practical examples as an effective practical tool for the identification purposes. The

method is very simple and can be recommended because of its simplicity even for complicated structures in

practice. The rigid body parameters obtained in the previous examples are in a good agreement with the

theoretical and experimental data. Their accuracy depends to a great extent on the selection of excitation points,

suspension of a structure, a precise estimations of the lower residuals from measured FRFs. If these factors are

selected carefully then good results are expected.

It is recommended that the rigid body parameters are determined and identified over a part of the lower

frequency range and not on a particular frequency, since average values of identified inertia parameters over a

particular frequency range are more informative and acceptable than those at single frequencies.

Based on the results of practical examples, it can be recommended to apply this method in the practice to

identify the ten rigid body parameters of a three-dimensional structure or even more complicated structures.
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