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Nonlocal Analysis of Differential Equations of Induction Motors

N .V. Kondrat’eva, G.A. Leonov, F.F. Rodyukov, A.l. Shepeljavyi

For a system of difierential equations describing dynamics of the induction motor in cases of the

ewternal load in form of constant torque and of torque linearly dependent on angular rate with the

help of qualitative theory of differential equations and the direct method of Lyapunov the conditions of

dyhotonomous and global asymptotic stability are obtained.

1 Introduction

In this paper the stability of the induction motor on the basis of its full mathematical model is investi—

gated. The model is a system of differential equations of the sixth order which describes the dynamics

of the induction motor with generally accepted idealizing assumptions, the latter are presented in detail

in Anderson (1977), Gorev (1985), Rodyukov (1997), White (1959). The main assumptions here are the

following ones. In the first place the electromagnetic field in any cross—section of the idealized physical

model of the induction motor with the face effects neglected is identical (the conjection of the flat model).

Secondly we suppose that it is possible to describe the interaction of the electromagnetic processes in

the stator winding and the rotor of the machine with the help of two symmetric linear electric circuits.

Note that when investigating the static stability of the induction motor in practice often only its static

mechanical performance is used. The latter gives the widely known Kloss formula in case the resistance

of stator windings is neglected. Such approach is well agreed with the practical operation of the induction

motor. But it is not rigorous enough from the point of View of mathematics.

To carry out the nonlocal analysis of the complete mathematical model we exploited the special choice

of mobile coordinates (the generalized Park transformation) and special choice of hybrid variables (the

quasicurrents and quasiflux linkages of the stator windings). All this gave us the opportunity to reduce

the system of differential equations to an autonomous system of the fifth order. For the latter the

Lyapunov functions were used. As a result, for various cases conditions for dissipativity, dichotomy and

global stability were obtained and the domains of attraction for stable equilibria (dynamic stability) were

evaluated. Similar functions were constructed in Leonov (1983) for the well known Lorenz system.

2 Mathematical Model

Let us consider the system of differential equations
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Here variables 1337131113, are the currents of stator and rotor windings, y is the angle of turn of the

rotor; parameters Rs, L3, RT, L,. are resistances and inductances of appropriate windings, M is the peak

significance of the mutual inductance between them, J is the moment of inertia of the rotor of the



induction motor; ws 2 271'f ‚ f, um are the frequency and the amplitude of the voltage brought to the

stator windings, MH is the moment of the load on the shaft of the induction motor, t is the current time,

and It is the parameter, characterizing a degree of influence of electromagnetic processes in a rotor on

processes in the stator windings. The equations (2.1) to which the notation coincide with the equations

(8—1b), and (8—2g)in White (1959). Neglecting the influence of electromagnetic processes in a rotor on

processes in the stator windings, we assume in system (2.1) H : O.

For further transformations of the equations (2.1) we need the expressions for the flux linkages of the

windings. For a case of the non—pole—salient electrical machine, which the induction motor is, we can

receive these flux linkages from the formulas (3—3a) — (3—3e)in White (1959), with regard to the expressions

for the inductances (3—40) — (3—49)in White (1959). In the notations accepted above they have the form
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The equations (2.1) and the flux linkages are written in so—called phase coordinates 04 ~ ß. For a

mathematical research they are inconvenient. But they allow for the simplification of the writing to use

a nonholonomic transformation of coordinates Park (Gorev, 1985). In case of the induction motor it can

be written with the help of auxiliary orthogonal axes u ~ '11, which rotate with arbitrary angular velocity

and are at the angle 71,. to a magnetic axis of the phase a of the stator of the induction motor. Such

transformation is given in White (1959). For our notations it takes the form
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These transformations mean, that we go from real (phase) variables, written in two orthogonal coordinate

systems, one rigidly connected with the stator of the induction motor and the other connected with the

rotor, over to projections of these variable (to the quasivariables) on the same orthogonal axes u — n. In

these axes the equations (2.1) and the expressions (2.2) linkages take the form:
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Let us pass in the equations (2.4) and formulas (2.5) to the dimensionless form. For purpose, we introduce

a dimensionless synchronous time T, slip 3, dimensionless variables, parameters, and the moment of load

the formulas
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where ‚u is the total leakage factor in air clearance of an induction motor.

Then, omitting the bar over the dimensionless magnitudes, we can write the equations (2.4) and the

relations (2.5) in the form
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where a dot over a variable means its differentiation with respect to synchronous time 7'.

Let us remind, that in (2.6) and (2.7) the variables 1/2,, : (4),,(7'), 1/1,; : 1/1,,(7'), 77,, : 71,,(7), (ZU : 7?„(T) are

the quasiflux linkages and the quasicurrents of appropriate windings, s : 3(7) is the slip, i.e. the relative

difference of angular velocities of the rotor and the magnetic field of the stator, 7' is the dimensionless

time (angle of a turn of a magnetic field of a stator); the parameters as, 8,. are the resistances of the

stator and the rotor windings, ‚u is the total leakage factor in an air clearance, (3 is an electromechanical

constant, inversely proportional to the moment of inertia of the rotor; 7k is the angle of a rotation of

the axes (u — v, MH is the moment of the external load on the shaft of the rotor.

Let us assume in (2.6) W : T, i.e. we pass to so—called synchronous axes of coordinates — g (which

rotate synchronoasly with the magnetic field of the stator). Then we have
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The equations (2.8) take the form
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3 Statement of the Results

Let us consider the autonomous system

3': : f(a:) .7: E R"

Let us introduce several definitions.

Definition 3.1 Point 1) E R" is called the stationary point (the equilibrium state) of the system (3.1),

if :c(t) E p is a solution of this systems.

The set of all stationary points is called the stationary set.

Definition 3.2 We say that the system (3.1) is dychotomous7 if any bounded for t > 0 the solution

tends to stationary set as t —> +00.

Definition 3.3 We call that the system (3.1) dissipative, if all its solutions are infinitely extendable to

the right and there exists such a number R > 0, that for any solution a:(t,;1:0) of this system with the

initial data 17(0, 3:0) 2 330 the following relations is true

tggäo|w(t‚aro)| < R

It follows from definition 3.3, that for each solution :17(t,170) of (3.1) there exists the moment Two such,

that

)27(t,;(:0)| < R for f t2 Tm

i.e.beginning with a moment T3,;O7 the trajectory .77(t, .170) is located in a full—sphere of a radius R.

Definition 3.4 System (3.1) is called globally asymptotically stable, if any solution of this system tends

to a certain equilibrium as t -> +00 .

With the help of the changes of variables
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we can reduce the system (2.10), (2.11) to the form more convenient for research:
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In this article the stability of the system (3.3)7 (3.4) is investigated for two cases — for the case of a

constant moment MH of the external load and for the case, when the moment MH linearly depends on

the slip of the rotor.

Theorem 3.1 Let MHzeonst. Then the following statements hold:

1) If

 

_ b 20;“: _ r

0 < ll/[H <m1n 5, 6 (3.0)

that the system (3.3), (3.4) is dyohotomous;

2) If

b 2mg.
_ M<_.L

2< H 6 ()

all those solutions of (3.3), (3.4) are unbounded.

Theorem 3.2 Let ll/[H : 1%‚(1 — s), Ft : eonst. Then,

  (a. + mm... _ 2,25) (3.7)

the system (3.3), (3.4) is globally asymptotically stable.

4 Investigation of a Model of the Third Order

The research of the system is largely based on the research of the system of the third order

: ~oiyw+ +1

y = —oa,.y — 5:1: (4.1)

ä : 5[cr7.by +1WH]

obtained from equations (3.3), (3.4) by substitution the stationary solutions 2/195 : 0, ray : O of the

asymptotically stable linear system in a system Note that the system (4.1) is of independent

interest for the theory of induction motors. lt can be obtained from a complete mathematical model of

induction motor with the help of the so—called quasistationary approach.

Note that a structure of the system (4.1) in the case MH = kz(1 — s) is similar to a structure of the well

known Lorentz system (Sinaj, 1981). This circumstance allows to carry out the unlocal analysis of this

system with the help of Lyapunov functions, considered in Leonov (1983).

Theorem 4.1 Let MHzconst.

I) If the condition (3.5) is true then the system (4.1)1'5 dychotomous;

If NIE : 0, the system is globally stable;

5’) If the condition ezteeuted, all solutions of a system (4.1) are unbounded.

Proof. The change of variables

a = s T) : way + y z 2 warm — as + 1 (4.2)

where
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reduces the system (4.1) to the form
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Under condition (3.5) the stationary set A of the system (4.4) consists of two points, the stable point ()1

and the saddle 02:

, _ 2 _ 2 _ 2 _ 4 2
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Let us introduce the function

For solutions : (0(t),77(t),z(t)) of the system (4.4) the relation

l/1(ai(t)) : Ami/253.6) — Z/U(t)'r)(t)z(t)—
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holds. It is not difficult to verify that under the condition (3.5) the square forms in the right-hand side of

the relation (4.6) are definitely negative by virtue of the Sylvester criterion (Gantmakher,1988). There—

fore it follows from (4.6), that the function V1 does not increase on some (7', +00) along any trajectory

of the system (4.4). Hence for any bounded trajectory r1:(t, 1:0) we receive by virtue of boundedness of

the function V1(.77(t,a;0)) the existence of finite V1(a:(t,a:0)) : L.

From boundedness of a trajectory :1:(t, 5170) it follows that the set Q of w limit points of 3:0 is not empty.

Let y E Q. It is known (Nemytskij, 1949) that the trajectory a:(t,y) E Q for all t E R1. Therefore

V1(J;(t,y)) : L for all t E R1. Using the relation (4.6), we receive the identities r}(t,y) E 0 and

z(t,y) E 0. From the system(4.4) and n(t,y) E 0 we receive, that 0(t,y) E const. Therefore Q C A.

Since the elements of A are isolated this inclusion implies the statement 1).

In case MH : O (y : O) the stationary of the system (4.4) consists of a single point (0,0,0),

(9(a) : 2/0. ln this case V1 : Z2 + + gag, V1 g U, and it} : 0 on a set, not containing whole

trajectories, except for a stationary point (0. 0, O). So all conditions of the Barbashin— Krasovsky theorem

are valid and the system (4.4) is globally stable.

Assume that the condition is satisfied and ;1:(t) is a bounded solution of the system (4.4). The

condition is a special case of condition (3.5). Therefore, as it was shown in item 1), 517(t) tends to

a certain equilibrium. However under the condition the stationary set of (4.4) is empty. We have

received a contradiction, which proves the statement The theorem 4.1 is proved.

For further investigation of stability of the system (4.1) we shall prove an analogy of the Barbashin ~

Krasovsky theorem (Barbashin, 1967).

Let us consider the system
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Lemma 4.1 Suppose that an unbounded positively invariant set G of the system (4.7) contains only

one stationary point p. Suppose also that in a phase space of the system (4.7) a certain function u is

determined which satisfies the following conditions: 1) 0(17) > O for any a: E G, a: # p; 2) U (p) : 0;

g 0 for all a: E G, 4) The set : Mar) : 0} does not contain the whole trajectories, ercept for a

point p.,' 5) limU(:C„) : +00 for any sequence {377,} such, that —> 00 for n —> 00 and x" E G for all

n. Then any trajectory $(t,a:g) of the system (4.7) such, that 11:0 E G tends for t —> +00 to a point p.

Proof. Let us consider a trajectory a:(t,:c0) of the point .170 E G for t > 0. Because of the properties of

i) and the positive invariancy of G it is true that u:(t,a:0) E G] : : u(;1:)) S 21070)} n G for all t > 0.

Let us prove the boundedness of the set G1. Let us assume the opposite. Let {sin} be a sequence

of In such, that for any n as” E G1 and lim +5571} : 00 for n ——> 00. By virtue of a condition 3)

lim Man) S 21(:1:o), which contradicts to the condition 5).

71—)00

Thus, G1 is a bounded positively invariant set, and p E G1 and G1 does not contain other stationary

points.

Let us consider a trajectory a:(t,a:0) of 3:0 E G1 for t > O. By virtue of condition 5) and properties of

G1, function u(.i:(t, 330)) does not increase and is bounded on (0, +00). Therefore, for t —> +00 there is a

finite lim u(;1:(t,1'0)) : L.

The trajectory u:(t, wo) is bounded on (O, +00), therefore, the set Q of its 0.) — limit points is not empty.

Let q E Q. It is known [14], that trajectory a:(t,q) E Q for all t E R1. Therefore, ’U((I(t‚ q)) E L for all

t E R1 and therefore, i2(a:(t,q)) E O for all t E R1. By virtue of condition 4) of the Lemma :1:(t, q) E 1).

Then q : p. The lemma 4.1 is proved.

Using (4.2), and (4.5) we can present function V1 in coordinates and parameters of the system (4.1)

‚ 62 2b2 ‚.IvMs M. 2 sh: of? („_qu + „,4! + „(MS
2 (1;?) (‚L/„b ‚

51

 

where 99(3) : Ö( — A/[Hsg/ar + be — (Lil/1H)

 

Let us introduce the function

and the sets

D0 : {X : W1(X) 5 n}

D1 : {X: err/"1(X) < pä, s < .32}

D2 2 {/Y5 le S 1‘1 5 S 51}

where

p0 — 2/ lows

a 2
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Theorem 4.2 Let ll/IH : eonst, the condition 5) and the condition

/ _ 2 2
r0 _ pg MHVOAT + 53 > 1

(4.8)

_ 6b arb _

are fulfilled. If F1 2 Fä/Z, then the set G : D1 U D2 is contained in the domain of attraction of a stable

equilibrium of the system (4.1).

Proof. Let us prove, that the set D0 is positively invariant for solutions of the system (4.1). For this

purpose we shall show, that for any solutions X(t) z (:1;(t), y(t), of the system (4.1) the inequality

is valid. Really,

2
a7.

v . v:_ ~2 >_ „„ 2<____
W1+2ÄW1 a, (a7 A).L +u, .L (17 ((17 /\)y _ Mara” :

That is why

(W1 — F1)’ + 2A(W1 — F1) g o

whence it follows, that for all t Z O

W1(X(t)) — F1 g [W1(X(0)) _ THE/42M

i.e. (4.9) is true. From (4.9) positive invariance of a set D0 follows.

Let us prove, that the set D1 is positively invariant for solutions of the system (4.1). It is obvious, that

there is a number s = 53 such, that 53 < .91 and

8-)

99(8) (18 = 0

53

The level surfaces of function V1 are defined by the equations

A 9

„i — M . 3 M -
+ („_H)

(1,117 („b

where <I>(s, C) is a one—parameter family of functions

(52ath Z (“530)

  

S

(I)(s,C) : C — 2 /g0(3) ds

51

The domain D1 is bounded by the closed part of a surface ‘I>(s,])02) and contains a stable stationary

point O1. Under the condition (3.5) V1 3 0, and V1 < 0 in all points 8D1, except for points

Oi (0171b W ill/[Haj ill/[H

_ _ .9, «i=1 2
7 arb’ ’

Hence by virtue of continuous dependence of solutions on initial data the positive invariance of the set

D1 follows.

Let us consider the cuts 81 and SQ of sets D1 and Dg respectively by the plane 5 2 s1

 

: (X: Ollizozfi (m— (123;) +62b2cr;(y—M/arb)2 SP5}
,.
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Under the condition (4.8) there exists F1 : such, that the circle Sg touches the boundary of a circle

51 from within. Then we have the inclusion Sg C $1 C D1, from which owing to positive invariancy of

the sets D0 and D1 we receive a positive invariance of the set G .

So, G is positively invariant, and G contains only one stationary point of the system (4.1) 7 the point

01. For function V1 in the domain G the conditions 1) - 5) are executed. Really, V1 > O in all points

of G, except for the point 01, in which V1 : O, i.e. the conditions 1) and 2) are executed. From the

S

relation (4.6) we have the conditions 3) and 4). Further, it is easy to see, that lim (0(3) d5 2 +00.
s—>—oo . 31

Therefore, condition 5) is executed. Consequenly, any trajectory X(t, X0) of the system (4.1) such, that

X0 6 G, tends to the point 01. The theorem 4.2 is proved.

Theorem 4.3 Let ZVIH : Ft(1 — 5), Ft : crmst. Then, the condition 7) is executed, the system

is globally asymptotically stable.

Proof. Let us make the change of variables

= —a,.;1: + 1 g : (17.1] ‚E : 5

 

and preserve their names. Then the system (4.1) is reduced to the form

:1': : —u‚w +

y : —a,._y + 5 — £178
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I Let us introduce the function

1

, and the designation

(01,. ~ 2/\)2(1 — 1/)2 #32

sum — A) + 8m — A)

where /\ E [O,/\0], A0 : min{ar,it}. Let us Show that for any solution X(t) = (.1:(t),y(t),s(t)) of the

system (4.10) the evaluation

r2:

 

lim Mumm g r2 (4.11)
t~>+oo

is valid. Really,
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.
a). —/\
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: g (11' — A 282 Ü (a? — A U) (I: 2 (“7‘ A _ V)2 W

( r ) i 28% — A) 2 l + 4m, _ ‚\)

'* s ——K L
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Hence we have the estimate

l/l/C2(X(t)) — Pl S [I/VÄXÜU) _ F2] 6—2At

which implies (4.11). From (4.11) the dissipativity of (4.10) follows. Consequently the system (4.1) is

dissipative as well.
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Using the change of variables

(7:5 772~1/y—/cs+lc 22a".— (‚s—52)

we reduce the system (4.10) to the system

Ö’ 2 n r) 2 —(a‚. + + um: — Lb(a)

„ ( 2H 1 > K, (4.12)

Z 2 ‚am + — — 07/ u 7}

d,.1/ 1/ may

  

where 2M0) 2 Ä (03 — U) + (am + 1/)0 — am.
‚.

The stationary set of the system (4.12) consists of one, two or three points.

Let us introduce the function

C
f

(X i

V 2 —7—————— 1:2

2 2(a,. w + [
O
h
—
a

2 + /'l/J((I)d0

b

and calculate the derivative of function V; by Virtue of the system (4.12)

or 1/2 or z/2 2K 1. r , 7,
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(M ) I u, 4 2K a7. i 2K.

If the conditions are fulfilled then the quadratic form in right—hand side of equation (4.13) is

definitely negative. Repeating; the argument used when proving the theorem, 4.2 after the relation (4.6)

was obtained, we come to the conclusion that the system (4.12) is dychotomous and consequently the

system (4.1) is dychotomous as well. Since the system (4.1) is dissipative and dychotomous it is globally

asymptotically stable. The theorem 4.3 is proved.

5 Proof of the Theorems 3.1 and 3.2

Proof of the Theorem 3.1.

1) Under the condition (3.5) the stationary set of the system consists of two points — the

stable point O] and the saddle 022 O, (0,0,a:„yi,si)‚ 7? 2 1, 2,

51,2 z (b q: MB? — 411g)

Let the trajectory X(t, p) 2 (1/1,, (t, p), z/jy(t,p), a:(t, p), y(t, p), 5(t,p)) of the systems (3.3), (3.4) be bounded

on (0, + Then a set 0,; of w — limit points ofp is not empty. Let q 6 9p, q 2 (qi), 73 2 1, . . . ,5. By

virtue of asymptotic stability of the linear system we have ql 2 (.12 2 0.

Let us introduce the set \I' 2 {X 2 X(t, q) : t E R1}. It is known (Nemytskij, 1949), that \II C 9,), ice.

all points X(t, q) are w — limit ones for the point p. Obviously, the system on the set \D can

be represented as equations (4.1).

By virtue of equation (4.13) functions V2(a;(t)) do not increase with respect to t on some (7', +00). From

here and from the boundedness of VZ(X(t, (1)) the existence of finite limits

V20 (154)) I L1

lim V2 (X(t, (1)) 2 L3
t—>—oo
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follows. It follows from the boundedness of the trajectory X(t, q), that there exists an w — limit point qw

of X(t, q). As it was marked above the trajectory X(t, qw) E Qq for all , t E R1 (9,1 is the w — limit set

of the point q). Therefore, 112(X(t, qw)) 2 L1 for all t E R1. Then, using equations (4.13) and (4.12), we

receive the identities 77(t, qw) E O, z(t,qw) E 0. From the system (4.12) and n(t, qw) E 0 it follows, that

0(t, qw) E const. So, fliIJPOOXU, q) 2 c1, where c1 — stationary point.

The similar reasoning implies that f lim X (t, q) 2 Cg, where Cg is a stationary point. If C1 2 C2, then

,—>—O(>

X (t, q) is a doubly asymptotic trajectory, going out from a saddle 02 and entering either the stable

stationary point 01, or the saddle 02. Let r} E \II. It means, that there is a sequence {tn}, tn 9 +00,

such, that ihm X(t„‚p) 2 (j, i.e. for any E > O there exists N, such, that for all n > N the inequality

,——>oc

|X(t,,, p) — (j) < 5 is true. Then by virtue of continuous dependence of solutions on initial data we have

“UTA/((714)) 2 01-, '2', 2 1,2. Hence it follows. that r} 2 0,, 7'. 2 1.2. So, Q], C A, i.e. Qp consists of

77.“) (X;

isolated points.

The statement 2) of the theorem can be proved just in the same way as the statement 3) of the theorem

4.1. The theorem 3.1 is proved.

Proof of the theorem 3.2.

Under the conditions of the theorem the stationary set of the system (3.4) can consist of one, two

or three points.

Repeating the argument, used in the teorem 3.1 when proving that the system is dychotomous,

and using the theorem 4.2 and function Vg, we establish that the system (3.3), is dychotomous.

Let us prove the dissipativity of the system for NIH 2 Ft(1 — 5). Let us introduce the function

l+1/

2

W 2

 

. . l .

(.772 +112) + .5") ~ 3:

Let us prove, that for any solution X(t) 2 ('U‘J;„(t)‚w„(t),ur(t),y(t)‚5(0) of the system the

inequality

lirn W(X(t)) g r (5.1)
t—r—oo

where T is a constant, is true. Really

W + ZAW = —[(a, — m3 + (m. — 2A + („(1 — M)(1+ WM]—

»l(cr7~ — Myg — will + V)(1— mm] ‘ [(m- — Ms? — (K — v<p2(z))sl-

— um. — Aw _ two w WW + g 3‘2 —

— [14%. — M112 — arm —/1)’l/);,;y.s + .93] _

—u3(1 w um s 2A<p<zz>mwy> — (ammo. 50T ~ (y, -s)Hy(y‚s)T

where, we remind, 1/ 2 (W), k. 2 (SR. Here

H _ (War —/\)
i—

  

73 2 3:,11,

"l 2

‚ ‚ cz,.—2/\+o.1+
y1_,w;2

sort/1.4%.): < 8A)“ _ x), a

“m ‘ “W + ”W5 + (H * we v my)? 1 am we».

55MG?“ _ A) i 8M}; — Ag) 2)\

Ä = A1 + Äg Äl > Ü /\g > Ü /\ E [0,/\0] A0 :- min{cr,.,

Then 2

A n— 7 2 — 2J?

det Hi Z “A: A) — (17.1] (14 M) U’ 1:22:71]

 



By virtue of asymptotic stability of the system there exists a number M > O such, that

mm)! g Ale—as" Mm g Mia—015’ for all t > 0

It is easy to see, that there exists a number T > 0 such, that for all t Z T we have

det H‚;(t) > O : a:,y

Hence and from relations (5.2) it follows, that for all t 2 T the relation

W + ZAW 3 2mm) (5.3)

where th) : gp(Me“‘“‘, JVIe_“5‘), holds. It is obvious, that there is a finite finger/At) : F. Therefore,

numbers T0 2 T, kg. org > 0 exist such, that for all t 2 To

we) s F + roar“

Therefore, from relations (5.2) and (5.3) the evaluation

.) 2 7 __. _

W(X(t)) — r g lW(X(0)) — r] 6"“ + (e “f — e W)
(to — 2A

follows, whence the inequality (5.1) follows.

From the inequality (5.1) and asymptotic stability of the linear system the dissipativity of the

system follows.

Since the system is dissipative and dychotomous it is globally asymptotically stable. The

theorem 3.2 is proved.

Literature

1. Anderson. P.M.; Fouad, A.A.: Power System Control and Stability, The Iowa State University

Press, Ames, IA, (1977). 568 p.

Barbashin, E.A.: Introduction to Stability Theory, Moscow, Nauka, (1967). 223 p., (russ.)

Gantmakher, F.R.: Theory of Matrixes, Moscow, Nauka, (1988). 552 p., (russ.)

Gorey, A.A.: Transients of the Synchronous Machine, Leningrad, Nauka, (1985). 502 p., (russ.)

Leonov, G.A.: On Global Stability of Lorentz System, Prikl. matem. i mekhan., Tom. 47, Vyp.

5, (1983), (russ.)

6. Nemytskij, V.V.; Stepanov, V.V.: Qualitative Theory of Differential Equations, Moscow—Leningrad,

GITTL, (1949), (russ.)

7. Rodyukov, L7vovich, A.Yu.: Equations of Electrical Machines, The St.—Petersburg State

University Press, (1997). 272 p., (russ).

8. Sinaj, Y.G.; Shil’nikov7 L.P.: Strange Attractors, Moscow, Mir, (1981), (russ.)

9. White, D.C.; Woodson, H.H.: Electromechanical Energy Conversation, New York, John Wiley and

Sons, lnc.,(1959). 528 p.

 

Address: Professor Gennadii A. Leonov, Associate Professor Feodor F. Rodyukov, Associate Professor

Alexandr l. Shepeljavyi, Natalia V. Kondrat7eva, Faculty of Mathematics & Mechanics, St. Peters—

burg State University, 2 Bibliotechnaya square, Stary Peterhof, RUS-~~198904 St. Petersburg. E—mail:

ais@ais.usr.pu.ru

86


