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Local Buckling of Composite Laminated Cylindrical Shells with

Oblique Edges under External Pressure: Asymptotic and Finite

Element Simulations

G. Mikhasev, F. Seeger, U. Gabbert

The problem oflocal buckling ofa thin composite laminated cylindrical shell under external pressure is studied.

Each layer of the shell is assumed to be isotropic. The special case of the shell being non-circular and/or having

no plane edges is considered here. Presupposing that buckling takes place in the neighborhood of some so—

called “weakest” generator, the asymptotic Tovstik’s method is appliedfinding the critical pressure and the el—

genmodes. As an example, buckling ofa three-layered circular thin cylinder with a sloped edge is investigated.

Besides the asymptotic approach the finite element simulation is applied to facilitate the estimation of the range

to which the results obtained can be applied.

1 Introduction

Thin composite laminated shells are used in many engineering structures, such as airborne/spaceborne vehicles,

ships or underwater objects, etc. Buckling under external pressure of thin laminated cylinders or panel elements

which are parts of these structures, is a subject of great practical interest (also refer to the list of papers in the

books of Bolotin and Novichkov, 1980; and Grigoliuk and Kulikov, 1988). Most of the papers published are

based on the assumption that cylindrical shells have constant geometrical parameters. In this case an exact solu—

tion of the problem of shell buckling can be found: the only difficulty is to choose a model (basic hypothesis) and

a corresponding system of differential equations. Major problems, which have been rarely studied, occur when a

cylindrical shell has a variable radius of curvature and/or a generatrix length, which make exact analytical meth-

ods impossible. Here, approximate, asymptotic, 0r numerical approaches can be more efficient.

A significant contribution to the development of asymptotic methods facilitating the analysis of buckling 0f iso—

tropic one-layered cylindrical and conical shells with variable geometrical parameters has been made by Tovstik

(1983). He proposed the approach for the cases when buckling occurs locally on the shell surface. According to

this method the approximate solutions of the governing equations are constructed in the form of functions oscil—

lating and quickly decreasing far from some generatrix named “weakest”. Later, this method was applied to study

buckling of isotropic non—circular conical shells with slanted edges under non-constant external pressure (Mik-

hasev and Tovstik, 1990). The underlying concepts of the new method as well as a great number of solved prob-

lems can be found in Tovstik’s book (1995).

The present paper mainly aims to apply Tovstik’s method (1995) to investigate buckling of a thin laminated non—

circular cylindrical shell with slanted edges subjected to normal external pressure. The specific aim defined

herein is to study the same problem utilizing the COSAR system (COSAR, 1990; Gabbert et al., 1990) based on

the finite element simulation, and to compare the results of different approaches.

2 Setting a Problem

A thin cylindrical shell is considered consisting of N isotropic layers characterized by thickness hk, the Young’s

modulus El and the Poisson’s ratio vk, k = l, N. The original surface is assumed to be the middle surface of

any fixed layer (see Figure 1).

For the orthogonal co—ordinate system (011,012, z) of the original surface assumptions are made as shown in Fig-

ure 1. The shell is non-circular (i.e. the radius of curvature R2(0t2) is a function) and non-closed in the direction of

the co—ordinate (x2 (i.e., a general cylindrical panel); its edges are not supposed to be plane curves:

L1(O(2) S 0cl S L2(0(2) . On the shell edges oc1 = L/(OLZ) we consider one of two variants of boundary conditions

(or their combination), i.e. the joint support conditions or the rigid clamp ones. Investigations focus on that case

when the normal pressure Q„ is applied to the shell.



2.1 Basic Hypothesis

Presently the laminated shell theory has been developed into two basic directions. In the most general terms the

 

Figure l. Laminated Cylindrical Shell and Co-ordinate System

Gotteland (1975), Chepiga (1976), Bolotin and Novichkov (1980). Their papers proceed from an order of shell

equations depending on the number of layers of a shell.

The second approach to the laminated shell theory is based on an unique kinematics hypothesis (Grigoliuk and

Kulikov, 1988). Although this approach is more common than the first one, it leads to a system of partial differ—

ential equations which does not depend on the number of layers. In some cases - in particular in cases where

problems of buckling or vibrations of a laminated shell occur with only minor sizes of deflections or wave length

— this system may be reduced to the system of two equations being analogous to Karman’s equations. This simpli—

fied approach is utilized in the sections below.

T0 formulate the basic principle of the laminated shell theory used herein, it is necessary to introduce the addi—

tional notations. Let 5k be the distance between the original surface and the upper bound of the klh layer, ü. and
I

W the tangential and normal displacements, respectively, of the original surface points, u (k) the tangential dis—
i

placements of points of the k‘h layer, 6,3 the transverse shear stresses, G)?” the angles of rotation of the normal 11

around the vectors e,- (see Figure 1).

The following hypotheses (Grigoliuk and Kulikov, 1988) are assumed here:

1) The distribution law of the transverse tangent stresses across the thickness of the k‘h layer is assumed to be of

the form:

6.3 = Me Ml”)(0tl,0<2)+fk(zmimwtaaz) <1)

wherefo (Z),fi. (z) are continuous functions so that

M6,.) = f0<6N> = 0 M614) = f, (6,) = 0 im) =0 at e [6,-.. 6,] <2)

2) Normal stresses acting on the area elements being parallel to the original one are negligible with respect to

other components of the stress tensor.

3) The deflection W is not a function of the co-ordinate z.

4) The tangential displacements are distributed across the thickness of the layer packet according to the general-

ized kinematic hypothesis of Timoshenko:



üi(k)(0‘«1aa2‚Z) 21’71' (ataaz) +Z®il>(al’a2)+ g(Z)®i2)(al’al) (3)

where g(z) = If0(x)dx. The functions ufol,uf“,®f2l can be found in the book of Grigoliuk and Kulikov,

o

(1988) It should be noted here that ME”) ‚ HE“ are depend on the element of the matrix characterizing the trans—

verse shifted pliability of the kth layer. Hypothesis (3) permits the description of the non—linear dependence of the

tangential displacements on the z co-ordinate; at g E 0 it turns into Timoshenko’s hypothesis,

2.2 Governing Equations

Based on the assumptions of the hypotheses l to 4 Grigoliuk and Kulikov (1988) derived a system of twelve non—

linear equations describing the equilibrium of laminated anisotropic shells. We must assume here that buckling of

the shell is accompanied by the formation of a large number of small dents. Proceeding from this assumption the

foregoing system may be reduced to the following system (Grigoliuk and Kulikov, 1988):
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Here A is the Laplace operator in the curvilinear co—ordinate system (0tl , 0(2) ‚ 13, )2 are the stress and displace—

ment functions, respectively, h is the thickness, E, v, D are the averaged Young’s modulus, Poisson’s ratio, and

stiffness, respectively, T2 = Q" /R is the hoop stress due to the external normal pressure Q”, R is the characteristic

size of the shell which is defined below (see equation (25)); the parameters 6,19, 1]} take into account the aver-

aged cffects of shear in the shell and depend on the geometrical and physical properties of the layers:
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where the functions characterizing the distribution principle of the transverse shear stresses across the thickness

are assumed as follows (Grigoliuk and Kulikov, l988):

l

f()(Z):‘h—2(Z—ö<>)(öN”'Z) at ZE[609 6N]

1

fk(Z):h—g(Z—ök—l)(ök —Z) m ZERS/H’ 6k]

'k

In equations (4) the shear influence is taken into account by the terms WEINE, 6h2b’lAZ . If these terms equal

zero, equations (4) degenerate into the well-known v. Karman equations for elastic homogeneous shells.

3 Asymptotic Approach

Let the shell be sufficiently thin to facilitate applications of asymptotic methods. A small parameter E is defined

by

1/2

e = {Hm/[120 — v2)R3]}

Some further parameters are introduced by

or, =Rs 0t2 =R<p R2 =R/p((p) TZ =—e“Eh/\

(6)

)2sz v?sz fi=s4EhR3F L} =Rs‚.(q>)

where the non—dimensional curvature p((p) is a two times differentiable function of (p (see Figure 1).

It is assumed that the shear parameters K : 752/12 /(b R2) and 6 are small:

K/TCZZSZK KG/Tc2=e3r K,T~l at e—>O (7)

These assumptions hold for a thin shell and those materials which are considered below as the components of the

layer packet. Taking into account the relationships under (6) and (7), the equations (4) may be rewritten in the

dimensionless form:

   

2 2

s4(1—s3rA)A3X+p(cp)a 15+SZA a„(1—ezm)x:0

as“ 8(p‘

4 a a2 7
c A‘F—p((p)a Z(l—c‘KAmro (8)

S

Let the shell edges s = sj((p) be simply supported or clamped. A combination of these conditions may be also

considered. The general order of the system (4) equals ten; therefore it is necessary to satisfy five boundary con-

ditions on each edge. For example, for the simply supported cylinder these conditions may be written in terms of

F andx (Grigoliuk and Kulikov, 1988):

F=AF=X:AX:AAX:O at s=s,(tp). s=sz((p) (9‘)



 

The stress state of the shell comprises the basic stress state and the so—called edge-effect integrals, which are the

solutions of the simplified equations describing the shell behavior near its edges (Gold’enveizer, 1961; Tovstik,

1995). Only two basic conditions have to be satisfied to fulfil the stress conditions on each edge. Apart from the

terms of order 82 these conditions have the form (Tovstik, 1995) of

F=X20 and x=8X/8s=0 at s=s]((p),s=sz(tp) (10)

for the joint support and rigid clamp conditions, respectively.

The problem is to find the minimum eigenvalue A for the boundaryvalue problem equations (8) to (10). Due to

the variability of the curvature p((p) and the presence of the sloping edges s, ((p) , it is assumed that the shell has

the “weakest” generator (p=(p0 (Tovstik, 1995) in the neighborhood where its buckling occurs. The func—

tions p((p), s) ((p) are expanded into series in a vicinity of the line (p = (pU:

(p _ (Po Z 9% PUP) = PUP”) + El/ZP/(LPUK + %€P"(<Po)§2 +

(11)

s, : Sf((90 ) + 81/25604)U + %£S’;((p0)gl
+u.

j:1,2

In view of the conjectural localization of the eigenmodes, the solution of the boundaryvalue problem according to

equations (8) to (10) is assumed to be of the form

Xzi£//2Xf(§,s)exp{i(€’v2q§+%a§2)} F=i€*l/2Fi(§,s)exp{i(£‘1/2q§+%a§2)} (12)

F”
[=0

A=AH+eAl+elA2+m lma>0 (13‘)

where X‚(E„ s), Fifi, S) are polynomials in q is the wave number. the symbol Im denotes the imaginary part,

and the parameter a characterizes the rate of decay of the deflection amplitude when the distance from the weak—

est generator (p = (pU increases. The real and the imaginary parts of the functions (12), with taken into account the

last inequality in equation (l3), define the two eigenmodes localized near the line (p 2 (p0.

Introducing the equations (10) to (13) into the equations (8) and eliminating the functions F, ‚ results in the fol—

lowing sequence of equations

HUXU :0

(14a)

Hm +H‘X” :0
(14b)

HOXZ +H1X1+H2X0 = 0, etc- (14C)

with
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where

___q“T_Z

* 92((p())(1+l<q2)

In case of simply supported edges, the equations (ll) and (12) together with the boundary conditions (10) at

s = s, ((p“) result in the following sequence of boundary conditions for the functions X j (é, s) :

82

Xo z 0 8:620 Z O (1621)

‚ö 82 ‚33
x1 +5 ‚37:44) (16b)

   

(16c)

    

where the last condition (16c) is obtained from the second equation of (8). By analogy, the sequence of the

boundary conditions for the clamped edges is derived:

8X0
= O l78S ( 3)X0 :0

8Xt):0 _aÄL+gS’ 82X0

— . =O 17b

as as ’ as: ( )

 

(17c)

  

3.1 Zeroth Order Approximation

In the zeroth order approximation the homogeneous differential equation holds true

3% +614lq4 - Aliq2(l+ Kq2)l
H E

()XO 854 p2((p0)(1+Kq2)

 

XH=O (18)

with the homogeneous boundary conditions (16a) or (17a). This boundaryvalue problem has the solution

“492(4)” + q:

XK)(§’S):R)(§)XB(QX) Al)(q9(‘pl))= 6 4 2

q l ((PU) 1+1“!

(19)



 

where PO(§) is an unknown polynomial in 3:, [((pÜ) = slap”) — SI ((po) , and 0t and Xf‚(0t x) are the smallest posi-

tive eigenvalue and eigenfunction, respectively, of the equation d4z/d x4 - 0t4z =0. If both edges are simply

supported the results are

Lime = sin(oc x) (x = a: x: [s — s, ((p„)]/l(cp„) (20)

If the edge s = S2 (90“) is clamped and the edge s 2 SI (tpo) is simply supported the results are

sin(0t x) sinh(0t x)

° ':—————— 0(239266 :s—s l (21)
X0 (0‘ A) Sina Sinha x [ 1((p0)]/ (‘90)

If both edges are clamped the results are

‘ h

xs<o<x> — “W” — COS (0”) oz = 4.73 x=[s—s.<<po>]/z<<p0> —1/2 (22)
_ COS(0t/2) cosh(0t/2)

Minimizing the function A„(q‚ (p0) over q, (pÜ, we obtain
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The weakest generator (p = (pf) is determined from the equation

d‘l’
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It is assumed here that > O at (p = (pf). In particular. it may be seen from (24) that in a circular cylindrical7

shell the weakest generator is the longest one. Now, the characteristic size of the shell can be introduced as fol—

lows

R: RAM) (25)

3.2 First and Second Order Approximations

The first order approximation is characterized by the non—homogeneous equations (14b) with the non—

homogeneous boundary conditions (16b) or (17b). The latter has a solution of the form (Tovstik, 1995)

x‚ (a, s) = H (ex; + €12) (ax. + x.» — mix. (26>

where 131(§)is again an unknown polynomial in E.” and the subscriptions q, (p denote differentiation with respect

to q and (p, respectively. It should be noted that the existence condition of solution (26) is identical to the neces—

sary condition of minimizing the function A„(q‚ (pH) .



In the second order approximation, we obtain again the non-homogeneous boundaryvalue problems of (14c), and

(16c) or (Me) and (17c). The compatibility condition for this problem allows to find the parameters a, A1 and

the polynomial Fuß) . Omitting details of all calculations (which can be found in Tovstik, 1995), we obtain

  

A l 'c 4
a=i Ä Alz— AWAW 13,21 (27)

AW 2 (1+ Kg“)

42 “i”2 21—2K'2—3K2 4 2o(4 o „ o

q): at + ( q" 2 q") Am): , ‘P W (qm (28>
qt: (1+ K (In) an.

A polynomial P, (ä) is unknown in this approximation. To find it, it is necessary to consider the following two

approximations. However, for developing the higher approximations the governing equations of (4) as well as the

boundary conditions (10) should be specified (in particular, the edge-effect integral must be taken into account).

Finally, we obtain the following approximate formula for the buckling pressure:

Q; :g“E/1R[A„ +sAl +O(82)] (29)

where A“, Al are defined by the equations (19) and (27), and the parameters E, l2, R, 8 are introduced according

to equations (4) to (6). The symbol 0(22) represents the quantities having the orders2 ‚ which have not been

written out here.

The dimensionless normal deflection w and the displacement function X are linked by the following correlation

w:(1 — EZKAHC. Taking into account equation (12) and separating the real and imaginary parts, the following

two eigenmodes are obtained

A

W1:R[X(D)(S) + 0<€':1/2)]€xp{‘%8Al A—W (90“(Pii)}cos[€~lqo(§0”(ph) +

([q

(30)

W2 :R[xf‚(s) + 0(8"2)]exp{—%8“ %°1 (cp—tpi.)}sin[8“qo(<p-<pf,) + 4)]

which correspond to the critical pressure in equation (29). Thus, the buckling pressure (29) is asymptotically a

double root. It should be noticed that the method utilized here does not permit to define an initial phase (1).

4 Finite Element Simulation of Shell Buckling

For the finite element analysis of the buckling behaviour of shells the SemiLoof element family of the general

purpose finite element package COSAR was used. The SemiLoqfelements have been preferred due to their good

overall accuracy in most shell applications and robustness compared with other possible finite shell elements.

Originally, the Semime element family was proposed by Irons (1976). In COSAR a curved six node triangualar

and an eight node quadrilateral element with 24 and 32 degrees of freedom (dof), respectively, can be used.

These dofs are the 3 displacements at each node, and additionally, the 2 tangential rotation at the 2 Gaussian in—

tegration points on each edge, The displacements and rotations are approximated by two families of shape func—

tions, Lagrangian polynomials are used for the displacements and Legendre polynomials are employed for the

rotations. The element has C(O) continuity along the edges and a pointwise Cm continuity at the L00f—nodes (the 2

Gaussian integration points on the edges). The element fulfils the patch test. In order to simulate different mate-

rial layers the classical laminate theory (CLT) is used. In buckling analysis a second order theory is used (classi-

cal stability problem) to calculate the critical eigenvalues from the eigenvalue problem

(K—ÄKG)u:0 (31)



with the usual linear stiffness matrix K, the geometric or initial stress matrix KG, the eigenvalue Ä and the eigen—

vector 11. In this stability problem a single parameter load is considered where the critical stress state c5C (first

critical buckling point) is calculated from an initial stress state 6'

so = My (32)

caused by the initial load state. The initial stress state is calculated from a first linear solution of the cylindrical

shell under the initial load state. In a second step the eigenvalue problem equation (31) is solved where the ei-

genvalue 7» is the load parameter. The matrix K is assembled from the original linear stiffness matrices of the

shell elements and the matrix K, is assembled from the following geometric element stiffness matrices (Zien-

kiewicz, 1977)

K55) =JGT6GdV (33)

v

where G contains the displacement gradient expressed by the shape functions and the initial element stress state

6 from the first calculation. The solution of the eigenvalue problem (31) results in the load factor 9», and the

critical load level can be calculated by equation (32). For the analysis of the considered cylindrical structure a fi-

nite element mesh with a sufficient number of elements in longitudinal and circumferential direction has to be

chosen to calculate the buckling load with sufficient accuracy. Especially if the buckling mode corresponds to a

high wave number, a corresponding mesh density is required to ensure sufficient accuracy of the eigenvalues.

  

 

70503 a: . i

5 i i

6,0EOS¥- iiii „1________ ‚-5______ ‚_

5,0503 l

l

4,0E-03

3,0E-03

2,0E-O3

20 120 220 320 20 70 120 170 220 270 320

flew—mmifiE—J

a) eigenvalue 7t b) error of the eigenvalue for mesh 2

Figure 2. Convergence of the Buckling Load in Dependence of the Number of Elements in

Circumferential Direction, Mesh l: 10 Elements and Mesh 2: 20 Elements in

Longitudinal Direction.
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Figure 3. First Buckling Mode of the Cylinder with ß=30°‚ h2=0.0‚ Clamped — Simply Supported



The first tests revealed that the first buckling mode always corresponds to a higher wave number in circumferen-

tial direction, whereas in longitudinal direction only one wave occurs. Several test calculations where performed

to study the convergence behaviour of the solution resulting in a high number of elements in circumferential di-

rection and a lower number of elements in longitudinal direction (see Figure 2). The convergence test was per-

formed to find the minimum number of elements providing an acceptable accuracy. The cylinder type with

[32200, clamped oblique and simply supported straight edges and h2=0.002 mm was modeled to perform the con-

vergence test (see Figure 5). With a number of 300 elements in circumferential direction the eigenvalue con—

verges to the final value. The number of elements over the height does not influence the accuracy of the results.

Figure 3 shows the first buckling mode of the cylinder with ß = 30°, 2:0.0 mm, clamped oblique edge and sim—

  

100 150 200 250 300

+mesh1+mesh2

Figure 4. Convergence of the Buckling Load for the Range of

100 — 300 Elements in Circumferential Direction (see Figure 2)

ply supported straight edge. Figure 4 presents the development of the error in the buckling load as a function of

the number of elements in circumferential direction.

5 Example: Asymptotic and Finite Element Simulations

As an example, the three—layered Circular thin cylinder with sloped edge is considered (see Figure 5). Here

p=l sl =0 52((p)=10+(cos(p—l)tan[3

where ß is the inclination angle of the upper edge, L 2 R10 2 200 mm is the maximum length of the shell, R = 80

mm is the shell radius. The first and third layers having the thickness /11 : h3 : 0.05mm are made of aluminum

with the Young’s modulus E: E3 : 70300 N/mmZ and the Poisson’s ratio Vl z v3 = 0.345, and the second one

is an epoxy matrix with E2=3450 N/mmz, V2 2 0.3. As can be seen. the longest generator (pf, = 0 is the “weak-

est” one, i.e. shell buckling occurs in the vicinity of the longest generator.

 

Figure 5 . Thin Circular Shell with

the Oblique Edge

10



The dependence of the buckling pressure Qt“n on the thickness h2 and the angle ß for two variants of boundary

conditions and their combination are shown in Tables 1 to 3. It should be noted that the assumptions (7) intro—

duced above hold true for all parameters taken into consideration.
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228 233 254 281 551 997 2178

        

Table 1. Dependence of the Buckling Pressure Q: on h2 and [3

when Both Edges are Clamped

 

    

  

Äs ‚ arm 194 199 217 241 478 864 1880

1059:; mm;

   

  

 

Finite element simulation 196 201 219 245 482 871 1904

ß = 30°
. 5 * 2

10 mm” 197 202 221 245 487 881 1920
As ’mtotic a roach. ‘ 4

10 Q12; N

‘Fiii‘itéelémentSimulation; <

        

197,1 201,5 219,8 244 477 868 1888

  

Table 2. Dependence of the Buckling Pressure Qi-H on h2 and ß when the Oblique

Edge is Clamped and the Straight Edge is Simply Supported

    

198

 

160 163,6 178,4 198,1 398 717 1593

        

Tab1e 3. Dependence of the Buckling Pressure Q: on 112 and ß

when Both Edges are Simply Supported

It can be seen that increasing the angle ß of inclination results in an increase of the critical pressure. An estima-

tion of the influence of shear parameters K. I on the critical pressure indicates that this influence is insignificant.

In some cases it hardly reaches 1% (for the shell with ß = 20” ‚ I13 : 0.01mm when both edges are simply sup-

ported). Calculations carried out by Grigoliuk and Kulikov (1988) revealed that this influence grows with a

higher number of layers having essentially different physical properties. In our case the governing parameters are

the averaged Young’s modulus E, the Poisson’s ratio v, and the stiffness D.

We also performed a finite element simulation to estimate the range of application of the asymptotic approach

(see Tables 1 to 3). The analysis of the calculations revealed that the divergence of the results obtained by the as—



ymptotic and numerical approaches increases with the thickness In of the internal layer. This fact is attributable

to a higher error rate of the asymptotic method when the shell thickness is increased.
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