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On the Disintegration of Very Small Satellites

F.P.J. Rimrott, L. Sperling

Small Satellites will disintegrate, if theyfind a means, such as a separation force, to do so. Ifinside their Roche

limit they are indeed subject to a separation force, that might be sufificient to bring about fragmentation. It is

shown in the present paper that satellite disintegration leads to a reduction of orbital energy. The result can be

looked upon as a generalization of the collinearity principle, according to which planetary systems strive

towards a minimum energy state, for a given constant angular momentum.

Introduction

The radius around the primary master (Sun) within which a satellite tends to disintegrate is known as the Roche

limit (Rimrott, 1989). The Roche limit is a function ot the third root of the ratio of primary master mass to

secondary master mass. If the secondary master mass (comet) is very small then the ratio becomes very large,

and so does the radius of the Roche limit. As a consequence, very small satellites have their whole orbit, or at

least the greater part of it, inside their Roche limit, i.e. they have the tendency to disintegrate.

A straightforward explicit solution process for the present problem seems rather elusive. Consequently we base

our analysis on certain a priori conditions, the reasons for which shall become apparent in the course of the

investigation.

Optimum conditions for fragmentation and subsequent fragment motion on orbits that diverge only slightly from

the original orbit of a dumbbell satellite separating into two equal point satellites apparently prevail if

fragmentation takes place at the moment when

l. the dumbbell satellite happens to be aligned radially

2. the dumbbell satellite happens to pass the periapsis of its orbit

3 the liberation of the dumbbell satellite happens to have a slight backwards rotation of

co=—e/2.

Radial alignment makes slightly diverging new orbits possible, and it and the periapsis location imply a

maximum separation force. The backward liberation secures the proper initial conditions that provide for a

smooth insertion into the new orbits.

 

Figurel. A Dumbbell Satellite Disintegration into Two Point Satellites in the Orbit Periapsis
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Let a dumbbell satellite, which consists of two point mass boulders of mass in each held together by an adhesive

(ice) as shown in Figure l, orbit a primary point master of gravitational attraction parameter u. As the dumbbell

satellite reaches the periapsis point of its orbit, it is assumed to be arranged in radial direction and to break into

two.

After Disintegration

Let us assume that the adhesion between the radially arranged boulders has failed, and the two have separated.

We stipulate that the new orbits and the original orbit are coplanar, or in other words that the angular momenta

are collinear. We further assume that the two boulders can be treated as point masses after separation.

From experimental evidence (comets) we deduce that the satellite halves continue to move along the original

orbit, obviously though with slight divergencies. We thus assume that one boulder of mass m now moves on a

slightly larger orbit (Figure l) of semi-major axis

al:a+Aal=a(l+x) (1)

with the orbit change ratio

)6 = Aa1 / a (2)

and the second boulder, also of mass m, now moves on a slightly smaller orbit of semi-major axis

a2 = a(l — x) (3)

with

Aal = —- xa (4)

The condition

|Aa2| = Aal (5)

means that the common mass centre continues on its path during the separation process.

We further assume, that the eccentricities of the new orbits are equal

8I = 82 (6)

Eccentricity

Semi-major axis and periapsis radius r0 are related by (Rimrott, 1989)

r0 = a(l—£) (7)

For the new outer orbit

r0] = al (1—81)
(8)

From Figure 2 we note that

r0l : r0 +1 (9)
2

Thus, we have from equations (l), (7), (8), (9)

a(1+x)(1—El)=a(l—e)+% <10)
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By the same token

d

a(1—x)(1—82) = a(1—€)——2—

Because of equation (6) the sum of equations (10) and (1 1) immediately yields

81:8 89:8

Thus we find that the eccentricities of the two new orbits and of the original orbit are equal.

From equations (1), (7), (8) and (9) we have also

r01: r0(1+x)

xr =——
0

2

Orbit Insertion

For the point mass on the larger of the new orbits to have a semi-major axis as given by equation (1) the

insertion velocity must be (Rimrott, 1989)

1+ 1+ 3
ii: (1__x_+_x2)

a] 1—8 a 1—8

For the point mass on the smaller of the two new orbits the insertion velocity must be

1 l ‘ 3
v7 : : (1+i+_x2)

‘ (121—8 a 1—8 2 8

This in turn means that the still intact dumbbell stellite must rotate at an angular speed of

w=v,—v2 :_ ’E1+8 Ä

d al—E d

i.e. in opposite direction of the orbital angular speed, which in the orbit periapsis is

G=i§£_ u1+€ 1

a 1—8 r0r02

From

a) JcrO

e‘ d

and with equation (l4) we obtain

m=——e
2

Thus for a smooth insertion into the new orbits the dumbbell’s (backward) angular speed must be 1/2 of the

(forward) orbital angular speed.
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Angular Momentum

After disintegration we have for the angular momentum of the point mass boulder on the outer orbit (Rimrott,

1989)

 

2

H1: 1711/le = mJttaa + x)(1—82) = I11Jua(1—82)(1+—:——%)

and for that of the second boulder

7

H2 21711/11172 :m\/ua(1—x)(1—€2):m\/;a(1—82)(1—%—%)

 

The sum of the two is

2

2 X

Hf =H1+H2 =m pa(1—£)(2—7)

Before disintegration the combined linear momentum, from equations (15) and (16), is

(mvI +mv2) = m‘lg w1——1—’—E(2+äx2)

a 1—8 4

Its moment about the point master is

“(1 + 8)
(mv1 + mv2 )r0 = mro

a(1— E)

(2+äx2):m ua(1—82)(2+%x2)

T0 this there must be added the angular momentum

“mdz
2

2 (gap—’2‘]? Juan—32 =—m1/ua(1—82 x2

ro—

  

[0):

resulting in

Hi =(mv1+ mv2)r0 + In): m W10 #82)(2—x7)

Compared to equation ( 23 ) we see that it is confirmed

or, in words, the angular momentum of the system has been conserved during the disintegration process.

Separation Force

As a result of conditions 1 and 2 there will be a separation force between the two boulders (Figure 2)

F = C1 — K1

with the centrifugal force

2 K1 + K2
2

C1 +miw

2

and Kepler forces of magnitude (Rimrott 1989)
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K1=——“":‚=E310—1) (31)

(r0 +—)2 roh r0

um um d

K2 =—d——:—2(1+—) (32)

(ro 7V ’0 ’0

and with the help of equations (17) and (14) we have eventually

Fzflfl’flifliiflx (33)
2 2

8 r0 r0 4 r0

It is interesting to note that the higher the eccentricity (comet orbits!) the greater the separation force.
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Figure 2. Satellite at Disintegration

Orbital Energy

The orbital energy of the point mass on the outer of the two new orbits after disintegration is (Rimrott, 1989)

El=_fl=_&=_fl(1_x+x2) (34)

2a1 2a(1+x) 2a

and of the point mass on the inner orbit it is

E2 =—i*lli=——W“——=—E’1(1+x+x2) (35)
202 2a(1—-x) 2a

Together the two represent the final total energy



Ef =E1+E2 :—%(1+x2) (36)

Before disintegration we have

E,- = Lam) +l1m2 (37>
2a 2

with the help of equations (17) and (14) and with I: ma’2 /2 we have

E.=—E’13(1———x2) (38)

The energy change during disintegration is consequently

14:8 (am
' a 41—8

The energy change (39) is negative, i.e. it represents an energy loss. This energy loss can be interpreted for our

model and our assumptions as the work done by the separation force during the separation process. Very small

satellites generally have the tendency to disintegrate, a circumstance well known in astronomy where the so-

called meteor showers are interpreted as the remnants of former comets. From our analysis we conclude that

disintegration is typically accompanied by a loss of energy. Since according to the collinearity principle

gyroscopic systems tend to arrange themselves such that their mechanical energy its at a minimum, we can

interpret the energy loss during disintegration as a generalization of this principle.

Orbital Period

It is interesting to realize, how little the orbital period changes for the debris of disintegration. The Kepler period

is known to be (Rimrott, 1989)

T = ZRJE (40)

u

For a slightly larger orbit with a,=a(l+x) it is then

3 3

T1=T+ATI=2nii—(1—fl (41)
u

Expanded into a series and broken off after the x term, we have

3 3
r] = 27: lg— (1+—x) (42)

u 2

3

ATI :ETX

and thus

By the same token, we have for the slightly smaller orbit

AT

[
\
J

_ _2U
(44)

2

In order to obtain an idea of realistic magnitudes of AI, we shall have a look at data for Halley’s comet

(Hartmann, 1978), for which T = 76 years, and a = 18 AU. Let us assume debris at Aal = 100 km from the comet

nucleus orbit then



100

x =——?= 093700”)

18(150)10

m, = ä 76(365)24(60)60(0,037)10‘6 = 133s z 2,217min

This comet debris on the slightly larger orbit thus arrives only 2,217 min later than the comet nucleus, after 76

years! In the course of aeons, however, the debris begins to stretch out along the orbit until the entire orbit is

covered and as a result there occur annual meteor showers (e.g. Orionid) which are observed every time the

Earth passes near the associated comet’s orbit (e.g. Halley’s).

Conclusion

It is shown that very small satellites tend to disintegrate, and that disintegration means a lowering of orbital

energy. The disintegration process is looked upon as a generalized interpretation of the collinearity principle.
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List of Symbols

U = Astronomical Unit: 150 (106) km

centrifugal force, N

energy, J

separation force, N

angular momentum, mzkg/s

inertia moment of dumbbell, mzkg

= Kepler force, N
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W
N
E
W
M
O
>

II

orbit semi-major axis, mQ

II
H

d distance, m

m 2 mass, kg

p = orbit semi-parameter, m

r = radius, 111

v : speed, m/s

x = a small ratio

8 = orbit eccentricity

6 = polar angle, rad

u = gravitational attraction parameter, m3 / s2

T : orbital period, s

o) : angular speed of dumbbell, rad/s

Subscripts

0 = of periapsis

1 = pertaining to outer mass

3 : pertaining to inner mass

f 2 final

i 2 initial
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