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On the Motion of a Rigid Body in the Presence of a Gyrostatic
Momentum

A. 1. Ismail, T. S. Amer

In this paper, the rotational motion of a rigid body about a fixed point in the Newtonian force field with a
gyrostatic momentum ¢, about z—axis is considered. The equations of motion and their first integrals are
obtained and have been reduced to a quasilinear autonomous system of two degrees of freedom with one first
integral. Poincaré’s small parameter method (Malkin, 1959) is applied to investigate the analytical periodic
solutions of the equations of motion of the body with one point fixed, rapidly spinning about one of the principal
axes of the ellipsoid of inertia. A geometric interpretation of motion is given by using Euler’s angles (Ismail,
1997a) to describe the orientation of the body at any instant of time.

1 Equations of Motion and Change of Variables

Consider a rigid body of mass M, with one fixed point O; its ellipsoid of inertia is arbitrary and acted upon by a
central Newtonian force field arising from an attracting centre O, being located on a downward fixed axis (0OZ)

passing through the fixed point with gyrostatic momentum ¢, about z— axis see (Figure. 1).

Figure 1. The Force Component
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The general differential equations of motion and their first integrals are
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ApY+BgY +(Cr+03)Y =ApyYo+BagyYo+(Cry+03)7
YAy Y =1

where A, B and C are the principal moments of inertia; x,, y, and z, are the coordinates of the centre of
mass in the moving coordinate system (Oxyz); ¥, ¥ and 7y are the direction cosines of the downwards fixed
Z—axis of the fixed frame in space (OXYZ); p, ¢ and r are the projections of the angular velocity vector of
the body on the principal axes of inertia; R is the distance from the fixed point O to the centre of attraction O,;
A is the coefficient of attraction of such centre; and py, go. 1> Yo. Yo and Yo are the initial values of the
corresponding variables.

When 7, =0 and ¢; =N =0, one obtains the equations of motion in Arkhangel’skii (1963a,c) and Sedunova
(1973), respectively. It is taken into consideration that at the initial time, the body rotates about z—axis with a
high angular velocity r,, and that this axis makes an angle 6, #nn/2 (n=0,1,2,..) with the Z-axis.
Without loss of generality, we select the positive branches of the z— axis and of the xX— axis in a way to avoid

an obtuse angle with the direction of the Z—axis. According to the restriction on 6, and the selection of the
coordinate system, one obtains

Yo 20 0<yy <1 (3)

Consider the following parameters

A B Mg/ e
a=— b=— 2="80 £= L

C C C I 4
xg =4 % Yo =1y 20="2, ”22«”3"')’5'*'35

where € 1s a small parameter, that is: r, is large. We introduce the following new variables

pEedvy p g =c+Yo r=rn k—iv—
0 P 0o oh 2 )
Y=Y0N V=Y%M V=" t=1/n

Substituting (5) into equations (1) and their integrals (2), one gets
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p+A G n+AT R gl =eaT (VT -2 Y Hha A YY)
g+ B, ph ‘B_lro_l pils =eb”! (oY1 =X Y/ +kbB v, Y))

(6)
A= (=Cp g+ XY Yo +kCinv)
hi=nvi-eqn Yi=epYi—-nm Vi=etan-mM) (-=d/dr)
and
i =1+, Fv=1+e$, A = ()7 ™)
where
Sy =a(pio—pi ) +b(gio = a7 )= 2[5 (Yo =)+ 36 (Yo =¥ )+ 26 (1=1])]
+kla(rio =¥ +b (Yo =¥ +(1=v]")]
Sy =a(pioYio =PV +b(do Yo —a Y)+Y (1-7]) Y=0,0(Ccqf¥p)
2 Reduction of the Equations of Motion to a Quasilinear Autonomous System
From the first two equations of (7), one can express the variables 7, and 7/1” through the following form
1 2 ’ ” ”?
n=l+—e" (8§ +2z0 1=y ) —k(1-%)]+ -
: (®)

” 1 ’ ” ”?
v =1+gsz—552[5, +2z5 (1= )=k (1=Y[")]+ -

We differentiate the first and the fourth equations of (6) and use (8) to reduce the four remaining equations to the
following two second order differential equations

where

P+ pr=efzg(a” =AY+ AL K k(0 =AY B (o -2 )
—k B 1A G 0 2 ([~ p S, + A DT XS, + A Cprg - Ag,
XV = yo ¥ +a” Yo (@i — Y —a” o B 1+ Ak py (1-7)%)

: 1, g .
+q,(1-C)), yl—SZ(l+B|)Y]]+Er01€3p](A 'B, - A BTHIS, 9)

+220(1=Y )=k (1=Y{)1+ A7 i 05 (67 X, —k by ) S, }+€3 {= 2§

0| =

= = ’ ” ” 1 -1 -
x(a”' - Ab ‘)yl[s,+2zo(1—yl)—k(1—y,2)]+5A Ve s kB

=b7 X8, +220 =¥ ) —k(1=V) 1+ (2k Ay —a™ 2§)p, Sy }+ -

¥y +v =el(1+ B, )_B_lr0~l£3]P1 +€2[_Sl Y +(1+B)p Sy +(1-C)) pr gy Y}
+x Vx0T = (Y + 2o b gl ) Hh(CYE =B Y 1+E 267 (10)
—v (b7 2y +2kB;) ]S, + -

@ =—A,B, = (A-CYB-C) _(a-1)b-1)
AB ab an

w?=w’ (A" B -A By,
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Here r, is large, so ro_z, r0”3, --- can be neglected. By solving the first and the fourth equations of system (6),
we obtain ¢, and 7/}’ in the form

G = AT A=AT AT T = reaT (Y - 20 Y Hha A YY) 1

n=r(h+eq 1))
in which r; and ] are replaced by (8). Substituting (12) into (9) and (10), one obtains a quasilinear autonomous

system with two degrees of freedom depending on p,, py, Y1, V1> Pio» Pio» Yio and ¥o-

Our aim is to find the periodic solutions of this system under the conditions A>B>C or A<B<C (0 is
positive). In the first case, @ <1 and the z— axis should coincide with the major axis of the ellipsoid of inertia;

that is > < @’ ,and ® < 1. In the second case , @>1 and the z— axis should coincide with the minor axis of

the ellipsoid of inertia. In such case o? >, and o >1.

We introduce new variables p, and Yy, such that

Py =P —E€X—8X1 Y2 Y>2=Y1—€V D, (13)
where

72 =<1

x=xo (b)) (A +AT 5 ) v=(l-0?)y'[1+B-B™ ;' 25
(14)
. = (T—0" ¥ =il —Ad Yo E A ="+ (6 Vel + kB YA 57 & ]

Making use of (13), (8) and (12), one gets the following expressions for S, and S, in terms of power series in €

9. =8, E8, 4 e (i=1,2) (15)
where
Sji=a(pi—p3)+bX>(pro—p3)=2x5(Yao =¥2)=2Y0(Y20 —¥2)
+kla(Y3—¥3)+b(¥3—13)]
Sy =alX (P = P2)+X1( P20 Y20 — P2 Yz)]_bxz[a_l)’(’)(i)zo—l')z)
=X2(Pao Yoo = P2 Y2 ) 1=V x5 (Pog = P2 )= Yo Vol Pag = P2) (16)
+(20=k) Sy +k[Va(pyg Yoo = P2 Y2)+Va b (Pao Yoo — P2 ¥2)]
Sy =a( Py Yoo =P2Y2) =0 X (PagTao—P2V2)
S za[V(Pzzo‘Pzz)+X(Yzo*Y2)+X1(Y%O_Y%)]+bx[‘V2(15220*P§)
+a” )"6(?20_72)_XZ(;Y%O":Y§)]_YSZI
with

X = AT =A™ A W) X =) +a” 25—k A v,=v-X (17

Formulas (8) and (15) lead to

1 .
n =1+—££2 S FE Sl S Bl Job v
. 5 1 5 (ke
Y =1+€S, +€° (S, —ES”)—S" (S =20 Sy +k Sy )+ -
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In terms of the new variables p, and 7, , the variables g, and Y] have the form

@ =-X py+eX(a yo—Aa¥a )+ X (kA —a™ 20)v, Py

1 _ : : T
+(X—EAII)SHP2+X(/<A1Y2+“ '¥0) 8y 1+ - (19)
i . 1, . . 1 .
Yi =Y, tEV, p2+82[X(a 1}’0_362“{2‘521 Pz)‘z NTRZE R

Substituting (13), (15), (16), (18) and (19) into (9) and (10), we obtain the following quasilinear autonomous
system of two degrees of freedom
P+ @?py=€>F(py, pr. Y2 12, €) 20
) : T (20)
Y2 +Y2 =€ ®(p3, P2, Y25 Y2, €)

where

F=F+eF+ - O=P, +ePy+ -
Fy=f,=vy(1-& )p, D=y +V (1= )X+ Y2)
Fy=f3=% 0=V (10 ((+0172)  Pi=@3 =V S +Vix (1-0)p,
fr==0"S, py+ A X (b7 S+ X 4y )+ A C X py 3 =36 X Y2 po(Aj+a™h)
—a” Py (20 + Yo 1)+ A k(1=1)py +(C =) X 127, p2 (14 B1) Sy, Vs
+%ro_1ﬁ'3[2172(A_lB1—AlBA])511+A71(174-’f(,>—k31 Y2) Sy 1

f3 :“2032172512+(X+X1Y2){—w2511 —a '+ Y1)+ AILC x* Pzz“”k(]—% )1

+ A8 + AL X py(XgVa py = YoV pa) = papala” Yo (Vo +VX)+2AkV, Y, ]

+X Pr(VaYa Pr +VY, P NG =D = (14 B, )(VSy P2+ 51 Ts )+% z(a”

=AYy S +(2k Ay —a 20) Py Soy + X (a7 ¥h =2 V2 )= A (2C, Xp, py 2n
+X)92)+ Yo Ya( A +a™ ) +7, 13 (1-C )]+%r0_]ff3{ (A™'B, - AB)2P, (S),

=2y 521+k521)+(X+X1Y2)511]+2Aﬁl[(b_lx(/)“kBle)Szz_kBIVSﬂPz]
+A7 (kB Y, b7 x) S, 1)

@y =[(14B) Sy =(1=C\) X ¥, py 1py + x5 (b +45)+[k (C 13- B))
Y012 _Zf)bWI _szzz -8 1Y,

O3 =(1+B)IPy Sy + (4 +%¥2) S 1+ XA=CD{ (@™ Yo =212 Vo P2
=2V Py P+ (U Y2) Y2 1 =2V Sia =V Py S +2 X0V, ¥, Py
=YoVaYa Pyt P2) =V P (b7 o+ X p3)+2X 7 (a7 o =12 1) Y 2
+k[2C Vy Yo V2 P2 +V(C V3 =By )pa 141267 Xy (b7 25 +2k B,) 1,155,

System (20) has the following first integral obtained from (7) in the form

V3 +¥3+28(VYy Py +VoTa Py + 5y ) +E2 (Vv pi+2X(a™ Y —%a s

o 5 i B (22)
=S¥y —(1+73) 81 +28 1+ = (75) " -1
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3 Formal Construction of the Periodic Solutions

Since the system (20) is autonomous, the following conditions

P,(0,0)=0 P,(0,0)=0 ¥,(0,€)=0 (23)
do not affect the generality of the solutions (Arkhangel’skii, 1963b). The generating system of (20) is

P +0?pl” =0 Py = (24)

which admits periodic solutions in the form

ps? =M, cosw'T+ M, sin 't YY) =M cost (25)
with period T, =2mn. M, i=(1,2,3) are constants to be determined. We suppose the required periodic
solutions of the initial autonomous system in the form

P>(T,8)=( M, +PB,)cos@ T+ (M, +B,)sinw T+ Zs" G, (1)
k=2

_ (26)
Y2 (T, €)= (M5 +P; )cost+2£" H, (1)

k=2

with period T(e) =T, +o(e). The quantities B;, @B, and B, represent the deviations of the initial values of
Py, P, and 7y, of system (20) from their initial values of system (24); these deviations are functions of & and
vanish when € =0. We express the initial conditions of (26) by the relations

p2(0,8)=M, +B, P2(0,8) = (M, +B,) (27)
¥2(0,8) =My + P, 1,(0,8)=0
Let us define the functions G, (1) and H, (1) (k=2,3,---) by the operator (Ismail, 1997b)
d o 0 1 9° U=G,, H
U=u+ “B,+ u[32+ MB3+—a”7[3)2+--- kr 7k (28)
oM, oM, oM 4 20M; u=gy h

where the functions g, (1) and h,(T) take the forms

T
1 7 . #
g (D= —JFk(tl)s1nc0(‘t—t,)dtl
()
0
.
hk(r)=J.d>j((r1)sin (t—1,)d1, (k=2,3)
0
with
;o1 d¥?F , 1 4o
Fk(f)—(k_z)!('m)ﬁ:ezo o, (T)=(k_2),(dk 7 )=e=0

We notice that the right-hand sides of the system (20) begin from a term of order €2, and therefore we have

El= o™ 18" y= BY
DL (D) =D, (P, b4 AP ) = 0P (k=2,3)
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Now, we try to find the expressions of the functions F2<0) and (13(20> . The periodic solutions (25) can be rewritten
in the forms

S = Ecos (0/T-m) ¥ =M, cost (29)

where

E= 1IM]2 +M22 and 1 =tan"’ % . Making use of (29) and (16), one gets
1

SO =SOGO O AP  Gi=12)

1 oo 11 " g
SO =E*[a (coszn——2—)+bX2co 2(sm2n—5)+5(bxzwz —a)cos2(wT-1)]
7 ;o 1
—2M ;4 [x5(1—cosT)+ y; smr]—;k M3 C,(1-cos2t)

Sé?) =M,E{acosn +—;—(bc0’X —a)cos[(w’—l)‘t—n]—%(bw’X (30)
+a)cos[ (0 +1)T-n])
S](g) =aE{ X[cosn—cos(@T—n)]+y; M;[cosn—costcos(wT—1)]}
—bX? Eof {a”'yy[sinn+sin(@T—1)]+), M;sintsin(@t-1) }
—vxj E[cosn—cos(@T—N)]+k EM-{ va[cosn—costcos(®T-N)]
—v, bsintsin(@t-n) }+(z5 —k) S
S;‘;) =a{sz[coszn—cosz(co’r—n)]+xM3(l—cosr‘)+le32sinz'c}
+bX{a yyMysint-v, E* @[ sin® n—sin® (@'1-1) ]
+yx, M7 sin® 1}~y S

Substituting (29) and (30) into formulas (21) we obtain

FO =M, L(o)cos@T+ M, L(a )sin T+ ---

. (31)
dJ(z):M3N(u)’)cost+
where
L) = [-(aM}+ba* X M) +(M+M2I)ba*X* 1+ A, C, o * X2
2 2 ;o2 L.o. 9 P
X(M{+M5)+2M; xy® +k(A,+5M3 o C)—-[zga +vy(l
, 1 g i ’ .
—w2)]+5ro’f<3(A 'B-AB T )aM] +bo?X*M; -ba? X} (M
.1
+M22)—2M3x0—5kM32C]] (32)
N(@)=—(aM}+ba*X°’M2)—~(ME+M2)[aB +&? X2 (1-b)]
+2Myxy—[20b7 —vy,(1-a? ) 1+ k(MIC,-B,) ]

From (28), (31) and (32), the following results are obtained

g,(Ty) = n(w) ' M, L(e) 8,(Ty)=nnM,L(&)

(33)
hy(Ty) =0

hy(Ty) =Tn My N(w)
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The constants M,, ®'M,, and M, which represent the initial conditions of the generating solution (25), the
deviations B, (€), @B, (€), and B5(€), and the correction for the period o must be found from the conditions of
periodicity of the solutions p,(T,€), Y,(T,€), and their first derivatives. These conditions can be written in a

form

y, = py(Th+0,8)— py(0,£) =0 v, = pr(Ty +0.8)— py(0,8)=0

. . (34)
Y3 =v,(Tp +0,8)—7,(0,8) =0 Yy =7, (Ty +0,8)—¥,(0,€) =0

However, on the strength of the existence of the first integral (22) of system (20), the condition for periodicity
V, =0 is not independent (Arkhangel’skii, 1963c). Writing the integral (22) in the form

Vi(Ty+ 0, 8)+ 95 (Ty + 0, £)+2e[ VY, (Ty + 0, 8) py (Ty + 0, €)+ Vo 15 (Ty + 01, €)

Py (To+ 0, )+ 8y, (T + 0, 8)]+e2 (V2 p2(Ty+ o, 8)+2 X [a™ vg — X ¥ (To + 0 €)
~ S (Ty + 01, &) po (Ty + 01, &) ¥ (Ty + 0t &) —[1+ 73 (Ty +01,€) 1Sy (Ty + 04, €)
+28,, (Ty+00, &)} +...= 73 (0,8) +73(0,8)+2&[VY,(0,€) py(0,€)+V, ¥5(0, 8)
P2(0,8)+ 85, (0,8)1+e> (v p3(0.8)+2 X [a™ 5 =12 ¥2(0.8) =S5 (0,€) p5(0,€)]
¥2(0,8)=[1+73 (0,€)1S,(0,€)+255,(0, &)} +---

and using the condition (27), we get from (34)

2(My+B3) W3 + W35 +eQ, (W), V5, W3, ¥y,8) =0 (35)
Here @, is a function of all its variables and ¢,(0,0,0,€)=0.1f M5 #0, it follows from (35) that

Vs = [iW W2, Vs, Wy, 8)

where f; is a function of all its arguments, and £;(0,0,0,€) =0. Then it follows immediately that the condition

y; =0 holds in (34), which is a consequence of the other ones
V=Y, =y, =0 (36)
Substituting the initial conditions (27) into the integral (22) for T =0, the following equation is obtained
M{+2M3By+PB5 +2e VM (M, +B)+ - =(Y5) " =1

Supposing that g is independent of €, we get

2

M3 =(y5)% -1 BR+2M By +2evM (M, +B)+ =0 (37)
One obtains M and B; from equations (37) and condition (3) in the form

My=(1-v) (vg)™ 0< M, <oo

38
Br=—ev(M,+B)+ - =8

because Y; is an arbitrary parameter, and M, is an arbitrary positive constant. This means that the periodic

solutions (26) depend on an arbitrary constant M, and a function ;(€), vanish when € tends to zero. This
property does not depend on the form of o.. Expanding the independent conditions of periodicity (34) in a power

series of oo and retaining only the linear terms (neglecting even the terms e’a), it yields
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Po(Ty. &) +a py(Ty, )+ -+ —py(0,8)=0
Y2 (Ty, €)+a Yo (Ty, )+ -+ -¥,(0,e)=0

Using the initial values (27) in the above relations, we obtain the independent conditions for the periodicity of
(36)

pr(Ty, &) +0@ (My+By)—(M+B,)=0
po(Ty.€) =0 (Mo +B,) =0 (M, +B,)=0 (39)
¥, (Ty.e)—a(M;+B3)=0

Making use of (26), (38) and the last equation of (39), the function c(e) takes the form

a(e) =e* (M3 +B3) " [Hy(Ty) +eHy(Ty) +++-] (40)

It follows then that, by neglecting terms of order o and €’ in (39), we also omit the terms of order g
Making use of (23) and (27), we shall investigate those periodic solutions when the basic amplitudes vanish, i.e.

My =M,=0 (41

Applying (40), (41) and (26), for the first two equations of (39), one gets the system determining B, and B, in

the form

Gy (Ty) +€G3(Ty)+ B y(M3+B3) " [Hy(Ty)+eHy(Ty)+ -]+ (-+)=0
GZ(T0)+EG3(T0)_03,231(M3 +P; e [Hz(To)+€H3(To)+ a5s] % 7 (o) =]

By virtue of (33), the above system is transformed into

—1nB (@) [ L) =@ Ny (o )]+e[ Gy(Ty)+ -+ 1=0 )
B, [ L(0)—a? N () ]+e[G3(Ty)+ - 1=0

where L;(w) and N,(w) can be obtained from (32) by replacing M,, M, and M, by B,, B, and M;+B;.
By (11), (14), (17) and (32), one has

L&) = > Ny ()= (BT +BE)W, (@) + 25 Wy (@) +k Wy (o) + W, (00)
where

W (o) =d,+(dy+d3)ry' 0,

Wy (o) =(dy —dsdgd; ) +15" 05 [dsdg (dg +doy )+ B dy —b7" dig(1+a " dgd, )]

W, (o) = (dsdgdy, +dyy)+ 151 05 (ds[dg (dyy—dy ) - B dy J+b 7 dyy (a ' dgdy +dys) Yy V4
, a -1 _ _

W4(m)=—5d10[[3%+(%)[322];b e, dy=b"(a=1)(2a-b-1)

dy=b7[b(a=b)+(a-1)][aA™ (a=1)(1=b)" +bB7"]
I

dy =EA" (I-a)ab™ (1-a)1=-b)"+AB™"] dy=a ' [1-b2(a=1)(b-1)]
ds =(ab)?[ab+(a=1)(b-1)] de =b™' (a+b-1)
dy =(ab) ' (2b=){ab+(a=1)(b-1)] dg = (Ab) '[ab+(a—-1)(b-1)]
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dy=(ab)"' (2b-D[A " a(a=D)+B'b(b-1)]
diy=(Ab)'(a=1)+(aB) ™ (b-1)
d,; =(ab) (1=b)a+b-1)[ab+(a-1)(b-1)]

d;, =(ab®>) ' (1=b)[b* =(a-1) +~;~b(a—l)(b—a YM7]

dy=(Ab) " (a=Dlab+(a-1)(b-1)]
dyy =(ab) ' (1=b)a+b-D[aA ™ (a=1)+bB™' (b-1)]

dys =§—b(b—a)M§—(a—l)

From the conditions that the z— axis has to be directed along the major or the minor axis of the ellipsoid of

inertia of the body, it follows that W, (') >0 for all ®" under consideration. We assume that
2o Wa (@) + k Wy (@) + Wy (00) %0

By use of (42), the expression of 3, and [, are obtained in the form of a power series of integral powers of €.

These expansions begin with terms of order higher than e?. Consequently, the first terms in the expansions of
the periodic solutions and the quantity a(e) are expressed in the following forms

pr=e{—x,(a=D)""[1+bB (a=1)"" 15" 051+ My cosT)+ -
q =8a(l—b)—l{y6a"' +9o M sinr—A”(l—b)_]ro_]€;[y6+(z(')—kaAl)
XMysinT+ads[kb(1=b)dg—z5(2b=1)]}+-
2 ’ v |
I =1—£‘M3[x()(l—cos‘c)+yosm‘c+zkM3C1(l—COSZT)]+---

Yy =MycosT+:- Yy =—M;sinT+-- 43)

¥ =1+e? { (1-b)" M yy sint+(1—a) ™ M, xf)(l—cos‘c)—% b (1=b)"dy M3 2
1
X(1=cos2t)+— M3 k(2abdsdg+C,)(1—-cos2t)+ry' (3 [—ab A (1-b) M,
Xy sint+ab B (a=1)" M, xg(l—cosr)+% b (1=b)™ 7 M3 (1—cos2t)
x[ A7 a*bds (1-b) " (2b* =2b+1)+d, ]+% k(1-b)™ M2 (1—cos2t)[ b d;,
—aA™ dy(1-b)" =(1-b)(2b~1)" dgdy 11} + -+
ae)=e’mn{ 2M;xy—zo b +(ab) " (kd, -z, d, ) ds +k (M2 C,
—B))+(ab) 1y 051 [ (dg +dg)dg +dy B~ |25 +1 (dy3 —dyy ) dg
s B TR 1o

Our solutions (43) are considered as a general case of El-Barki et al. (1995) and Arkhangel’skii (1963c) and have
no singular points at all, i.e., the obtained solutions are valid for all rational values of ®”.

Now we investigate the deviations between our solutions and the Newtonian and classical ones, which were
obtained in El-Barki et al. (1995) and Arkhangel’skii (1963c). The deviations can be expressed in the form
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Ap, =e{x) b By (1-0” 02 )+ @ 2 A7 15 04 14 (=~ )M cosT)+ -+
Ag =e{-y;(aAADY il + AT Mysintly —x) —x2 AT AT RS
Ar =g’ [0]+ - Ay, =€[0]+ --- Ay} =€[0]+ -
AY =€ {aMs (g~ Y1—cosT)—b M, yj(aAA>) ' ry' 0 sint
1 _ o el
+EM32(1—0052‘C)[a(1-b) Yot =) =X bCAAD T i e 1+

Aoe)=e mn{(1-B) —% V=B g 03} + -

and
Apy =AP1+€(Xik—x]**)M3cosr+
Ag =Ag +eAT' My (3 =X —k A))sinT+ -
1 5,2
Any Z*ZS M;Ci(1-cos2t)+ ---
Ay =€[0]+ - Ay =€[0]+ -
A =AY1’+€2{-§-M32 Cl(l—cos2’c)+%M32(l—cos‘c)[a(l—b)_](xf—xf*)_k])]}+
Aay(e)=Aa+elmnlzy(2-b) " +k(M2EC, B, )+(1+B,)x| 1+
where

1 = (b’ ) A X
Xl =(1—m2)“1[k(A1—mz)—zé(a’I ——Alb"l)]

X; :—-26 (1_(02 )~1(a71 —A] b’] )

4 Geometric Interpretation of Motion

In this section, the motion of the rigid body is investigated by introducing Euler’s angles 6, vy, and ¢, which
can be determined through the obtained periodic solutions see (Figure 2).

attracting centre

Figure 2. Representation of Euler’s Angles

Since the initial system is autonomous, the periodic solutions are still periodic if ¢ is replaced by (z+%,), where

to 18 an arbitrary interval of time. Euler’s angles, in terms of time ¢, take the forms (Ismail, 1997a)

cos8=7v" d_\y:__py+qy'
Ty (44)
tan @ =22 LT -
Yo dt dt
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Substituting (43) into (44), in which ¢ has been replaced by +1,, and using relations (5), the following
expressions for the angles 6, vy, and ¢ are obtained

@ = (T/2)+ ryty +-- 8, =tan"' M,
0=0,-2[0,(t+1,)—0,(t)]
Y=y, +eccosecqfcosO [y, (t+15) -y, (1))]
Q= Qg+ 1yt —€c cotBy 4/cos By [@(t+1,)— @, (tg)1—€* tan 8y [, (t +10) — 9y (ty) ]
where

0,(r)=a;sinryt—a, cosryt —as tan Oy cos2 iyt

" 1 I - .
v, (1) =ay 15 sinryt +as rolcosr0t+5(x]—a6)ttan90+z o (% —ag ) tanB, sin 21yt
0, (1) =y, (1)

’ . ’ l .

(pz(t)=a7r0t—xosmrot—yocosrot—gkcl tan 0, sin 2ry ¢

a; =(1-b) ' yi[1=ab A (1-b) " 50,1
a,=(-a) ' xy[1+abB (1-a) "' ;1,1

Il

as éng“(l—b)‘l{r;‘uazbds A =BV B = 21+ dy T=d: )

+%k{(2abd5 dg +C 342000 55 [0 g —a A7 (1=b) " dyy (=1 2b~1)"ddy 1)
ay=—xp(a—1)"'[1+bB™ (a-1)"r5'0;5]
as=(1-b)"yy—a AT (1=b)2 15" 04{ yo+ads[kb(1=b)ds —z5(2b-1)]}
ag=a(l-b) [y —a A (=0 0330 =)

k
dy = %5 2 C, tan 9,

The expressions for the Eulerian angles 6, y and ¢ depend on some arbitrary constants 8, , ¥, , ¢, and r,
(1 1s large).

5 Discussion of the Solutions

In El-Barki et al. (1995), Arkhangel’skii (1963c), Ismail (1996), and Arkhangel’skii (1975), there are
singularities in the obtained solutions when w=1, 2, 3, 1/2, 1/3,---, The solutions for these singularities are

obtained separately, see Ismail (1997a), Arkhangel’skii (1963c), Ismail (1997b), Arkhangel’skii (1975), and
Ismail (1998). In our problem when we used the frequency « instead of @, there are no singular points at all.
The obtained solutions are valid for all rational values of ® . From section (4), we conclude for € =0 that

6=0, =0 and ¢ = ry. This permits permanent rotation of the body with spin r, (sufficiently large) about the
Z— axis.

5.1 Numerical Discussions

In this section we investigate the numerical results by computer codes for the mentioned problem.

Let us consider two cases

1. A<B<C
For this case , the following parameters for motion of the body are chosen
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A=853kgmm?, B=19.6kgmm?, C=2627kemm’, 7, =1000mm,
R = (1000, 1500, 2000) mm, A=0.6, M =300,
2o =—1mm, ¢;=(0,50,100,150) kg.mm".s™",

Xy =lmm, y,=2mm,

Yo =0.352, T =12.566371.

p, and 7y, denote the analytical solutions in this case. Figure (3.a) shows that in the absence of gyrostatic
momentum about z— axis (¢35 =0), the position of the centre of attraction is independent of the behaviour of the
solution, i.e., the solutions p, are the same when (/5 =0) with different distances of the centre of attraction
R = (1000,1500, 2000) . We note also that when /5 and R increase, the amplitude of the oscillations decreases
and the number of oscillations increases, see figures (3.b—3.d). Figure (3.e) shows the behaviour of v, via ¢ for

different values of 75 .

2. A>B>C

Let us choose:
A=3521kgmm?, B=2149 kgmm’, C=17.6kgmm?, 7, =1000mm,
R = (1000, 1500, 2000) mm, A=0.6, M =300 kg,
zo=-1mm, ¢5=(0,50,100,150) kg.mm”s~', 7v{=0352, T =12.566371.

Xo=1mm, y;=2mm,

Fig.(3.f) shows that there is no variation of the amplitude and the number of oscillations when R increases. One
can see from figures (3.g-3.i) when ¢, increases for the same values of R and when R increases for the same

values of /5, the amplitude of the wave decreases and the number of oscillations increases. Figure (3.j) shows

the variation of y, via ¢t when ¢, takes different values.

We conclude from the previous cases that when the minor axis of the ellipsoid of inertia of the body coincides
with the z—axis (A < B < (), the number of oscillations increases and the amplitude of the waves decreases.

When the major axis of the ellipsoid of inertia of the body coincides with the z—axis (A > B > C), the number
of oscillations increases to some extent and the amplitude of the waves decreases.

p,—axis (A<B<C) ¢,=0 p,—axis (A<B<C) £,=50
8 0.05
B R=1500
64/ \R=1000. L - R=2000 "
. 1500. 0.03 - -
44 2000
] 0.02 4
27 0.01
4 0
. 0.01
2
_ 0.02
] 0.03 1
6 0.04 -
% ] , . . . -0.05 - : ;
0 10 20 30 40 50 0 10 2 %0 20
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R=1000 R=2000 =2000
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0
0.005 1 0.004
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Y, —axis (A<B<C) R=1000 p,—axis (A>B>C) £,=0
5
. R=1000, 1500, 2000
(e) 4
= 34 (f)
1 21
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0 0
-1 4
-1 4
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24 -3 1
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t—axis t—axis
P, —axis (A>B>C) {,=50 p,—axis (A>B>C) ¢,=100
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Figure 3. Effect of £, and R on the motion

6 Conclusion

The problem of the three-dimensional motion of a rigid body in the Newtonian force field with a third gyrostatic
momentum about one of the principal axes of the ellipsoid of inertia, is investigated by reducing the six first-
order non-linear differential equations of motion and their first three integrals into a quasilinear autonomous
system with two degrees of freedom and one first integral. Poincaré’s small parameter method is used to
investigate the periodic solutions of the present problem up to the first order approximation in terms of the small
parameter € . The periodic solutions (43) are considered as a generalization of those by Arkhangel’skii (1963c)
(in the case of the uniform force field) and El-Barki et al. (1995) (in the case of the Newtonian force field). The
solutions and the correction of the period for the latter two problems can be deduced from our solutions as
limiting cases by reducing the Newtonian terms and the third gyrostatic momentum. The introduction of an
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alternative frequency ' instead of @ avoids the singularities traditionally appearing in the solutions of other
treatments. When the minor axis of the ellipsoid of inertia of the body coincides with the z—axis (A<B<C),

the number of oscillations increases and the amplitude of the waves decreases. Also, when the major axis of the
ellipsoid of inertia of the body coincides with the z—axis (A > B> C), the number of oscillations increases to

some extent and the amplitude of the waves decreases. In the case without gyrostatic momentum about z— axis
(#5=0), the position of the centre of attraction is independent irrespective of the behaviour of the solutions.

The analytical solutions are analysed geometrically using Euler’s angles to describe the orientation of the body at
any instant of time. These solutions are performed by computer programs to get their graphical representations.
A great effect of the third gyrostatic momentum (/5) is shown obviously from the graphical representations.
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