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On the Motion of a Rigid Body in the Presence of a Gyrostatic

Momentum

A. I. Ismail, T. S. Amer

In this paper, the rotational motion ofa rigid body about a fixed point in the Newtonian force field with a

gyrostatic momentum [43 about z— axis is considered. The equations of motion and their first integrals are

obtained and have been reduced to a quasilinear autonomous system of two degrees offreedom with one first

integral. Poincaré’s small parameter method (Malkin, [959) is applied to investigate the analytical periodic

solutions of the equations of motion of the body with one point fixed. rapidly spinning about one of the principal

axes of the ellipsoid of inertia. A geometric interpretation of motion is given by using Euler’s angles (Ismail,

1997a) to describe the orientation ofthe body at any instant oftime.

l Equations of Motion and Change of Variables

Consider a rigid body of mass M, with one fixed point O; its ellipsoid of inertia is arbitrary and acted upon by a

central Newtonian force field arising from an attracting centre O, being located on a downward fixed axis (OZ)

passing through the fixed point with gyrostatic momentum (I about z— axis see (Figure. l).

  

Figure l. The Force Component
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The general differential equations of motion and their first integrals are

dp -1 _ -1 1/ l A I //

E+A1qr+qA ta —MgA (on ‘~0Y )+N ‚Y Y

d —- —— I, l,

l+Blpr—pBV3=MgB1(20Y—XOY)+NBIY Y
dz

d (1)

r — l I

E+C1PQZM8C1(xoY—YOY)+NC1YY

dv ‚ „ dy’ „ dv” ‚
——:r —- —: —r —: —
dz Y QY dl PY Y dt CIY PY

C—B A—C B—A 3g a
A =——, B :——-7 C :———a :__...‚ :_

(I A l B I C R g R2)

and

Ap2+Bq2+Cr2—2Mg(xoy+yoy’+zOY”)+N(Ay2+By’2+Cy”2)

ZAPd+BCId+Cr02“2M8(«V0Y0+}’0Yb+Z0Y6)+N(AY5+BYb2+CY62)

(2)

Apy+qu’+(Cr+€3)y”:Ap0y0+Bq0yg+(Cr0+fl3)y6

v2+v’2+v”2=1

where A, B and C are the principal moments of inertia; x0, yo and zo are the coordinates of the centre of

mass in the moving coordinate system (0xyz); y, y’ and y” are the direction cosines of the downwards fixed

Z—axis of the fixed frame in space (OXYZ); p, q and r are the projections of the angular velocity vector of

the body on the principal axes of inertia; R is the distance from the fixed point O to the centre of attraction Ol ;

Ä is the coefficient of attraction of such centre; and 170, ([0, r0, YO, 7:) and vs are the initial values of the

corresponding variables.

When f3 =0 and £3 = N =0, one obtains the equations of motion in Arkhangel’skii (1963a,c) and Sedunova

(1973), respectively. It is taken into consideration that at the initial time, the body rotates about z—axis with a

high angular velocity r0, and that this axis makes an angle 90 inn/2 (n=0, 1, 2, ...) with the Z—axis.

Without loss of generality, we select the positive branches of the z— axis and of the x— axis in a way to avoid

an obtuse angle with the direction of the Z—axis. According to the restriction on 60 and the selection of the

coordinate system, one obtains

yOZO 0<y6<1 (3)

Consider the following parameters

A B M 5/. c,/ ’
a:_ 17:- C2:_g €:__Y_0

C C C r0 (4)

xozfixg y02fyf) 202/816 V2=xä+yä+zä

where 8 is a small parameter, that is: r0 is large. We introduce the following new variables

p=c y”); quc Y” r-rr k-LV—
0 l 0‘11 01 C2 (5)

YZYSYI Y=Y6Yi v”=v6v? t=i~'/ro

Substituting (5) into equations (1) and their integrals (2), one gets
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P1+A1611 n +A'1ro‘lq143 =8a'1(y£>Y1”-Z6Yi+kaA1YIY?>

511+B1 171"] ‘B_lro_lplf3 =3b4(16Y1—X6Y’Il+kaIYIYT ) (6)

f1 =€2(—C1 P141+x6Y1—)’671+kC171Y1 )

Yithi_EQ1Yi Yi=€PIYf‘V1Y1 W:€(QIY1“PIYi) (‘Ed/dT)

and

“2:1”251 Wi=1+852 vf+vi2+vf2=<v6Y2 (7)

where

51=a<pEo—pfi>+b<qfo—q3)—2[x5<vm—v1)+y5<vio—vi>+za<1—vf)1

+kta<vfo—v%)+b(v§é—v12)+(1—vf2>1

52 20(P10Y10—P1Y1>+b(CI10Yio—QI Yil'H/(l—Yf) Y: fs/(CCM)

2 Reduction of the Equations of Motion to a Quasilinear Autonomous System

From the first two equations of (7), one can express the variables I”1 and 7/1” through the following form

1 2 I Ir ”2

r1 =1+38 [51+2Zo(1-“/1)—k(1—Y1 )l+

(8)

fl 1 I I II

VI =l+eSz—582[S, +2z0(1—y1 )—k(l—yl2)]+

We differentiate the first and the fourth equations of (6) and use (8) to reduce the four remaining equations to the

following two second order differential equations

251+w’2pl =a{za(a-1 —A1b”>v1+A1b“x5+k<w2—Anv. „was—m1)

-k131 yl ]A*‘r0“£3}+ez{[—mzp,sI +A,1f‘xg)sz+A,Cl[WE—A,q1

um; —y6v1>+a“.va<qlv1 —p,y;>—a"ng, 1+A,k[p.<1-v;2>

‚ 1 -. _ _
+51](1—Cl)y1y1—SZ(1+B‚)1(]]+51b1€3p‚(AIBI—AIBIHSl (9)

+2z6(1—y§')—k(1—yj’2)]+A’ln{] (23(17—1x5—kb, yl)52}+83{
I

20

N
1
»
—

— — l fl II 1 — e

X(a 1—A1b1mm,+2z0(1—y1)—k(l—y,2)]+5A 11‘01fi3(kB]Y1

—b_'x(’))[Sl+226(l—y]’)—k(l—yf2)]+(2kA1—a_‘z6)plS2}+

71+Y1=8[(1+B|)—B_lr0_lf3]171+€2[—51Y1+(1+BI)P152+(1—C1)P141Yi

+X6Y§2+X6b" ~Y1(y6Y§+z6b" +c/3)+k(C1 vil-Bl)v’1]+e3[2b‘1x6 (10)

—y1(b_lz(’)+2kBl)]Sz+

where

 

Z (A—C)(B—C) _ (a—l)(b—1)

AB ab (11)

d2 2032—(‚4—1Bl—AIB‘lwo—lf.3

(„2 =—A1131
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Here r0 is large, so r0_2, r03, can be neglected. By solving the first and the fourth equations of system (6),

we obtain q1 and 7/}, in the form

6/1 ZAI‘ (1(1-A‘1Al’lro’V3n—1 +---)[-P] Hal—’06 Yi—Zi) Yl+kaAl Y} YO] (12)

vi with +8611 v?)

in which r1 and Y? are replaced by (8). Substituting (l2) into (9) and (10), one obtains a quasilinear autonomous

system with two degrees of freedom depending on p}, [9| , y], y], p10, {910,710 and 7,0.

Our aim is to find the periodic solutions of this system under the conditions A > B > C or A < B < C (0)2 is

positive). In the first case, (n < l and the z— axis should coincide with the major axis of the ellipsoid of inertia;

that is (0’2 < (DZ ‚ and (0’ <1 . In the second case , co > 1 and the z— axis should coincide with the minor axis of

the ellipsoid of inertia. In such case (9'2 > (1)2, and (0' > 1 .

We introduce new variables p2 and 72 such that

Pzzpl—EX‘SXIY2 Y2:Y1*€VP2 (13)

where

x=xg(bw’2)“(Al+A“lb‘1(23) v=(1—w’2)“[i+B]—Br'r0“r3] (l4)

x] :(l—(x)’2)_1[—z{)(a_I ~A1b“] )+k(A1 —032 )+(b“z;,+k8, )A‘1r0‘143]

Making use of (1 3), (8) and (12), one gets the following expressions for S1 and 32 in terms of power series in 8

S‚.:S„+22”ss‚.2+ (i:l‚2) (15)

where

SH=a(P%0‘Pä)+bX2(P%0‘15;>‘2X6(Y20—Y2)—2)’6(720’72)

+ktatvio—v%>+b<v%o—‘v% )1

$12 =a[X(P20“P2)+X1(P20Y20‘Pz 72)]—bX2[a—I)’6(i’20—I52)

*XzÜ’zo 720‘152 YzH‘VxöÜho‘P2)”>’6V2(P2O‘Pz) (16)

"Lug—ML921 +k[Va(P20 720—192 Y2)+V2b(P20 720‘152 72)]

521 251(on “(20‘172 Y2)—bX(P20720—Pz Y2)

522 :ClIV(P220‘l)22)+X(Y20“Y2)+X1(Y30—Y%)]+bX[’V2(P§0—P§)

+04 )"6(Y20‘72>‘X2Wäo’YäH—Y521

with

X:A,‘1(1—A“‘A;’r0“r3) X2:Xl+a“zg—kA‚ v‚:v—X (l7)

Formulas (8) and (15) lead to

l ‚
r1 =1+Es2sn+g3(s12 —z0521 +ks21 )+

„ 7 1 g
(18)

y] =1+eS21 +£‘(S22 —ESH)—e~ (Sm—1f) $2, +kS2| )+
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In terms of the new variables [72 and y2 , the variables q1 and y] have the form

ql =—X p2 +sX(a‘1 yg) —x2yz )+22[ X (k A, —a“ 2;) mp2

1 s . . ‚ ,
+(X—EA,I)S„p2+X(kAIY2+a ‘y0)s21 1+ (19)

, . . „ , . . 1 .

Y1 =Y2+€V2 P2+€2lX(a l}’0‘X2Y2”521 IHN—E 511Y2]+

Substituting (l3), (15), (16), (I8) and (19) into (9) and (10), we obtain the following quasilinear autonomous

system of two degrees of freedom

252+(D/2P2=€2F(P2aP2:Y2’72»€) 20

__ 2 , A c >

Yz +Y2 =8 (13(172» st Y2» st 8)

where

F=F2+8F3+ cl>=q>2+a<b3+

F2:f2‘VX1(l—03’2 )172 (1)2:‘P2+V(l—w/2)(X+X1Y2)

F3 =f3 _Xl (P2 ‘VXI ( 1’m’2)(X+X|Y2) ©3293 ‘sz +V2X1 (I‘m/21172

f2 :‘m2511P2+A1x6(b—1521+X72 P2>+A1C1XZP2P22‘3’6X72P2U‘1 +04)

*071172 (z6+y6"/2)+A1 ICU—YE )Pz +(C1’1)XY2-szz _(1+BI)S2IYZ

+%r()—1"3[2P2(A—131‘AIBAUSH+A71(174X(>‘k31Y2)52|]

f3 32092112512+(X+X1Y2){—w2511-a"(z6+.véiz)+A1[Cle P22+k(1—Yä )ll

+Alble6522 +A1X szxoV2P2 —)'f)V Pfl‘Pfl’sz} ‚‘76(V2 +VX)+2A1kV2Y2]

+XP2(V2Y2P2+VY2192)(C1‘1l—(H31)(V521172+522Y2)+%Zo(071

‘Ailfl W251] +(2kA1 ‘07] Zi))172521 +X(ü41 Ni) ‘lezll—AIQCIXPsz (21)

+x672)+y(3y2(A1 +a“ )+y2'y§(1—C1 )]+%r0_]€3{ (A48, —A113’1)[2P2(s12

—26521 +k52] )+(X+X1Y2)Sn 1+2A“[<b“xz‚ —kB‚v2)Szz—kßlvs„p2]

+A*‘(/<B]y2 —b"x3)51,] }

‘Pz :[(1+BI)521—(1—C1)XY2152]P2 +X(’)(b7I +Yä)+[k(C1Yä—Bl )

-.v6 "Y2 -z6b"-X21’722—Sn]vz

(P3 :(1+Bl M192522+(x+x172)521]+X(1—G ){ (04.36—lesz[72

‘leV 2P2 P2+<X+X1Y2Wzl }—2Y2 Slz—VPZ 511+2xi)V2 3721.72

—.vg<vazz>2whim—wax?"zg+X2p§>+2X2<a"ya—x2y2mp2

+ki2cimz'v2 p2+v(C. ‘vi—B] )pzmw‘xa—(W zs+2k81w21521

System (20) has the following first integral obtained from (7) in the form

“(f +Ygz +2€(VY2 P2 +V21-(21'72 +521)+€2lV2P§+2X(a_l)’o—X272

. _. .2 „ ‚7 (22)

‘S2IP2)Y2—(1+Y2)Sn+2522]+ "'=(Y0) “—1
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3 Formal Construction of the Periodic Solutions

Since the system (20) is autonomous, the following conditions

132 (0,0) = 0 152(00) = 0 Yz (0,8) = 0 (23)

do not affect the generality of the solutions (Arkhangel’skii, 1963b). The generating system of (20) is

b?) +w/2pé0) :0 7(20) +Y(20) =0

which admits periodic solutions in the form

péo) = MI cos w'1+ M2 sin a)": 7(20) = M3 cost (25)

with period TO =27tn. M,- i=(l, 2, 3) are constants to be determined. We suppose the required periodic

solutions of the initial autonomous system in the form

pz(‘C,E)=(M1+B1)COS(D,T+(M2 +ß2 )sin w’r+28k ka)

m H (26)

72m E) =(M3 +[33 )COST+Z£k Hkfl)

k:2

with period T(8) = T0 +0((8). The quantities ßl , co’B2 and [33 represent the deviations of the initial values of

p2, p2 and Y2 of system (20) from their initial values of system (24); these deviations are functions of a and

vanish when 8 = 0. We express the initial conditions of (26) by the relations

 

1172(0,e)=MI +ßl p2(0,e)=w’(M2+ß2) (27)

Y2(0a€):M3+ß3 Yz<0a8):0

Let us define the functions Gk(‘c) and Hk('c) (k =2, 3,---) by the operator (Ismail, 1997b)

8 a a 1 2 U =G„H

U:u+ uß‚+ “(32+ Mß3+—au‚ß,2+--- " k (28)

8M1 8M2 8M3 ZaMl- Mng,/1k

where the functions gk(1t) and 11km) take the forms

1

 

T

gm): ‚Jka(tl)sinc0’(I—t‚)dt1
(D

0

T

11km:J®;(zl)sin(r—zl)dzl (k =2, 3)

O

with

, dHF 1 dk_2(l)
F 2 — ’ =— _—

k (I) (k —2>! ( daH “new q)" m (k —2>!( daH ”*0

We notice that the right—hand sides of the system (20) begin from a term of order 82, and therefore we have

F; (r) = Fk < p?” ‚ pgohygmwgm > a am

dim)=<I>k<p§°hp§°kvgowgm)scbt‘” <k=2,3)
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Now, we try to find the expressions of the functions F50) and (13(20) . The periodic solutions (25) can be rewritten

in the forms

 

pg” =Ecos(oo’*c—n) 7(20) :M3cosr (29)

where

2 2 _ —1 M2 A e ‘
E: Ml +M2 and n—tan M .Making use of(29) and(16), one gets

1

SE?” = 5,53% ‚220% pä0)‚v(20)‚'väo‘> (21:12)

5;?) =E2[a(coszn—Ji)+bX2co’2(sin2n—ä)+%(szoo’2—a)c052(0)”c—n)]

—2M3[x6(l—cos‘c)+yßsinr]——äka CI(1—cos2r)

1 ‚ . / 1 ’

5g» =M3E{acosn +—2—(b(n X—a)cos[((0—l)I—n]—5(wa (30)

+a)cos[((n’+l)1:—n]}

51(3) =aE{ X[cosn—cos(u)"l:—n)]+)(1 M3 [cosfi—cos‘tcosfln’f—fifl}

—bX2 Ew’{ a—lyf)[sinn+sin(w’T—n)]+x2 M3 sinrsin(oo’I—n)}

—vxf) E[cosn—C0s(w’I—n)]+kEM3{va[cosn—cosrcos(co"c—n)]

—v2 bsin’csinun’I—n) }+(z(’) —k)S§(l”

5g)=Cl{VE2[COSZ‘n—COSZ(COI‘C—‘l])]+XM3(l—COS‘E)+XIM%Sin2T}

+bX{a"yg)/v13 sinI—VZEZOJ’2[sinZn—sinzmfi—n)l

+X2M5sin21}—Ys;?>

Substituting (29) and (30) into formulas (21) we obtain

F50) 2M}L(m’)cosw’I+M2L(u)’)sin0)’1:+ (3])

(13:0) :M3N(u)’)cos*c+

where

L(co’)2032[—(aM12+bo3’2X2M22)+(Mf+M%)bm’2X2]+Al Cl w’ZXZ

2 2 z 2 1 2 2 x 4
><(M1+M2)+2M3x0(o +k(A,+EM3 w C1)—[zoa +Vx,(1

, 1 _ _ - , ‚
—(1)2)]+—2—r0lf{3(AIBl—AIBl)[(1M,2+b(D2X2M§—b(1)2X2(M12

, 1
+M22)—2M3xO—EkM32C,] (32)

N(m’):—(aME+bm’2X2M5)—(ME+M5Maß]+052X2(1—b)]

+2M3x6—[z6lf'—vX|(I—w’2)]+k(MfCl—Bl)]

From (28), (31) and (32), the following results are obtained

g2<To>=—nn<co’)“M2L<w’> g2<To>:nnM‚L<m’> (33)

h2(T0):O h2(TO):nnM3N(m’)
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The constants M1, (o’MZ, and M 3, which represent the initial conditions of the generating solution (25), the

deviations [31(8), (5132(8), and [33(8), and the correction for the period 0c must be found from the conditions of

periodicity of the solutions p2 (1:, 8), 72 (1:, S) ‚ and their first derivatives. These conditions can be written in a

form

W1 = P2(T0+0‘‚3)-P2(0‚8)=0 W2 = 152(72) +(1‚8)’152(0‚5) =0
. . (34)

W3 :Y2(To+0"5)—Y2(0,3) =0 W4 :Y2(To+0‘78)_72(0’8) :0

However, on the strength of the existence of the first integral (22) of system (20), the condition for periodicity

W3 2 0 is not independent (Arkhangel’skii, 1963c). Writing the integral (22) in the form

vim) +a, e)+y§(T0 +0c, 8)+2e[vy2(T0 +(x, 8)p2(T0+0t, e)+v2 7200 +a, 8)

152(T0+0c, s)+SZl(To +0c, 8)]+82{v2pz2(T0+oc, a)+2X[a“y3 —x2 72m) +oc, s)

—SZI(T0 +oc, s)p2(T0 +0c, 8)]Y2(T0+0t, e)—[1+y%(T0 +oc, 8)]SH(T0 +Ot, e)

+2530O +0: ‚ g)}+...=yä (0, s)+'y§(0, a)+2g[vy2(0, E)p2(0, e)+v2 72m, e)

p2<o‚e>+521<0‚e>1+22{v212%<0‚e>+2><[cz" ‚vs -x2 wo, e>—s„<o‚s>p2<o‚e>1

72(0,8)—[1+Y§ <0, ammo, e>+2522<0 ‚ e>}+---

and using the condition (27), we get from (34)

2(M3+ß3)W3+Wä+€W1(W1»W27W3aW4v€):O (35)

Here (pl is a function of all its variables and (p, (0,0,0,€) = O. If M3 7: 0, it follows from (35) that

w; = f1(W1=W2aW3‚W473)

where f1 is a function of all its arguments, and f] (0,0,0,£) = 0. Then it follows immediately that the condition

W3 : 0 holds in (34), which is a consequence of the other ones

W1 :W2:W4:O (36)

Substituting the initial conditions (27) into the integral (22) for 1: = 0, the following equation is obtained

—7

M32+2M3ß3+ßä+2€VMflM1+ß1)+"'=(Y6)"—l

Supposing that y?) is independent of 8, we get

M32:(y’6)‘—1 ßä+2M3ß3+2evM3(M1+ß‚)+ ---=0 (37)

One obtains M3 and [33 from equations (37) and condition (3) in the form

M3=(1-Y62)3<Y6)" 0<M3<m
38

B3=_£V(MI+B1)+ ( )

because yg is an arbitrary parameter, and M3 is an arbitrary positive constant. This means that the periodic

solutions (26) depend on an arbitrary constant M3 and a function [33(8), vanish when 8 tends to zero. This

property does not depend on the form of 0t . Expanding the independent conditions of periodicity (34) in a power

series of 0t and retaining only the linear terms (neglecting even the terms £200 ‚ it yields
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P2(Tos€)+01 fi2(T0a€)+ ‘P2(0’€)=0

Y2(TO,€)+(X:Y2(T0‚E)+ —'Y2(O,€)=0

Using the initial values (27) in the above relations, we obtain the independent conditions for the periodicity of

(36)

p2(T0,e)+ocw’(M2+ß2)—(M1+ß‚)=0

p2(To‚e>—co’<M2+ß2>—o<w’2(M1+ß1>=0 (39>

Y2<Toa€)—0€(M3+Bs)=0

Making use of (26), (38) and the last equation of (39), the function (1(8) takes the form

a<s>=aZ(M3+B3)"[H2(T0)+3H3(TO)+-~] (40)

It follows then that, by neglecting terms of order (x2 and 820L in (39), we also omit the terms of order 84.

Making use of (23) and (27), we shall investigate those periodic solutions when the basic amplitudes vanish, i.e.

M12M720 (41)

Applying (40), (41) and (26), for the first two equations of (39), one gets the system determining |3l and ß2 in

the form

G2(T0)+SG3(TO)+w’ß2(M3+ß3)" [H2(TO)+3H3(TO)+ -.-]+eZ(---)=0

G2(T0)+363(T0)—03,231(M3+l33)71[H2(T0)+3H3(To)+ "'l+€2("')=0

By virtue of (33), the above system is transformed into

—nnß2(w’)’1[Lima—(adNl(w’)]+g[cg(m+...]:0
(42)

nnß‚[L‚(0)’)—u)’2 N,(w’)]+g[G3(TO)+ ...]=0

where L,(Lo) and N1((1)) can be obtained from (32) by replacing M1, M2 and M3 by ß], ß2 and M3+ß3.

By (1 l), (14), (17) and (32), one has

L]((n’)—m'ZN1(w’) =(ß% +ß22)w1( (o’)+ 16 W2((n’)+kW3((o’)+W4(w’)

where

W,(m’)=a/1+(dz+d3)r0‘lr3

W2(w’)= (d4 —d5d6d7 „am, [(15516 (d8 +d9 )+B"a’7 —b"d10(l+a“ld6d7)]

W3(co’):(d5d(‚d„ +d‚2)+r0“' (3{ds[d6(dl3—dM)—B"ld„]+b"d10(a"d6d„ +d15)}r(;' £3

, a —1 _ _

w4(m)=—Ed,0[[3§+(%)52211b 1 e3 d] =19 ‘(a—1)(2a—b—1)

d2 =19”[b(a—b)+(a—1)][aA"(a—1)(1—b)*‘ +bB“‘]

1
d3 =E A"(1—a)[ab“(1—a)(1—b)"+AB“] d4 za—l [l—b"2(a—1)(b—l)]

d5:(ab)’2[ab+(a—l)(b—l)] d62b"(a+b_1)

d7 :(ab)—l(2b—l)[ab+(a—1)(b—l)] ([8 =(Ab)"[ab+(a—1)(b—l)]
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d9 =(abrl(2b—1)[A"a(a—1)+B*‘b(b—1)]

dm :(Ab)“'(a—1)+(aB)“‘(b—1)

d” :(ab)—l(1—b)(a+b—l)[ab+(a—l)(b—l)]

d12 =(ab2)‘](l—b)[b2 —(a—1)2 +~;-b(a—l)(b—a )M32]

dI3 =(Ab)“(a—l)[ab+(a—l)(b—l)]

51,4 z(aby'(1—b)(a+b—1)[aA“(a—1)+b3"(b—1y}

d1, =—:—b(b—a)M32—(a—l)

From the conditions that the z— axis has to be directed along the major or the minor axis of the ellipsoid of

inertia of the body, it follows that W,(c0’) > O for all (0’ under consideration. We assume that

z(') W2 ((0’) + k W3 ((0’) + W4(u)’) i 0

By use of (42), the expression of ß, and ßz are obtained in the form of a power series of integral powers of 8 .

These expansions begin with terms of order higher than 82. Consequently, the first terms in the expansions of

the periodic solutions and the quantity 0((8) are expressed in the following forms

p1=€{—x{)(a—l)_1[1+bB_'(a—l)_'r0_'€3]+X1M3cosr}+---

q1 =£a(l—b)_l{y(')a_l +x2 M3 sinr—A_l(l—b)_]r0_l€3[y6+(z6—kaA1)

XM3sinI+ad5[kb(l—b)d6—z6(2b—l)]}+»--

‚ ‚ . 1
r, =1—82M3[x0(l—cosI)+yOs1nI+ZkM3C1(l—cos21:)]+---

Y1=M3COST+~~ Y]=—M3sinI+--- (43)

y,” =1+e2 { (1—b)“M3 yg) sinr+(1—a)*' M3 xf)(l—C0s‘c)—% b“ (1—17)‘l d7 M3216

1
><(i—cos2»c)+Z M§k(2abd5d6+q xl—cosznwg‘ (3 [—abA“ (Harz/v13

><y(’3 sin1+abB"(a—l)_2M3xf)(1—cosr)+% [flu—b)" 1;)M32(l—c032'c)

><[ A“l 412de (l—b)“(2b2 —2b+i)+d9 1+; k(l—b)" M32(1—c0521:)[b_1 d1,

~0A5Idn(1-b)"—(1—b)(2b—1)“d6d9]]}+

0L(z-:)=£2nn{ 2M3x5—ng“+(abr‘(kdu —z;,d7)c16+k(M§C,

—B,)+(ab)"ro"z3[[(d8+d9)dé+d713" ng+i(d,3—d,4)d6

_dH 19*1 ]k]}+

Our solutions (43) are considered as a general case of El—Barki et al. (1995) and Arkhangel’skii (1963C) and have

no singular points at all, i.e., the obtained solutions are valid for all rational values of 03’ .

Now we investigate the deviations between our solutions and the Newtonian and Classical ones, which were

obtained in El-Barki et al. (1995) and Arkhangel’skii (1963c). The deviations can be expressed in the form
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Ap] =e{x3b"[B,“(1—w2w"2)+co”2A"r(;‘r31+(X—x1‘)M3cosr}+

Aq] =£{—y(')(aAA,2)_l ro“r3+A;‘M3sm[x, —X‘f—X2A“A;‘ r0’1r3]}+

Ar] :g3[()]+ A71 :g[0]+ =g[0]+

Ayg’=ez{aM3(x—x*)(1—cos1)—bM3yg(aAAE)"r(;1r3sinr

1 _ I _
+EM32(1—00321)[a(1-b) ‘(xl-xl)—x2b(AAf) 'ro'r3]}+

Aoc<e>=sznn{<1—Bl><x1—x.*>—B‘1xlr5‘fig}+

and

AP]! =AP1+€(XT—X1M)M
3cost+

A6111 :AQI+€AIIM3(XT-XT*-kA|)s
int+

1 2 2

AH1:“Z€ M3 C](l—cos2‘c)+

AYH =€lol+ A711 =e[0]+

MT] =AYi+€2{-:M32 C1(1—cos2r)+%M§(1—cosr)[a(1—b)“(xf—xf“‘)—kb]
}+

Aul(e)=Aa+$2nn[z5(2—b)"+k(MfC1_BI)+(1+3])XT]+...

where

x*=(bw2)“A1x3

:(1_m2)_1[k(A1_m2)_16(a‚1 _AleH

X‘s”
)~l(ail _A] b'l)

4 Geometric Interpretation ofMotion

In this section, the motion of the rigid body is investigated by introducing Euler’s angles 9, w, and (p , which

can be determined through the obtained periodic solutions see (Figure 2).

 

  
attracting centre

 

Figure 2. Representation of Euler’s Angles

Since the initial system is autonomous, the periodic solutions are still periodic if t is replaced by (t +20), where

to is an arbitrary interval of time. Euler’s angles, in terms of time I , take the forms (Ismail, 1997a)

 

cosezY” il£:____py+qll

d! FW (44)

tanq)0 =Y? fl=r—fl cose

yo dz dz
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Substituting (43) into (44), in which I has been replaced by t+t0, and using relations (5), the following

expressions for the angles 6, w , and (p are obtained

(p0=(1t/2)+r0t0+--- Goztan’lM3

9:90—82[9fit+%)—0fl%)]

w=wo +ec coseceoMwmmw—wlam

cp=cpo+rOt—sccoteom [cpl(t+rO)—<p](t0)]—g2 tan90[tp2(t+to)‘tp2(t0)]

where

61(2‘) :51] sin rot—612 coerI—a3 tanGO cosZrOI

1111(1) =a4 r0—1 sin r0t+a5 r0_1 cos r0t+ä (x1 —a6 )ttan60 +ä r0_l(x1 —a6 )tanGO sin2rot

(P1(t)=\l/1(I)

(p2(t)=a7rOt—x(3 sin rot—ya cos rot—ékC, tanGO sin 211,1

a1 = (1—19)“ yf][1—abA_1(1—b)_lr0_'fl3]

a2 z(l—afixg)[1+abB"(1—a)"‘am}]

l

a, _%z;,b“(1—b)‘1{r,"(23[a2bd5 A"(1—b>“(2b2 —2b+1)+d9]—d7}

+ik{(2abd5 d6 +Cl )+2(1—b)" r0413 [lfldm —aA"(1—b)"d,,+(b—1)(2b—1)"d6d9]}

a4 =—x;,(a—1)"[i+bB“(a—1)“1611,]

a, =(1—b)’1y;‚—aA"(1—br3‚51my5+ad5[kb(1—b)dö—zg)(2b—1)]}

a6 =a(1—b)“[x2 —aA"(1—b)“r0“r<,(x2 —X, n

k

a7 = 16+; C1 tan 60

The expressions for the Eulerian angles 6, u! and (p depend on some arbitrary constants 60 ‚wo ‚(po and r0

(r0 is large).

5 Discussion of the Solutions

In El—Barki et al. (1995), Arkhangel’skii (1963c), Ismail (1996), and Arkhangel’skii (1975), there are

singularities in the obtained solutions when 03:1, 2, 3, 1/2, l/3,---. The solutions for these singularities are

obtained separately, see Ismail (1997a), Arkhangel’skii (1963c), Ismail (1997b), Arkhangel’skii (1975), and

Ismail (1998). In our problem when we used the frequency (0’ instead of a), there are no singular points at all.

The obtained solutions are valid for all rational values of 0),. From section (4), we conclude for 8:0 that

Ö = O, = 0 and = r0 . This permits permanent rotation of the body with spin r0 (sufficiently large) about the

z— axis.

5.1 Numerical Discussions

In this section we investigate the numerical results by computer codes for the mentioned problem.

Let us consider two cases

1. A < B < C

For this case , the following parameters for motion of the body are chosen
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A=8.53kg.mm2, B=l9.6kg.mm2, C=26.27kg.mm2, r0=1000mm,

R=(1000‚1500,2000)mm, 70:06, M=300‚ x0:lmm‚ y0=2mm,

z0=—lmm, t3=(0,50,100,150)kg.mm2.s", yg=0.352, T=]2.56637l.

p2 and yz denote the analytical solutions in this case. Figure (3a) shows that in the absence of gyrostatic

momentum about z— axis (ß 3 = O )‚ the position of the centre of attraction is independent of the behaviour of the

solution, i.e., the solutions [72 are the same when ((3 =0) with different distances of the centre of attraction

R = (10001500, 2000) . We note also that when if} and R increase, the amplitude of the oscillations decreases

and the number of oscillations increases, see figures (3.b—3.d). Figure (3c) shows the behaviour of yz via r for

different values of f3 .

2 A>B>C

Let us choose:

A = 35.21 kg.mm2, B = 21.49 kg.mm2, C =17.6 kg.mm2, r0 = 1000 mm,

R = (1000, 1500, 2000) mm, 7» = 0.6, M = 300 kg, x0 :1 mm, yo z 2 mm,

zo :—1 mm, 23 =(0‚50‚100,150)kg.mm3.s’1, yg =0.352, T =12.566371.

Fig.(3.f) shows that there is no variation of the amplitude and the number of oscillations when R increases. One

can see from figures (3. g—3.i) when V. 3 increases for the same values of R and when R increases for the same

values of ‚F3 ‚ the amplitude of the wave decreases and the number of oscillations increases. Figure (3.j) shows

the variation of 72 Via I when Kg takes different values.

We conclude from the previous cases that when the minor axis of the ellipsoid of inertia of the body coincides

with the z— axis (A < B < C), the number of oscillations increases and the amplitude of the waves decreases.

When the major axis of the ellipsoid of inertia of the body coincides with the z— axis (A > B > C )‚ the number

of oscillations increases to some extent and the amplitude of the waves decreases.
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Figure 3. Effect of Ä} and R on the motion

6 Conclusion

The problem of the three-dimensional motion of a rigid body in the Newtonian force field with a third gyrostatic

momentum about one of the principal axes of the ellipsoid of inertia, is investigated by reducing the six first—

order non—linear differential equations of motion and their first three integrals into a quasilinear autonomous

system with two degrees of freedom and one first integral. Poincaré’s small parameter method is used to

investigate the periodic solutions of the present problem up to the first order approximation in terms of the small

parameters. The periodic solutions (43) are considered as a generalization of those by Arkhangel’skii (1963c)

(in the case of the uniform force field) and El—Barki et al. (1995) (in the case of the Newtonian force field). The

solutions and the correction of the period for the latter two problems can be deduced from our solutions as

limiting cases by reducing the Newtonian terms and the third gyrostatic momentum. The introduction of an
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alternative frequency (0' instead of (0 avoids the singularities traditionally appearing in the solutions of other

treatments. When the minor axis of the ellipsoid of inertia of the body coincides with the z— axis (A < B < C) ,

the number of oscillations increases and the amplitude of the waves decreases. Also, when the major axis of the

ellipsoid of inertia of the body coincides with the z— axis (A > B > C), the number of oscillations increases to

some extent and the amplitude of the waves decreases. In the case without gyrostatic momentum about z— axis

(Ä; =0), the position of the centre of attraction is independent irrespective of the behaviour of the solutions.

The analytical solutions are analysed geometrically using Euler’s angles to describe the orientation of the body at

any instant of time. These solutions are performed by computer programs to get their graphical representations.

A great effect of the third gyrostatic momentum ((3) is shown obviously from the graphical representations.
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