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Graphical Representation of the Generalized Hooke’s Law

T. Böhlke, C. Brüggemann

The anisotropic linear elastic behavior of single crystals can be described equivalently by a 4th-0rder

elasticity tensor or two functions E(d) and K These functions represent Young’s modulus and

a generalized bulk modulus as functions of the tensile direction d in a tension test. In the present

paper three— and two—dimensional graphical representations of Young’s modulus and the generalized bulk

modulus are given for single crystals belonging to one of the following symmetry groups: monoclinic,

rhombic, trigonal, tetragonal, hemagonal, and cubic symmetry.

1 Introduction

The generalized Hooke’s law is the geometrical and physical linear relation between stress and strain

of anisotropic elastic solids. It is one of the oldest and best known constitutive relations in continuum

mechanics. One dimensional formulations have been discussed first in the 17th century. Over a long time

the scientific community agreed to differ about the most general form in linear elasticity. Finally Voigt

(1850-1919) answered the open question how many constants have to be determined in the isotropic and

anisotropic case. He proved by experiments Green’s (1793-1841) hypothesis that in the isotropic case

two and in the general anisotropic hyperelastic case 21 constants have to be determined.

Based on Hooke’s law structures are analyzed in all branches of mechanical and civil engineering. In most

cases the isotropic version of Hooke’s law is used. But in the last decades more and more anisotropies have

been taken into account, which are especially important if the component parts are laminated or made

from single crystals. Also the change of elastic properties of polycrystals during metal forming operations

is of importance in order to estimate spring—back effects. Independently from the special application the

engineer requires methods to illustrate or to visualize the anisotropic linear elastic properties of materials.

In the present paper a visualization based on Young’s modulus and a generalized bulk modulus is

developed.

The outline of the paper is as follows: In Section 2 the basic properties of Hooke’s law are discussed

and the elasticity tensor is specified for the eight different symmetry classes relevant in the context

of linear elasticity. In Section 3 the harmonic decomposition of elasticity tensors is introduced. This

decomposition delivers a tool to decompose a 4th-order elasticity tensor uniquely into isotropic and

anisotropic parts. In Section 4 characteristic components of the elasticity tensor are discussed, which

are useful scalar functions describing the anisotropic linear elastic behavior (Böhlke, 2001). It is shown

that Young’s modulus and a generalized bulk modulus depend only on a normalized vector specifying

the tensile direction in a tension test. Both scalar functions uniquely determine the elasticity tensor

(He and Curnier, 1994). In Section 5 three— and two-dimensional graphical representations of Young’s

modulus and the generalized bulk modulus are given for single crystals belonging to one of the following

symmetry groups: monoclinic, rhombic, trigonal, tetragonal, hexagonal, and cubic symmetry.

Notation. Throughout the text a direct tensor notation is preferred. In order to avoid additional

formal definitions, the index notation is applied in some cases using the summation convention. A

linear mapping of a 2nd—order tensor is written as A : (C[B]. The composition, the scalar product,

the dyadic product, and the Frobenius norm of 2nd—order tensors are denoted by AB, A - B, A ® B,

and = (A - A)1/2, respectively. Irreducible, i.e., completely symmetric and traceless tensors are

designated by a prime, e.g., A’ and C’. The basic isotropic 2nd—, 4th-, and 6th—0rder tensors (Zheng

and Betten, 1995) are denoted by I, II, and J, respectively

Izei®ei H=i9i®ej®(ei®ej+ej®ei) (1)
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J: %(ez‘®ej+ej®ei)®(ej®ek+6k®e_j)®(ek ®ei+ei®ek) (2)

where {ei} is an arbitrary but fixed orthonormal basis. The Rayleigh product of a 2nd-order tensor A

and a 4th-order tensor C = Cijklei ® Ej 69 e], (8 e; is defined by

A * C : C'mnopAem ® Aen ® Aeo ® AeZ7 (3)

If (3) is written in components with respect to {e,} then one obtains

(A * (C)ijkl : AimAjnAkoAlpCmnop

If C exhibits a symmetry in the first or second pair of indices (e.g., Cm“ = Cjikl) or the major symmetry

(Cijk; = CH“), then A * C shows the same symmetry properties for all A. Furthermore, the associativity

A*(B*C) :(AB)*<C (5)

holds for all 2nd—order tensors A and B.

2 Hooke’s Law: Basic Properties

In classical linear elasticity, the stress tensor T is given as a linear map of the (infinitesimal) strain tensor

E, and vice versa

T z on] E : err] (6)

where C is the stiffness tensor and S is the compliance tensor. S : C*1 holds on the space of symmetric

4th—order tensors. This formulation of Hooke’s law can be applied if both the strains and rotations are

small. For hyperelastic materials a strain energy and a complementary energy exist. They represent

potentials for the stresses and strains, respectively. In the hyperelastic case the elasticity tensors possess

the major symmetry, i.e., Gig-kl = Cklij. The symmetry in the first and last pair of indices can be assumed

for convenience, e.g. 0,ij : Cjikl, since non-symmetric parts do not affect the stress-strain response.

For a general discussion of the symmetries of elasticity tensors, see Bertram (1985). If the strain energy

density is required to be positive for all non—zero strains, then the elasticity tensors have to be positive

definite.

The 4th—order stiffness tensor C and the corresponding compliance tensor S are specified by the symmetry

group S of the material being a subgroup of the special orthogonal group, e.g., in terms of stiffnesses

(C:H*C VHeSgOrth (7)

Two stiffness tensors C1 and Q are called equivalent if there is a rotation Q E Orth (proper orthogonal

group) such that S(<C1) = S(Q * (02) holds. Two stiffness tensors are equivalent if their symmetry groups

are conjugate, i.e. 8(C1) = Q8(C2)QT‚ Equivalence classes on the space of elasticity tensors are called

symmetry classes. To each symmetry transformation H E Orth corresponds a -H. Therefore, it is

sufficient to a priori consider only symmetry transformations with positive determinant.

Depending on the number of rotations or reflections of symmetry, Voigt (1910) classified crystals into

32 classes. All kinds of physically possible 2- and 3—dimensional symmetry groups have been classified

by Zheng and Boehler (1994). Forte and Vianello (1996) classified all different forms of linear operators

C due to 3-dimensional symmetry groups and showed that in the context of 4th-order operators only

8 different symmetry classes can be distinguished (see Lemma 2 and the corresponding remarks on pp.

98—99 in the aforementioned article). The same result has been obtained by Khatkevich (1961); Federov

(1968); Cowin (1995); Ting (1996). Note that e.g. by Gurtin (1972) ten different matrices have been

given, which contain redundancies. Khatkevich (1961) and Cowin (1995) give an explicit proof that two

of the matrices given by Gurtin (1972, pp. 88—89) are redundant, whereas Federov (1968) mentioned the

redundancies without proof. Forte and Vianello (1996) discuss the redundancies in a group theoretical

context and give an historical overview concerning the representation of linear elastic laws due to different

types of anisotropy.
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It is convenient to represent elasticity tensors by six by six matrices, the components of which refer to

the orthonormal basis Ba(a : 1_. . .6) of symmetric 2nd-order tensors, i.e., Gag : Ba - (C[Bß]‚ where

B1 : 81 ® e1 B4 2 «Ti

B2 1‘ 82 ® 82 Bs 1 g

B3 Z e3 ® '33 B6 = 12—5

(e2 ®e3 +63 <362)

(61 ®ea +93 (Eel)

(61 ®e2 +92 (3361)

This modified Voigt notation has been proposed, e.g., by Federov (1968) and Cowin (1989). The repre-

sentation of elasticity tensors by six by six matrices with respect to the basis Ba has the advantage that

invariants, eigenvalues, and eigentensors can be determined by means of the square matrix Gag. Note

that this is not the case if Voigt’s original notation is used.

In the following we list the component forms of the stiffnesses corresponding to the eight different

symmetry classes (Ting, 1996). The matrices are given together with the number of independent elastic

constants Nc and the number of planes of symmetry Np:

triclinic symmetry (NC : 21, NP 2 0)

01111 C‚1122 01133 @01123

C2222 C2233 flc2223

C3333 flossza

202323

sym.

monoclinic symmetry (NC = 13, NP 2 1)

C1111 C1122 01133 £01123

C2222 02233 @02223

03333 «503323

202323

sym.

orthotropic or rhombic symmetry (NC = 9, NP : 3)

C1111 01122 01133 0

C2222 02233 Ü

03333 Ü

sym.

flcllw «501112

«502213 flC2212

flcazna flcaalz

2C2313 202312

201313 201312

201212

Ü Ü

0 O

0 Ü

0 0 Ba 8) B5

201313 2C1312

201212

O Ü

0 0

Ü 0

O 0 Ba <29 Bß

201313 0

201212
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trigonal symmetry (NC : 6, Np = 3)

01111 01122 01133 @0112?! 0 0

C1111 C1133 ‘ficnza 0 Ü

C 0 0 0

(C : 3333 B, ® Bß (12)

Sym- 202323 2C1123

01111 — C1122

tetragonal symmetry (NC = 6, Np : 5)

01111 01122 01133 Ü 0 Ü

C1111 C1133 0 0 0

03333 0 0 0

c : Ba «29 Bß (13)

202323 0 0

sym. 2C2323 Ü

2C1212

transversely isotropic or hexagonal symmetry (NC : 5, Np : 1 + oo)

C1111 01122 01133 Ü Ü 0

C1111 01133 Ü 0 O

03333 0 0 0

(C = Ba ® B5 (14)

202323 Ü Ü

sym. 202323 0

C1111 '- C1122

cubic symmetry (NC : 3, Np : 9)

01111 01122 01122 Ü 0 0

01111 C1122 0 0 0

01111 Ü 0 0

(c 2 Ba 09 Bg (15)
202323 Ü 0

Sym- 202323 Ü

202323

isotropic symmetry (NC = 2, Np : oo)

C1111 C1122 01122 0 0 0

01111 C1122 0 0 0

C Ü Ü O(C : 1111
Ba ® Bß (16)

C1111 - 01122 Ü 0

sym. C1111 — C1122 0

C11111 " CV1122

The orientation of the crystal is such that its symmetry planes coincide with some of the coordinate
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planes. Therefore, in all but the triclinic and isotropic case, in addition to the Nc coefficients, the

orientation of the anisotropy axes has to be supplemented in terms of three parameters. Otherwise

the elasticity tensor is not determined uniquely. In the transversely isotropic case only two additional

parameters have to be given.

3 Harmonic Decomposition of Elasticity Tensor-s

It is possible to decompose the 4th—order elasticity tensor of arbitrary symmetry into a direct sum of

orthogonal subspaces on which the action of Orth is irreducible which means that there are no proper

invariant subspaces. The harmonic decomposition has the form

C:h11P{+h21Pg+H'1®I+I®H'1+4.)[Hg)+IHI’ (17)

where

Pl : ®I : H— I (Aimöjn + Ainöjm + 511mAer + 6inAjm) ei ® ej ® em ®

(Schouten, 1924; Spencer, 1970; Cowin, 1989; Boehler et al., 1994). A review concerning this representa-

tion is given by Forte and Vianello (1996). In and h2 are called the first and second isotropic parts; H’1

and Hg are the first and second deviatoric part, respectively; H’ is the harmonic part. The symmetry

group of (C is the intersection of the symmetry groups of its deviatoric and harmonic parts. The tensors

H’l, H’27 and llil’ are irreducible, i.e., completely symmetric and traceless

Hlij Z Hlji Z 0 Héij : Hijz' Héii : 0 (19)

Hijkl : Hjl'ikl Z Him = Him: : Him Z 0 (20)

Irreducible 2nd—order tensors have five and irreducible 4th—order tensors have nine independent compo-

nents.

The first and second isotropic parts h1 and h2 are determined by a projection of (C onto the space of

isotropic 4th—order tensors, i.e.

PI

7 WW

(7 : 1,2). h1 and h2 are the eigenvalues of the isotropic part of (C. Hence h1 : 3K and h2 2 2G

hold, where K and G are the bulk and shear modulus of the isotropic part of (C, respectively. The

scalars h1 and h2 of the stiffness tensor (C correspond to the (isotropic) Voigt estimate (Voigt, 1910) of

the polycrystals bulk modulus h1 : 3KVI and shear modulus h2 : 20‘”. The isotropic parts of the

compliance tensor S correspond to the bulk modulus 1 /h1 = 3K1” and shear modulus 1/h2 : ZGRI

of the Reuss estimate (Reuss, 1929). In the following the bulk modulus 3KRI and Young’s modulus

ERI : 9KRIGRI /(3KRI + GRI) are used to normalize directional dependent quantities.

The deviatoric parts can be computed by

5 4 3 2

where C1 and 0; represent the dilatational modulus and the Voigt tensor (Cowin, 1989)

C1 = Ciiklek ® el Cz = Cikilek ® ez (23)

Based on eqns (21) and (22), the harmonic part llil’ can be determined as

H’ z (C) — gm ® I) + émoxr ® I) (24)
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where

c z c:1 + 202 (25)

The bracket formula is defined by (A,B E Sym)

1

(AijBkl) = 6(AijBkl + Aikle + AilBkj + BijAkl + BikAjl + BuAkj) (26)

respectively. Note that (C has the major symmetry. Therefore, (Gig-kl) = CHM + Cum + Cm”- holds.

The formulae (21)-(24) show that all parts of the harmonic decomposition are linear functions of the

components of C.

4 Characteristic Components of the Elasticity Tensor

In order to determine the elastic anisotropy experimentally, Young’s modulus E is measured in most

cases in tensile tests. A tensile test is defined by an uniaxial stress state, i.e., T : ad ® d with the tensile

direction d. The corresponding strain tensor is given by E : S[T] : aS[d® d]. The tensile stress 0’ and

the corresponding strain E are the components of the stress and strain tensor with respect to the base

tensor d ® d. Hence we have a = T - d (8 d and e : E - d (8) (:1, respectively. Young’s modulus E(d) is

defined by the ratio of tensile stress a and tensile strain a, i.e., E = 0/5. Combining the aforementioned

facts one derives

m : d®d-S[d®d]

= §h1+ghg+2H1-d®d+4H;-d®d+d®d-H’[d®d] (27)

1

: EW+(2E;+4H1)-d®d+d®d-H’[d®d]

(Böhlke, 2001). Here and in the following, h1, h2, H’l, H’z, and H’ denote the parts of the harmonic

decomposition of S.

In the isotropic case the bulk modulus is defined by one third of the ratio of the traces of the stress and

the strain tensor. He and Curnier (1994) extended the definition of the bulk modulus to the anisotropic

case. They defined a generalized bulk modulus by one third of the ratio of the tensile stress and the

trace of the strain tensor. Again we have a : T - d ® d and tr(E) : E - I, respectively. Note that

tr(E) represents the relative change of volume (dV — dV0)/ dVg. The strain tensor corresponding to

T 2 ad ® d is given by E : US [d ® d]. Combining the aforementioned facts one derives

1

3K(d)

 

H I-S[d®d]

4
h1+\/§H’1-d®d+§\/§H;-d®d (28)

1 4

I w+(\/§Hi+§\/§HIZ)-d®d

(Böhlke, 2001). It is concluded that the quantity 1/(3K) represents the relative change of volume per

tensile stress 0’ in direction d. The formula for the generalized bulk modulus shows that K (d) can exhibit

only one of the following symmetries: isotropy, transverse-isotropy or orthotropy. This is due to the fact

that it depends only on the 2nd-order deviatoric parts and does not depend on the 4th—order harmonic

part. He and Curnier (1994) have shown that E(d) depends generally on 15 and K(d) on 6 components

of S, and that both functions uniquely determine the tensor S. As a result, elasticity tensors can be

determined from tensile tests alone. For cubic crystals K is independent of d since the deviatoric parts

vanish.

Similar to Young’s modulus and the bulk modulus other characteristic components of the elasticity
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tensors may be expressed by the parts of the harmonic decomposition (He and Curnier, 1994; Rychlewski,

1995) but these quantities are not defined on the unit sphere in R3. The shear modulus G, in a plane

which is specified by the direction d and the normal n through M = \/2(d ® n + n ® d) /2 is given by

1

2G(d,n) Z M'SM

= h2+2H'1-(d®d+n®n)+M-IHI’[M] (29)

= ä+2HQ-(d®d+n®n)+M-H’[M]

Another characteristic component is Poisson’s ratio V in direction n under stretch in direction d

_l/(d,n)
E(d) z d®d-S[n®n]

= ä—fln-h2)+H1-(d®d+n®n)+d®d-H[n®n]
(30)

„R1

= —W+H'1-(d®d+n®n)+d®d-llil’[n®n]

5 Graphical Representation of E(d) and K ((1)

Inspection of eqns (27) and (28) shows that in the isotropic case Young’s modulus and the generalized

bulk modulus are given by

1 1 2

—ERI Z ghl + ähg ——’— 3 h1

In the following the quantities E(d) and K(d) are normalized by ERI and KRI , respectively. The

dimensionless quantities E(d)/Em and KM/K (d) can be computed by the formulae presented in the

preceding sections for each direction in R3. All directions in R3 can be parameterized by spherical

coordinates {7330,19} with r = 1.

For a two-dimensional representation of E(d) /ERI and KM/K(d) it is possible to project these func-

tions by, e.g., a stereographic projection into a plane which contains the point with r = 0. Note that

E(d) = E(—d) and K(d) : K(—d) hold. The two—dimensional representation could be called quasi

pole figure in analogy to the projection technique commonly used in texture analysis (see, e.g., Bunge,

1993; Kocks et al.7 1998). The quasi pole figure representation of elastic properties allows for a graphical

representation of anisotropic linear elastic properties in two figures. In the following the normal of the

projection plane is equal to e3. Then the spherical coordinates {90,19} can be expressed by the polar

coordinates {77, 95}

(p : (,5, 19 = 2 arctan(7“') (32)

The projection is described in Figures 1. Figure 2 shows the function E(d) for Gold which has a cubic

crystal symmetry.

In the Figures 3 — 20 the projections of the functions E(d)/EM and KM/K(d) are given for different

materials belonging to one of the following symmetry groups: monoclinic7 rhombic, trigonal, tetragonal,

hexagonal, and cubic symmetry. In all Figures lines of equal moduli are plotted. The difference between

two lines amounts to A(E (d)/ERI) : 0.1 and A(KRI/K = 0.1, respectively. The thick line denotes

the ratios of E(d)/ER] :: 1 and KRI/K(d) : 1. Hence the number of lines allows to quantify the

amount of anisotropy in terms of the isotropic parts. For the dark—shadowed areas the ratios are larger

than one. For the light-shadowed areas the ratios are less than one.

Monoclinic symmetry: In Figures 3 and 4 the three-dimensional and two—dimensional representations of

Young’s modulus and the bulk modulus are given for Hornblende and Feldspar. Both materials exhibit a
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Figure 1: Stereographic Projection of Young’s Figure 2: Young’s Modulus of Gold (Cubic Sym-

Modulus and the Generalized Bulk Modulus. metry).

significant anisotropy in terms of the functions E(d) and K(d), respectively. In the case of a monoclinic

symmetry one plane of symmetry exists (Np z 1). The pole figures indicate that for the considered set

of elastic constants the normal of the plane of symmetry is given by n 2 e1.

Rhombic symmetry: In Figures 5 — 8 the three— and two-dimensional representations are given for

Uranium, Olivine, Rochelle Salt, and Topaz. All the materials but Topaz show a significant anisotropy.

In the case of a rhombic symmetry three planes of symmetry exist (Np : 3). Their normals are given

by the base vectors e,- = 1,2, 3).

Trigonal symmetry: For this symmetry group the representations for Aluminium—Phosphate and Quartz

are given in Figures 9 and 10. In the trigonal case three planes of symmetry exist (Np : 3). They are

given by the base vectors

n1 : cos(30°)el + sin(30°)e2 n2 : e2 11;; : cos(150°)el + sin(150°)e2 (33)

The pole figure of the bulk modulus shows a transverse isotropic symmetry.

Tetragonal symmetry: Here the representations for Weissblech and Zircon are given (Figures 11 and 12).

The Figures show the following five planes of symmetry (Np 2 5)

n1_2,3 : e133 n4 : cos(45°)e1 + sin(45°)e2 n5 : cos(135°)e1 + sin(135°)e2 (34)

Note that similar to the trigonal case the bulk modulus exhibits a transverse isotropic symmetry.

Hexagonal symmetry: The Figures 13 and 14 represent the elastic properties of Magnesium and Tita—

nium. In this case the plane with the normal 11 : (33 is a plane of symmetry. Furthermore all planes

which contain the eg-axis are planes of symmetry (Np : 1 + oo).

Cubic symmetry: The Figures 15 — 20 show the elastic properties of Copper, Aluminium, Gold, Iron,

Iron—Aluminium, and Pyrite. In the case of a cubic symmetry the material has nine planes of symmetry

(NP 2 9). Their normals are given by the three base vectors ei. Furthermore all vectors n : (e,- iej)/\/§

with i 75 j are planes of symmetry. Note that in the cubic case the bulk modulus does not depend on d.

6 Summary

The anisotropic linear elastic behavior of single crystals has been described by two functions E(d)

and K(d) defined on the unit sphere in R3 which represent Young’s modulus and a generalized bulk

modulus in the tensile direction d. E(d) is the ratio of tensile stress to tensile strain. The quantity

1 / (3K(d)) represents the relative change of volume (dV — dV0)/ dVo per tensile stress a in direction d.

The elasticity tensors can be uniquely determined if the aforementioned functions are given. Since both

functions are defined on the unit sphere in R3, they can be projected into a plane. The resulting plot is

called quasi pole figure in analogy to the projection technique commonly used in texture analysis. Three-

and two—dimensional representations of Young’s modulus and the bulk modulus have been determined

for selected single crystals (Kocks et al., 1998; Simmons and Wang, 1971). The figures clearly show the

type and the amount of the anisotropy of the linear elastic behavior. The approach discussed in the

present paper can be used for a graphical representation of material properties which are described by a

fourth—order tensor having the same index symmetries as elasticity tensors.
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C43 2 ——0.9 [GPa] (Simmons and Wang, 1971))
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Figure 4: Monoclinic Symmetry: Feldspar (74% or—19.4%Ab-1.95% An) 42414 (Cu : 61.9, C22 : 158.3,

C33 2 C44 Z 055 Z 066 : 36, C12 2 C13 : 023 : 015 : -10,

025 = —1.8, 035 r: —12.1, 046 z —2.3 [GPa] (Simmons and Wang, 1971))
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Figure 9: Trigonal Symmetry: Aluminium-Phosphate 62835 (C11 : 105.03, C33 : 133.53, C44 : 23.14,

012 = 29.34, 6’13 = 69.27, 014 : —12.71 [GPa] (Simmons and Wang, 1971))
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Figure 10: ’I‘rigonal Symmetry: Quartz 62894 (C11 : 86.8, 0'33 : 105.75, C44 : 58.2, 012 2 7.04,

C13 = 11.91, C14 : -18.04 [GPa] (Simmons and Wang, 1971))
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Figure 11: Tetragonal Symmetry: Weissblech 22251 (011 : 76.19, 033 = 116.24, 044 : 17.04, 056 :

19.8, 012 : 71.1, 013 = 67.68 [GPa] (Kocks et al., 1998))
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Figure 12: Tetragonal Symmetry: Zircon 22251 (011 : 73.5, 033 = 46, C44 = 13.8, C66 = 16, 012 = 9,

013 : —5.4 [GPa] (Simmons and Wang, 1971))
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Figure 13: Hexagonal Symmetry: Magnesium 52582 (011 : 56.49, C33 : 58.73, C44 2 16.81, 012 :

23.16, 013 : 18.1 [GPa] (Simmons and Wang, 1971))
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Figure 14: Hexagonal Symmetry: Titanium 52743 (011 : 123.1, 0'33 : 152.9, C44 : 30.7, 012 : 99.6,

013 : 68.8 [GPa] (Simmons and Wang, 1971))
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Figure 15: Cubic Symmetry: Copper (011 = 168,

012 : 121.4, 044 = 75.4 [GPa] (Kocks et 31.,

1998))
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