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The Maximum Principle of Pontryagin in the Heat-mass Transfer

Problem

P.P. Smyshlyaev

A flow of a viscous heat-conducting Newtonian fluid in a long and narrow rectangular basin is studied.

The heat—physical characteristics depend substantially on the temperature, which, in turn, is a function

of coordinates and time. The problem on a flow optimal control with a quadratic quality functional is

considered. The heat flow to a free surface of a fluid is assumed to be a control parameter. By the

maximum principle of Pontryagin some conditions of a control optimality are found. The problem

considered has arosen from studying one of the glass melting problems.

1 Problem Setting

Consider the three—dimensional flow of a viscous heat—conducting fluid in the Cartesian coordinate System

(B = (3:1, 932, m3). We assume that the viscosity and heat-conductivity of the medium depend substantially

on the temperature, which is a function T(x, t) of coordinates and time. The fluid is assumed to be

Newtonian with some ” effective” dependence of the viscosity on the temperature U(T) = ‚u‚(T) / p, where

p is the density. The general system of equations of motion and energy can be found, for example, in

Smyshlyaev et al. (1989).

We also assume that the mass forces take the form of an Archimedean lift only (the Oberbek — Boussinesq

approximation) and in the other addends p : const. In the equation of energy the dissipative terms are

neglected, and besides, we assume that the fluid moves in the channel that strongly extends along the

axis 0x1, and therefore the change of speed in the org—direction may also be neglected. In this case we

have
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where V(u, u, w) is the velocity vector of a fluid particle. The equations of motion, energy, and continuity

can be written as

d_u—_12+21<V8_u +1 „6—0 +1 2.).6—‚0 1

dt _ pöxl 82:1 8m 89:2 6x1 8x3V 8mg öml

do 1 8p a 67)

EZ‘Ea—m+éfi<”5£> (2)

äz—äg—ÄMMT—Twwä („g—972%??? <u§%>+aimu<g—;+g%> (3)

3—9:: + 6871: = 0 (5)

Here p is the pressure; ß is the cubical dilatation coefficient divided by the fluid density, g is the gravity,

MT) is the thermal diffusivity. The left—hand sides of equations (1) — (4) are total derivatives. The initial

and boundary conditions take the form
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u:u0 r)sz U)sz T:T0 pzpo for t:0

äVT/ön = 0 Vn : 0 for x E 7 (free surface)

T(:r,t):T0(s) p=pa+pg(H-:L'3) for mstI‘

öT/ön : q(s‚t) p : pa for a: = s 6 7 (10)

( )

u = v : w : 0 for x E P (solid boundary) (7)

(

(

where V,, Vn are the projections of the velocity on the tangent 7- and the normal n to the surface, s are

points (coordinates) of the surface, H is the fluid depth; 363 = 0 corresponds to the lower boundary point,

pa is the pressure in the external medium (atmosphere); q(s,t) is the heat flow of the input fluid due to

heat conductivity (it is a control parameter of the process).

The optimal control problem consists of the need for the best choice of the heat flow q(s, t). We assume

that the quality of such a choice is characterized by the degree of approximation of the solutions to the

given characteristics of the process under consideration. In the following, the approximation is described

by the value of the integral difference (i. e., a functional) between the velocities and temperatures of the

fluid particles, which can be found from both the solutions and the real process. In addition it is desired

that the minimal deviation shows minimal energy consumption (the quantity of heat).

For a simple application of the maximum principle of Pontryagin (Pontryagin et al.,1976; Syrazetdinov,

1977) we need some new notations of the variables: (,0 : (cp1,<pg‚g@3‚g04‚<p5) = (u,v,w,T,p/p) is the

vector of the required functions, (E1, Ö2, (1)3, {>4 are the right-hand sides of equations (1) — (4) after the

transposition of the terms of inertia and the convective terms from the left-hand sides of the equations

to the right-hand ones.

Denoting derivatives by indices, we obtain:

Ö1 : —sp51:1 + 2(V901w1):n1 + (V‘P2m1)z2 + (11901113 + $02$1)IE3 — 901901221 - <1034101:ng

(p2 : -4P5w2 + (”(102111 )Z1 — 901802“

(1)3 : -90533 + 2(V903ifl3)$3 + (140211)“ + (7/(901w3 + 9031:1»:01 -

‘801903m1 - 90mpst + 59(904 — To)

‘IM = (la/34.21%. +(ks0412)w2 — was. — 9024mm - 90390433

(1)5 : (Pkw + (‚037,3 Z 0

In this case equations (1) n (5) can be written in the more compact form

(pit Z i: 1, ...‚ 4 (1)5 2 0 (11)

The initial and boundary conditions (6) — (10) can be transformed in just the same way.

Let the above—mentioned functional of the quality control have the form:

9

1(9‚sa‚90z‚q):/ U F1(t‚m‚<p‚<pz)dz+/ F2(t‚93‚<p‚Q)d5]dt (12)
0 G S

where 6 is the process time (of heating); G’ is the volume with the boundary 5 = F U *y; F1,F2 are

nonnegative functions, defined in the domain G and on surface S respectively (for example, the sums of

amp, — $0,192, 3,8,0” — any, for i : 1, ...‚ 5. In this case @qu are some given (”desired”) values

of velocities, temperature, and pressure of the fluid and ca, [3,- are the ” weight” coeflicients, determined

by the peculiarities of the process). Functional (12) takes into account the difference of prescribed

values, which are found from the systems (1) — (5) and from those given (for example, obtained from the

experiment), and the value of energy supplied. Obviously, for the process to be optimal it is necessary

that the functional I takes a minimal value. In this case the corresponding solutions of equation (11) are

called Optimal.
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2 The Optimal Control Conditions for the Process of Fluid Motion and Fluid Heating

We assume that in G the function F1(t,m,<p, 90,) has square integrable derivatives with respect to the

variables 11,90,903, up to second order, and has derivatives of first order with respect to t. In addition, we

assume that the function F2 (t, x, (p, q) admits an extension from S to G such that it has smooth properties

similar to F1. In this case, functional (12) can be represented as

0

[(9,4Pa90zaQ) 2/ dt/ (F1 +F21z1 + F22w2 +F23z3)d-T

0 G

where 3F2j : F2/COS(TL‚.’L’j)‚j : 1, ...‚3.

We consider a conjugate system of functions 1/),(75, m), having sufficient smoothness, H : -F1 —F2_‚-xj +1,2415-

(forj : 1, ...,3, i : 1, ..., 5 the summation is assumed to be over 2',j), and that of equations

wit : _Hzpi + (HLp{ijk)ijk Z 17'“75

where the summation is over j, k : 1, ...,3, and the mixed derivatives do not depend on the order of

differentiation.

The boundary conditions have the form

¢,(0,0) : 0 1/),(t,m) : 0 for a: : s E S (15)

Now we construct the variation of functional By definition of the quantity H (t, :13, g0, (pm, gambit, q),

the variation of the integrand term can be written as

—AH +(1/;,A<I>) : —AH + 2mm,- i: 1,5 (16)

Where

AH : HÜJMO + A90‚m‚1/)‚i1+ — H(ta$a(p, WWW : AOH + AwH

The partial variations AqH and AwH take the form

AqH = H(t‚x‚<p‚sax‚<pm‚w‚ q + Aq) - H(t‚ 96: «paw, WWW) (17)

AcpH = H(t‚w‚so+ Aw, ---‚w‚q + Aq) - H(t,m,so, MIMI + M) =

Z(HWA‘P)+(mevA901)+(HcpmaA<wa)+ 5

where the difference of the values of function is represented by the Taylor formula with the residual 5 in

Lagrangian form. The symbol ( , ) denotes the scalar products of the vectors HW,HW,H¢M and the

corresponding vectors of variation. The expression for 6 can be written in the following form

(18)

25: (HizpjzpkaASDjASOk) j7k:07---73

where the summation is over i = 1, ..., 6. The representation 900 : go is a vector of the required quantities,

A900 2 A90 is its variation, cpj : 90x]. are derivatives with respect to 33.), the mixed derivatives do not

depend on their order. H,- are as following

With equation (11) we have

M) = Amt A<I>5 : 0

Let us rewrite equation (16) by using equations (17) and (18):

’AH‘l'WM AÖ):—AqH‘—(Hwa ASÜ)—(me 7 ASDz )"(H<‚0„ a AWm$)+("/}w A9015) (19)

We transform the last addend in the right—hand side of equation (19) in the following way

(WACH) = (Wm/0t - Wt; AW)
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Similarly, we rewrite the third and the fourth addends:

(mewA‘Pw) : (merA‘P)z “ ((sz )m A90)

(HapmrASOww) : (mev A90);n2 - ((anm)z2: A80)

Where the symbols and are the sums of the first and the second derivatives with respect to

the same coordinates a: : (m1‚x2‚x3) respectively. Substituting the last relations into equation (19) and

unifying the second addends in each expression, by virtue of system (14), we obtain

(H90 'l' wt * (Ht/ah - (me)w2>A‘P) : 0

Taking into account the integration in time in the variations of functional (13) and the boundary condi-

tions (6) and (15), we get

(1P: A‘PMtZÜ _ (¢>A‘p)lt:0 Z 0

In this case, we assume that the vector of the desired functions 90 is given at the initial instant and

therefore its variation is zero

ASOItzo = 0

Passing to the variations of functional (13), we transform the remaining first addends in the right—hand

side of equation (19) by the Ostrogradsky formula:

7 : )na A90)ds

JG(HWM 7 A90)12dm : fS(A, n)ds

where (11%),, are the projections of components of the vector Hpnu on the normal 71 to the surface S;

A : (A1,A2,A3); Ak : (HWEHVAgahk + (H Amme“; k : 1,...‚3; k + 1 denotes the cyclic
ipmkzk+13

transposition of indices by the rule: 1 + 1 : 2, 2 + 1 : 3, 3 + 1 : 1.

Finally, the variation of functional (13) is

AI:—A6{Amps—e)dm+A[((H%)mA¢)+(A,n)]}dt

Since the value 5 is of second order (a product of variations), we can conclude that the maximum of

the function H(t, m, (p, 9014p“, 2/}, q) under the given control q0(t, m) is attained under the condition of a

minimum of this functional.

This statement is the maximal principle of Pontryagin for the process of heat-mass transfer. Since the

problem is considered in a sufficiently general form, the conditions for an extremum are rather lengthy. In

the partial cases the problem can substantially be simplified substantially, by using a stronger requirement

for the conjugate state (14), (15) and the initial model.
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