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About the Heat Transfer of a Moving Viscous Liquid in Canals of
Various Shapes

V.J. Adlucky, A.M. Eishinskii

The paper deals with a problem of heat transfer of a viscous liquid moving between two plates or in a cylindrical
pipe. Exact solutions are obtained and compared with the results from literature.

The problem of heat transfer of a viscous liquid moving between two stationary plates was considered by
Leibenson (1955). Mekhtiev and Mamedov (1966) have undertaken the effort to solve the problem when the
upper plate moves with the constant speed while the lower one is fixed. In the present paper the exact solution of
this problem is obtained and the results are compared with those mentioned above.
Let us assume that the coordinate system origin is located at the point O, the axis z is directed parallel to the
plates and the axis y is orthogonal to them. Let 2/ be the distance between the plates and the upper plate moves
with the constant velocity V,, (Figure 1).
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Figure 1. Scheme of the Plates Location

It is assumed that the liquid viscosity and thermal constants do not depend on the temperature, the dissipation of

energy is absent, the heat transfer is steady. Let the temperature in the inlet cross-section of the flat pipe be

constant and equal to Tj. According to Leibenson (1955) the Fourier-Kirchhoff equation of the temperature
2

distribution, neglecting the term 8—7’ has the form
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and the boundary conditions are
T(th,z)=T,
)
T(y.0)=T, [y <h

yvhere T is the liquid temperature; p is the liquid density; ¢, is the average heat capacity at constant pressure; A
is the thermal conductivity. Assuming that the motion is parallel to the axis z and the flow is laminar (Couette
flow) we use the expression (Schlichting, 1956) for the velocity distribution

Vx)= (l+u+ux—x2) (3)
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where
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1 is the dynamic viscosity; Apis the pressure loss by friction on the distance /; w = T is the average
velocity. The dimensionless plate velocity u is varied from 0 to 2/3.
Thus the problem reduces to the solution of the differential equation
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The general solution of the equation (4) is searched in the form
0(x,8)= Z C,t, ()c)e_ﬁ"i
n=l
As aresult we come to the Sturm-Liouville problem with coefficients C, and B,,.
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t,(x)=0 (6)
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In Mekhtiev and Mamedov (1966), the solution of the equation (5) was approximately accomplished by the Ritz
method with the function 7, (x) chosen in the form

t,(x)= An(1+u+ux—x2)

The exact solution of the equation (5) can be presented in the form (Eishinskii, 1999):
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where @ is the confluent hypergeometric function.
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Taking into account the boundary conditions (6) we obtain the transcendental equation for the determination of
the eigenvalues k;
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In Figure 2 the dependence of the lowest eigenvalue k; on the parameter u is presented as well as the same value
calculated in the following form
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Figure 2. The Values of k; Depending on u

The average temperature ® in the cross-section of the flat pipe is obtained as the quotient of the total heat
amount and the total heat capacity of the liquid transfering through the cross-section in unit time (Leibenson,
1955).

Thus
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Now we introduce the Nusselt number, which characterizes the heat exchange from the moving liquid to the
upper and lower plates

2 (06 2 (06
Nuy =——| = Nuy =—| = 10
" 9* (ax]x:l " 9$ {axszl ( )

163



When &£ — oo the limit equations are

1 1
2t1'(1)J.V(x)dx 2 (—I)J.V(x)dx
Nuj = ———~1—— Nuy =—/—1—— (a1
_[ V() (x)dx JV(x)tl (xX)dx
= -1

Assuming u=0, i.e. considering the flow between the fixed plates, we obtain k;=2.827 from equation (8), and
from relations (11) follows that
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This is in good agreement with the approximate value 3.78743 obtained in (Leibenson, 1955).

The results of computations with formulas (11) are plotted in Figure 3. Here the results obtained by the Ritz
method (Mekhtiev and Mamedov, 1966) are presented too. Obvious non-coincidence of them shows that the

approximation t, (x) = A, (1+u+ ux—x?) is inadequate to give the satisfactory problem solution.
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Figure 3. The Values of Nu; Depending on u

We turn now to the consideration of an axi-symmetric flow in a cylindrical pipe of radius a, which also has been
considered in Leibenson (1955). The temperature distribution can be presented by the Fourier-Kirchhoff equation
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and the boundary conditions are
it
| _ =T, 0<r<a
z=0

where T is the excess of temperature of the fluid with respect to that of the wall, which is thus the origin point; r
is the distance from the pipe axis (axis z).

Stokes law of the velocity distribution through the cross-section can be taken in the form (Leibenson, 1955) and
(Schlichting, 1956)

v=2w(1-¢2) (=<

where w is the average liquid velocity.
The general solution of the equation (12) is searched in the form

TG 2= Y, C,T, Qe ™
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which leads to the Sturm-Liouville problem

d’T, () | 14T, ©) 2¢,pup,a>
n e +k (1— Tn =0 k’ = — 13)
T,(1)=0 (14)
The exact solution of the differential equation (13) can be presented in the form (Eishinskii, 1999)
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from which, taking into account boundary conditions (14), we can obtain the transcendental equation for the
determination of k,:
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The lowest eigenvalue k; found from the equation (16) is equal to k; =7.3136 and is in good agreement with the
value 7.33 obtained in Leibenson (1955).
The Nusselt number is
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is the average temperature through the cross-section of cylindrical pipe.
When z — oo the limit value is
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Nu = =3.65679

which is in good agreement with the value 3.65220 obtained approximately in Leibenson (1955).
Thus the classic results of Leibenson (1955) obtained by the approximation method are proved on the basis of the
exact solution of the problem.
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