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Open Orbits in Satellite Dynamics
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Recent investigations into the efi‘ects of a constant atmospheric drag force on an essentially circular satellite

orbit have led to an analytical expression for the resulting orbit, which is obviously not exactly circular, but so

close to it that profitable simplifications can be made in its derivation. In the present paper several of the

resulting type orbits are analyzed and compared.

l Closed and Open Satellite Orbits

For a point satellite of constant mass m in the gravitational field H of a point master, the Kepler force (Chobotov,

1996) is of magnitude

K:H_’;1 (1)

r

If in additon to the Kepler force (1) there acts a negative transverse force of magnitude D, which we will assume

to be constant, then Newton’s second law requires that

—H—r2n = m(r'—r92) - (23)
r

—D = m(ré+2ré) (2b)

Depending on the magnitude of the term r' in equation (2a) we may obtain for the orbit shape an ellipse, a circle,

or a spiral. We shall refer to ellipses and circles as closed orbits, and to spirals as open orbits.

The solution of equations (2) is exact if

D = 0 and r' at 0 (3)

and results in an ellipse as orbit. Conditions (3) by the way, may also result in a parabola or a hyperbola; but

strictly speaking, they are not orbits (Latin: orbis 2 ring).

The solution is also exact if

D=O and r=0 and r=O (4)

and results in a circle as orbit (Figure l).

The solution obtainable if

D¢0 and 03m)" <<K (5)

is approximate and results in a spiral orbit (Figure 2).

The present paper is devoted to an investigation of the spiral orbits which result from conditions (5).
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Figure l. A Circular Closed Orbit

r0

Figure 2. A Spiral Open Orbit

2 The Ward Spiral

By assuming that f can be neglected in equation (2a), equations (2a) and (2b) can be combined into

‘21) 3/2
= 6

Equation (6) can be integrated in closed form. With the limits r : r and r = r” for t = I and I = 0, the Ward spiral

(Ward, 2000) results (line 1, Table 1)

I;

 

r z „
(7)
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This parameter equation can be changed into polar form (Figure 2) by using another approximation, viz.

r9=vt (8)
(1 Ü

as a consequence of which the Ward spiral takes on the form (line 1, Table 2)

r

r Z (1 2
(9)

(H26)

K0

A point satellite on a Ward spiral has an orbital energy, with eccentricity e z 0 and semi—major axis a z r ‚ of

2 2

E=_M=_H_m1+2 a, :_fl1+£e (m)

2a 2r“ H 2’?) U

It changes by approximately

[E:_Eflfl2=_mpm an

2'}, 0

per orbit, i.e., it decreases as the orbit spirals inward, with

K0 = ET (12)

It was Dr. C.A. Ward’s unique contribution to recognize the significance of the insignificance of the term 'r' in

equation (2a), which indeed is often so small that it can be successfully neglected. This situation is e.g. typical

for satellites at high altitude on essentially circular orbits that are subjected to a constant atmospheric drag.

which causes only minor orbital changes, i.e., such satellites remain on essentially circular orbits (Rimrott and

Salustri, 2001). Ward’s approach leads to an integrable expression, which eventually results in the Ward spiral

(7). In the derivation process for this spiral there are numerous approximations, and the reader is well advised to

keep this in mind.

These approximations may be of a cumulative nature and lead eventually to a result that represents a poor

approximation over all, or they may be of a corrective nature leading to a relatively good approximation

eventually.

We can change equation (6) into polar form if we approximate the angular speed either by

- u

r.

or if we allow for the fact that the radius vector changes by only a small amount, by the somewhat simpler

' H
e = i—3 (14)

r0

With equation (1 3) we obtain instead of equation (6)

3/2

fif. = _g; = _äfi (15)

d6 Jim e um
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Integrath between the limits r = r and r = r0 for 6 = 6 and 9 = 0 we have

I,

r = u
(16)

[HEB

K0

which appears in line 3 of Table 2.

If on the other hand we employ equation (14) then equation (6) becomes

3/2

2 =_2Dr() r3/2

d9 Hm

which results in

r =# (18)
D 2

1+~9

K0

the same as equation (9). Equation (18) appears in line 1 of Table 2.

Equation (6) can be differentiated with respect to time and then used to supply us with an idea as to the

magnitude of mf . We have then

m'r' = 62D (l9)

K

an amount which fulfils condition (5) if the drag force D is small enough.

Equations (16) and (18) are a first indication that the Ward spiral (7) may have competition from other spirals, as

we will see in the subsequent section.

3 Other Spirals

The whole concept of open orbits is based on the assumption that f is so small that it can be neglected. This

concept also obviously includes the case 'r' = 0 . This in turn means that i” = constant, which we can bring about

by letting

= — 2D n?” (20>
JE m

instead of equation (6). Integration of equation (20) leads to

Wrap]
m u

which is entered in line 2 of Table 1. Using equation (8) we obtain the polar form

2D

= l———-G 22r it K j t)
(I

I}.

 

which appears in line 2 of Table 2.
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With the help of equation (13) we have

  

fl : __ 2Dr03/2 r3/2

d6 pm

which when integrated supplies us with

r = ———r”2 (24)

(Hie)
K!)

which is entered in line 1 of Table 2.

If on the other hand we choose to make use of equation (14) then

3

fl = _ 2D“) (25)

d9 um

and

r = r” 1—2—DG) (26)

K„ )

Equation (26) is entered in line 2 of Table 2.

Of the many other possibilities to approximate the radius change rate let us begin with

. 2D

r 2 _ 2/2 r}
(27)Jinn;

Upon integration we obtain the spiral

r = —r“—— (28)

4D r”

l + — t

m u

and for the force

.. 12D r3
m r = D (29)

K r3
()

Equations (27), (28) and (29) have been entered in line 3 of Table 1. If we change the independent variable we

can write

d1” _ 3

— — ——r (30)
d9 um

and integrate to get

r(}

r = _— (31)

HEB

0

Equations (30) and (31) appear as line 3 in Table 2.
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On the other hand if we begin with

2D 2

TM”

we get

V»
r :—

2D n,

1+———v[——t

m it

and

m F = —8Dr D
r.

t)

These three expressions are entered in line 4 in Table I.

If we change the independent variable and write

 

dr _ 2Dr„ r2

d6 um

we obtain

r!)

r : ————-—

1+~2£ZG

a hyperbolic spiral. Equations (35) and (36) have been entered in line 4 of Table 2.

Lastly, let us use the approximation

2D

JE

[ 2D r„ J
r=r0exp —— —t

m u

.. 4D: raD
mr

Kr

r":—

 

r0
r

m

which leads to

and to

Equations (37), (38) and (39) appear in line 5 of Table 1. If we write, instead of equation (37),

fl _ _ 20¢} r

d9 um

 

and integrate we get

2

a logarithmic spiral. Equations (40) and (41) are entered in line 5 of Table 2.
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Time Derivative Force Radius Series Expansion
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Jim m H

. 2D 12D 3 r

r:_——2r3 mf: r D r:——U_ r=r 1—2 £t+m
n1r'/2 K 3 0

H ‚U n, Hg if m H

m m

 

‚j.

 

.. 8D .

mr: rD FZ+ r=r0[1——2D IL I+...]

m LL

:_ 21) r2

J};an Krz) 1+2I)\/zt

H

       

2D ‘ .‚ 4D"„ 2D

r:_ ’0 r mr=TD r=r0exp —2 —r”—t r=r” 1—— ilk”

Jim r m Ll m p.

              

um

K = —
r2

Table 1. Parameter Equations

1 2 3 4

Derivative Radius Type Series Expansion

of 20 3’2 a 2D
_r=_—r” r3” r=——2 Ward r=r” 1——6+...

d6 um D 0

1+—6

K!)

dr zDr„3 1 20 e h_

de um n K0 Arc lmedes

dr 2D r”

‘—:——r3 r=—‘*—‘ r:r„1—2—DG+„.
d6 um 4D

1+—6 0

dr _ 2Drr) r2 r r!) 1 9

— _ ____ :— Hyperbolic r = E, —— +---

de um K0

dr 2Dr"2 r r 1 ex 21) 9 ‘ l 2D 9+—=— =* —— 0“ ' r=r ——d6 um r) P K0 Looanthmlc 0 K0

um

K0 : —
r2

Table 2. Polar Equations
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4 Assessment

Tables 1 and 2 have each a column 4, where the series expansions of the five different spirals are given. These

series expansions turn out to be the same for all spirals, an indication that they are essentially equivalent for

small values of the drag force D. Thus at first sight all five orbit spirals appear of equal suitability. Amongst

them the Archimedean spiral appeals because of its simplicity. However, there is one property of the Ward spiral

that makes it stand out from all the others, in that the Ward spiral predicts the applied torque correctly, as is

shown in the following. The others do not, as the reader is invited to confirm!

The satellite’s angular momentum, with E z 0 and the Ward spiral’s equation (7), is

l

H = m ur = m 1m,— (42)

D ’0;
1+7 *1

m M

Its derivative with respect to time is the torque

- r

H = ——”D = —-rD (43)

q.e.d.

5 Conclusion

The insignificance of the term mf in Newton’s second law in certain circumstances can be successfully exploited

to obtain an analytic expression for open satellite orbits. In the present paper it has been shown that the spiral

obtained by Ward shares characteristics with many other spirals, all of which lead to the same expression, when

expanded into a series and broken off after the second term. As to the question which spiral represents an open

satellite orbit the best, one might be inclined to give the nod to the Archimedean spiral because of its simplicity,

until one realizes that the Ward spiral stands out from all others by a significant property.
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